
Lecture 21 – Concurrency
Control Part 1

These slides are based on “Database System Concepts” 6th
edition book (whereas some quotes and figures are used from the
book) and are a modified version of the slides which accompany
the book (http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html),
in addition to the 2009/2012 CMSC 461 slides by Dr. Kalpakis

CMSC 461, Database Management Systems
Spring 2018

Dr. Jennifer Sleeman https://www.csee.umbc.edu/~jsleem1/courses/461/spr18

Logistics

● Homework #5 due 4/20/2018
● Phase 4 due 4/23/2018

2

Motivation - Transactions

● Isolation fundamental with transactions
● Multiple transactions are allowed to run

concurrently in the system
● Concurrency control schemes –

mechanisms to achieve isolation
● Schedule – a sequences of instructions that

specify the chronological order in which
instructions of concurrent transactions are
executed

Based on and image from “Database System Concepts” book and slides, 6th edition

3

Motivation - Transactions

Serial Schedule Non-preserving Concurrent Schedule

Based on and image from “Database System Concepts” book and slides, 6th edition

Schedule A Schedule B

4

Motivation - Transactions

● If a schedule S can be transformed into a
schedule S´ by a series of swaps of
non-conflicting instructions, we say that S and
S´ are conflict equivalent.

● We say that a schedule S is conflict
serializable if it is conflict equivalent to a serial
schedule

Based on and image from “Database System Concepts” book and slides, 6th edition

5

Concurrency Control

● A database must provide a mechanism that
will ensure that all possible schedules are
− conflict serializable, and
− are recoverable and preferably cascadeless

● A policy in which only one transaction can
execute at a time generates serial
schedules, but provides a poor degree of
concurrency
− Are serial schedules recoverable/cascadeless?

Based on and image from “Database System Concepts” book and slides, 6th edition

6

Concurrency Control

● Testing a schedule for serializability after it
has executed is a little too late!

● Goal – to develop concurrency control
protocols that will assure serializability.

Based on and image from “Database System Concepts” book and slides, 6th edition

7

Lock-Based Protocols

● A lock is a mechanism to control concurrent
access to a data item

● Data items can be locked in two modes :
○ exclusive (X) mode. Data item can be both read as well

as written. X-lock is requested using lock-X instruction.
○ shared (S) mode. Data item can only be read. S-lock is

requested using lock-S instruction.
● Lock requests are made to

concurrency-control manager. Transaction
can proceed only after request is granted.

Based on and image from “Database System Concepts” book and slides, 6th edition

8

Lock-Based Protocols

Lock-compatibility matrix

● A transaction may be granted a lock on an
item if the requested lock is compatible with
locks already held on the item by other
transactions

Based on and image from “Database System Concepts” book and slides, 6th edition

9

Lock-Based Protocols

● Any number of transactions can hold shared
locks on an item,
− but if any transaction holds an exclusive on the

item no other transaction may hold any lock on
the item.

● If a lock cannot be granted, the requesting
transaction is made to wait till all incompatible
locks held by other transactions have been
released. The lock is then granted.

Based on and image from “Database System Concepts” book and slides, 6th edition

10

● Example of a transaction performing locking:
 T2: lock-S(A);
 read (A);
 unlock(A);
 lock-S(B);
 read (B);
 unlock(B);
 display(A+B)
● Locking as above is not sufficient to

guarantee serializability — if A and B get
updated in-between the read of A and B, the
displayed sum would be wrong.

Lock-Based Protocols

Based on and image from “Database System Concepts” book and slides, 6th edition

11

● A locking protocol is a set of rules followed
by all transactions while requesting and
releasing locks. Locking protocols restrict the
set of possible schedules.

Lock-Based Protocols

Based on and image from “Database System Concepts” book and slides, 6th edition

12

Pitfalls of Lock-Based Protocols
Consider the partial schedule:

Neither T3 nor T4 can make progress — executing
lock-S(B) causes T4 to wait for T3 to release its
lock on B, while executing lock-X(A) causes T3
to wait for T4 to release its lock on A.

Based on and image from “Database System Concepts” book and slides, 6th edition

13

Pitfalls of Lock-Based Protocols

● Such a situation is called a deadlock.
− To handle a deadlock one of T3 or T4 must be

rolled back
and its locks released.

