
Lecture 23 – Database System
Architectures

These slides are based on “Database System Concepts” 6th
edition book (whereas some quotes and figures are used from the
book) and are a modified version of the slides which accompany
the book (http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html),
in addition to the 2009/2012 CMSC 461 slides by Dr. Kalpakis

CMSC 461, Database Management Systems
Spring 2018

Dr. Jennifer Sleeman https://www.csee.umbc.edu/~jsleem1/courses/461/spr18

Logistics

● Phase 4 due 4/30/2018
● Homework 6 due 5/2/2018
● Final Project Plan 5/14/2018

Reminder: Presentation Slots

Centralized Systems

● Run on a single computer system and do
not interact with other computer systems.

● General-purpose computer system: one to
a few CPUs and a number of device
controllers that are connected through a
common bus that provides access to
shared memory.

Based on and image from “Database System Concepts” book and slides, 6th edition

Centralized Systems

● Single-user system (e.g., personal
computer or workstation): desk-top unit,
single user, usually has only one CPU and
one or two hard disks; the OS may support
only one user.

● Multi-user system: more disks, more
memory, multiple CPUs, and a multi-user
OS. Serve a large number of users who are
connected to the system vie terminals.
Often called server systems.

Based on and image from “Database System Concepts” book and slides, 6th edition

A Centralized Computer System

Based on and image from “Database System Concepts” book and slides, 6th edition

Client-Server Systems
● Server systems satisfy requests generated at

m client systems, whose general structure is
shown below:

Based on and image from “Database System Concepts” book and slides, 6th edition

● Database functionality can be divided into:
− Back-end: manages access structures, query

evaluation and optimization, concurrency control
and recovery.

− Front-end: consists of tools such as forms,
report-writers, and graphical user interface
facilities.

Client-Server Systems

Based on and image from “Database System Concepts” book and slides, 6th edition

● The interface between the front-end and the
back-end is through SQL or through an
application program interface.

Client-Server Systems

Based on and image from “Database System Concepts” book and slides, 6th edition

● Advantages of replacing mainframes with
networks of workstations or personal
computers connected to back-end server
machines:
− better functionality for the cost
− flexibility in locating resources and expanding

facilities
− better user interfaces
− easier maintenance

Client-Server Systems

Based on and image from “Database System Concepts” book and slides, 6th edition

Server System Architecture

● Server systems can be broadly categorized
into two kinds:
− transaction servers which are widely used in

relational database systems, and
− data servers, used in object-oriented

database systems

Based on and image from “Database System Concepts” book and slides, 6th edition

Transaction Servers

● Also called query server systems or SQL
server systems
− Clients send requests to the server
− Transactions are executed at the server
− Results are shipped back to the client.

● Requests are specified in SQL, and
communicated to the server through a
remote procedure call (RPC) mechanism.

Based on and image from “Database System Concepts” book and slides, 6th edition

Transaction Servers

● Transactional RPC allows many RPC calls
to form a transaction.

● Open Database Connectivity (ODBC) is a
C language application program interface
standard from Microsoft for connecting to a
server, sending SQL requests, and
receiving results.

● JDBC standard is similar to ODBC, for
Java

Based on and image from “Database System Concepts” book and slides, 6th edition

Transaction Server Process Structure

● A typical transaction server consists of
multiple processes accessing data in
shared memory.

● Server processes
− These receive user queries (transactions),

execute them and send results back
− Processes may be multithreaded, allowing a

single process to execute several user queries
concurrently

− Typically multiple multithreaded server
processes

Based on and image from “Database System Concepts” book and slides, 6th edition

Transaction Server Process Structure

● Lock manager process
− More on this later

● Database writer process
− Output modified buffer blocks to disks

continually

Based on and image from “Database System Concepts” book and slides, 6th edition

● Log writer process
− Server processes simply add log records to

log record buffer
− Log writer process outputs log records to

stable storage.
● Checkpoint process

− Performs periodic checkpoints
● Process monitor process

− Monitors other processes, and takes
recovery actions if any of the other
processes fail

● E.g., aborting any transactions being executed
by a server process and restarting it

 Transaction Server Process Structure

Based on and image from “Database System Concepts” book and slides, 6th edition

Transaction Server Process Structure

Based on and image from “Database System Concepts” book and slides, 6th edition

● Shared memory contains shared data
− Buffer pool
− Lock table
− Log buffer
− Cached query plans (reused if same

query submitted again)

 Transaction Server Process Structure

Based on and image from “Database System Concepts” book and slides, 6th edition

● All database processes can access
shared memory

● To ensure that no two processes are
accessing the same data structure at
the same time, databases systems
implement mutual exclusion using
either
− Operating system semaphores
− Atomic instructions such as

test-and-set

 Transaction Server Process Structure

Based on and image from “Database System Concepts” book and slides, 6th edition

● To avoid overhead of interprocess
communication for lock request/grant,
each database process operates
directly on the lock table
− instead of sending requests to lock

manager process
● Lock manager process still used for

deadlock detection

 Transaction Server Process Structure

Based on and image from “Database System Concepts” book and slides, 6th edition

Data Servers

● Used in high-speed LANs, in cases where
− The clients are comparable in processing

power to the server
− The tasks to be executed are compute

intensive.
● Data are shipped to clients where

processing is performed, and then shipped
results back to the server.

Based on and image from “Database System Concepts” book and slides, 6th edition

Data Servers

● This architecture requires full back-end
functionality at the clients.

● Used in many object-oriented database
systems

● Issues:
− Page-Shipping versus Item-Shipping
− Locking
− Data Caching
− Lock Caching

Based on and image from “Database System Concepts” book and slides, 6th edition

● Page-shipping versus item-shipping
− Smaller unit of shipping ⇒ more messages
− Worth prefetching related items along with

requested item
− Page shipping can be thought of as a form of

prefetching

Data Servers

Based on and image from “Database System Concepts” book and slides, 6th edition

● Locking
− Overhead of requesting and getting locks from

server is high due to message delays
− Can grant locks on requested and prefetched

items; with page shipping, transaction is
granted lock on whole page.

− Locks on a prefetched item can be P{called
back} by the server, and returned by client
transaction if the prefetched item has not been
used.

− Locks on the page can be deescalated to
locks on items in the page when there are lock
conflicts. Locks on unused items can then be
returned to server.

Data Servers

Based on and image from “Database System Concepts” book and slides, 6th edition

● Data Caching
− Data can be cached at client even in between

transactions
− But check that data is up-to-date before it is

used (cache coherency)
− Check can be done when requesting lock on

data item

Data Servers

Based on and image from “Database System Concepts” book and slides, 6th edition

● Lock Caching
− Locks can be retained by client system even

in between transactions
− Transactions can acquire cached locks

locally, without contacting server
− Server calls back locks from clients when it

receives conflicting lock request. Client
returns lock once no local transaction is using
it.

− Similar to deescalation, but across
transactions.

Data Servers

Based on and image from “Database System Concepts” book and slides, 6th edition

● Servers usually owned by enterprise
● Cloud Computing

− New trend
− Servers owned by 'third party'
− Third party does not provide software
− Only a collection of virtual machines

● Single real computer simulates many
● Advantage

− Can add machines as needed
− Can ignore technology details

Cloud-Based Servers

Based on and image from “Database System Concepts” book and slides, 6th edition

Parallel Systems

● Parallel database systems consist of
multiple processors and multiple disks
connected by a fast interconnection
network.

● A coarse-grain parallel machine consists
of a small number of powerful processors

● A massively parallel or fine grain parallel
machine utilizes thousands of smaller
processors.

Based on and image from “Database System Concepts” book and slides, 6th edition

Parallel Systems

● Two main performance measures:
− throughput --- the number of tasks that can

be completed in a given time interval
− response time --- the amount of time it takes

to complete a single task from the time it is
submitted

Based on and image from “Database System Concepts” book and slides, 6th edition

Speed-Up and Scale-Up
● Speedup: a fixed-sized problem executing

on a small system is given to a system
which is N-times larger.
− Measured by:
 speedup = small system elapsed time
 large system elapsed time
− Speedup is linear if equation equals N.

Based on and image from “Database System Concepts” book and slides, 6th edition

Speed-Up and Scale-Up
● Scaleup: increase the size of both the

problem and the system
− N-times larger system used to perform N-times

larger job
− Measured by:
 scaleup = small system small problem elapsed time
 big system big problem elapsed time
− Scale up is linear if equation equals 1.

Based on and image from “Database System Concepts” book and slides, 6th edition

Speedup

Based on and image from “Database System Concepts” book and slides, 6th edition

Scaleup

Based on and image from “Database System Concepts” book and slides, 6th edition

Batch and Transaction Scaleup

● Batch scaleup:
− A single large job; typical of most decision

support queries and scientific simulation.
− Use an N-times larger computer on N-times

larger problem.

Based on and image from “Database System Concepts” book and slides, 6th edition

Batch and Transaction Scaleup

● Transaction scaleup:
− Numerous small queries submitted by

independent users to a shared database;
typical transaction processing and timesharing
systems.

− N-times as many users submitting requests
(hence, N-times as many requests) to an
N-times larger database, on an N-times larger
computer.

− Well-suited to parallel execution.

Based on and image from “Database System Concepts” book and slides, 6th edition

 Factors Limiting Speedup and Scaleup

Speedup and scaleup are often sublinear due
to:

● Startup costs: Cost of starting up multiple
processes may dominate computation time,
if the degree of parallelism is high.

● Interference: Processes accessing shared
resources (e.g., system bus, disks, or
locks) compete with each other, thus
spending time waiting on other processes,
rather than performing useful work.

Based on and image from “Database System Concepts” book and slides, 6th edition

 Factors Limiting Speedup and Scaleup

● Skew: Increasing the degree of parallelism
increases the variance in service times of
parallely executing tasks. Overall
execution time determined by slowest of
parallely executing tasks.

Based on and image from “Database System Concepts” book and slides, 6th edition

Interconnection Network Architectures

● Bus. System components send data on
and receive data from a single
communication bus;
− Does not scale well with increasing

parallelism.
● Mesh. Components are arranged as nodes

in a grid, and each component is
connected to all adjacent components
− Communication links grow with growing

number of components, and so scales better.
− But may require 2√n hops to send message to

a node (or √n with wraparound connections at
edge of grid).

Based on and image from “Database System Concepts” book and slides, 6th edition

Interconnection Network Architectures

● Hypercube. Components are numbered in
binary; components are connected to one
another if their binary representations differ
in exactly one bit.
− n components are connected to log(n) other

components and can reach each other via at
most log(n) links; reduces communication
delays.

Based on and image from “Database System Concepts” book and slides, 6th edition

Interconnection Architectures

Based on and image from “Database System Concepts” book and slides, 6th edition

Parallel Database Architectures

● Shared memory -- processors share a
common memory

● Shared disk -- processors share a
common disk

● Shared nothing -- processors share
neither a common memory nor common
disk

● Hierarchical -- hybrid of the above
architectures

Based on and image from “Database System Concepts” book and slides, 6th edition

Parallel Database Architectures

Based on and image from “Database System Concepts” book and slides, 6th edition

Shared Memory
● Processors and disks have access to a

common memory, typically via a bus or
through an interconnection network.

● Extremely efficient communication between
processors — data in shared memory can
be accessed by any processor without
having to move it using software.

● Downside – architecture is not scalable
beyond 32 or 64 processors since the bus
or the interconnection network becomes a
bottleneck

● Widely used for lower degrees of
parallelism (4 to 8).

Based on and image from “Database System Concepts” book and slides, 6th edition

Shared Disk

● All processors can directly access all
disks via an interconnection network, but
the processors have private memories.
− The memory bus is not a bottleneck
− Architecture provides a degree of

fault-tolerance — if a processor fails, the
other processors can take over its tasks since
the database is resident on disks that are
accessible from all processors.

Based on and image from “Database System Concepts” book and slides, 6th edition

Shared Disk

● Examples: IBM Sysplex and DEC
clusters (now part of Compaq) running
Rdb (now Oracle Rdb) were early
commercial users

● Downside: bottleneck now occurs at
interconnection to the disk subsystem.

● Shared-disk systems can scale to a
somewhat larger number of processors,
but communication between processors is
slower.

Based on and image from “Database System Concepts” book and slides, 6th edition

Shared Nothing

● Node consists of a processor, memory, and
one or more disks. Processors at one node
communicate with another processor at
another node using an interconnection
network. A node functions as the server for
the data on the disk or disks the node
owns.

● Examples: Teradata, Tandem, Oracle-n
CUBE

Based on and image from “Database System Concepts” book and slides, 6th edition

Shared Nothing

● Data accessed from local disks (and local
memory accesses) do not pass through
interconnection network, thereby
minimizing the interference of resource
sharing.

● Shared-nothing multiprocessors can be
scaled up to thousands of processors
without interference.

● Main drawback: cost of communication and
non-local disk access; sending data
involves software interaction at both ends.

Based on and image from “Database System Concepts” book and slides, 6th edition

Hierarchical

● Combines characteristics of
shared-memory, shared-disk, and
shared-nothing architectures.

● Top level is a shared-nothing architecture –
nodes connected by an interconnection
network, and do not share disks or memory
with each other.

Based on and image from “Database System Concepts” book and slides, 6th edition

Hierarchical

● Each node of the system could be a
shared-memory system with a few
processors.

● Alternatively, each node could be a
shared-disk system, and each of the
systems sharing a set of disks could be a
shared-memory system.

● Reduce the complexity of programming
such systems by distributed
virtual-memory architectures
− Also called non-uniform memory

architecture (NUMA)
 Based on and image from “Database System Concepts” book and slides, 6th edition

Distributed Systems
● Data spread over multiple machines (also referred

to as sites or nodes).
● Network interconnects the machines
● Data shared by users on multiple machines

Based on and image from “Database System Concepts” book and slides, 6th edition

Distributed Databases

● Homogeneous distributed databases
− Same software/schema on all sites, data may

be partitioned among sites
− Goal: provide a view of a single database,

hiding details of distribution
● Heterogeneous distributed databases

− Different software/schema on different sites
− Goal: integrate existing databases to provide

useful functionality

Based on and image from “Database System Concepts” book and slides, 6th edition

Distributed Databases

● Differentiate between local and global
transactions
− A local transaction accesses data in the

single site at which the transaction was
initiated.

− A global transaction either accesses data in
a site different from the one at which the
transaction was initiated or accesses data in
several different sites.

Based on and image from “Database System Concepts” book and slides, 6th edition

Trade-offs in Distributed Systems

● Sharing data – users at one site able to
access the data residing at some other
sites.

● Autonomy – each site is able to retain a
degree of control over data stored locally.

● Higher system availability through
redundancy — data can be replicated at
remote sites, and system can function even
if a site fails.

Based on and image from “Database System Concepts” book and slides, 6th edition

Trade-offs in Distributed Systems

● Disadvantage: added complexity required
to ensure proper coordination among sites.
− Software development cost.
− Greater potential for bugs.
− Increased processing overhead.

Based on and image from “Database System Concepts” book and slides, 6th edition

Implementation Issues for
Distributed Databases

● Atomicity needed even for transactions
that update data at multiple sites

● The two-phase commit protocol (2PC) is
used to ensure atomicity
− Basic idea: each site executes transaction

until just before commit, and the leaves final
decision to a coordinator

− Each site must follow decision of coordinator,
even if there is a failure while waiting for
coordinators decision

Based on and image from “Database System Concepts” book and slides, 6th edition

Implementation Issues for
Distributed Databases

● 2PC is not always appropriate: other
transaction models based on persistent
messaging, and workflows, are also used

● Distributed concurrency control (and
deadlock detection) required

● Data items may be replicated to improve
data availability

● Details of above in Chapter 22

Based on and image from “Database System Concepts” book and slides, 6th edition

Network Types

● Local-area networks (LANs) – composed
of processors that are distributed over
small geographical areas, such as a single
building or a few adjacent buildings.

● Wide-area networks (WANs) – composed
of processors distributed over a large
geographical area.

Based on and image from “Database System Concepts” book and slides, 6th edition

Local-area Network

Based on and image from “Database System Concepts” book and slides, 6th edition

● WANs with continuous connection (e.g.,
the Internet) are needed for implementing
distributed database systems

● Groupware applications such as Lotus
notes can work on WANs with
discontinuous connection:
− Data is replicated.
− Updates are propagated to replicas

periodically.
− Copies of data may be updated independently.
− Non-serializable executions can thus result.

Resolution is application dependent.

Network Types

Based on and image from “Database System Concepts” book and slides, 6th edition