The potential for deadlock exists in most
locking protocols. Deadlocks are a necessary
evil.

Based on and image from “Database System Concepts” book and slides, 6th edition

14

● Starvation is also possible if concurrency
control manager is badly designed. For
example:
− A transaction may be waiting for an X-lock on an item,

while a sequence of other transactions request and
are granted an S-lock on the same item.

− The same transaction is repeatedly rolled back due to
deadlocks.

● Concurrency control manager can be
designed to prevent starvation.

Pitfalls of Lock-Based Protocols

Based on and image from “Database System Concepts” book and slides, 6th edition

15

The Two-Phase Locking Protocol

● This is a protocol which ensures
conflict-serializable schedules.

● Phase 1: Growing Phase
− transaction may obtain locks
− transaction may not release locks

● Phase 2: Shrinking Phase
− transaction may release locks
− transaction may not obtain locks

● The protocol ensures serializability. It can be
proved that the transactions can be serialized
in the order of their lock points (i.e. the point
where a transaction acquired its final lock).

Based on and image from “Database System Concepts” book and slides, 6th edition

16

● Two-phase locking does not ensure freedom
from deadlocks

● Cascading roll-back is possible under
two-phase locking. To avoid this, follow a
modified protocol called strict two-phase
locking. Here a transaction must hold all its
exclusive locks till it commits/aborts.

● Rigorous two-phase locking is even stricter:
here all locks are held till commit/abort. In this
protocol transactions can be serialized in the
order in which they commit.

The Two-Phase Locking Protocol

Based on and image from “Database System Concepts” book and slides, 6th edition

17

● There can be conflict serializable
schedules that cannot be obtained if
two-phase locking is used.

● However, in the absence of extra
information (e.g., ordering of access to
data), two-phase locking is needed for
conflict serializability in the following sense:

Given a transaction Ti that does not follow two-phase
locking, we can find a transaction Tj that uses two-phase
locking, and a schedule for Ti and Tj that is not conflict
serializable.

The Two-Phase Locking Protocol

Based on and image from “Database System Concepts” book and slides, 6th edition

18

Lock Conversions

● Two-phase locking with lock conversions:
 – First Phase:

■ can acquire a lock-S on item
■ can acquire a lock-X on item
■ can convert a lock-S to a lock-X (upgrade)

 – Second Phase:
■ can release a lock-S
■ can release a lock-X
■ can convert a lock-X to a lock-S (downgrade)

● This protocol ensures serializability. But still
relies on the programmer to insert the
various locking instructions.

Based on and image from “Database System Concepts” book and slides, 6th edition

19

Automatic Acquisition of Locks

● A transaction Ti issues the standard
read/write instruction, without explicit locking
calls.

● The operation read(D) is processed as:
 if Ti has a lock on D
 then
 read(D)
 else begin
 if necessary wait until no other
 transaction has a lock-X on D
 grant Ti a lock-S on D;
 read(D)
 end

Based on and image from “Database System Concepts” book and slides, 6th edition

20

● write(D) is processed as:
 if Ti has a lock-X on D
 then
 write(D)
 else begin
 if necessary wait until no other trans. has any lock on D,
 if Ti has a lock-S on D
 then
 upgrade lock on D to lock-X
 else
 grant Ti a lock-X on D
 write(D)
 end;
● All locks are released after commit or abort

Automatic Acquisition of Locks

Based on and image from “Database System Concepts” book and slides, 6th edition

21

Implementation of Locking

● A lock manager can be implemented as a
separate process to which transactions
send lock and unlock requests

● The lock manager replies to a lock request
by sending a lock grant messages (or a
message asking the transaction to roll
back, in case of a deadlock)

● The requesting transaction waits until its
request is answered

Based on and image from “Database System Concepts” book and slides, 6th edition

22

Implementation of Locking

● The lock manager maintains a
data-structure called a lock table to record
granted locks and pending requests

● The lock table is usually implemented as
an in-memory hash table indexed on the
name of the data item being locked

Based on and image from “Database System Concepts” book and slides, 6th edition

23

Lock Table
● Black rectangles indicate granted locks,

white ones indicate waiting requests
● Lock table also records the type of lock

granted or requested
● New request is added to the end of the

queue of requests for the data item, and
granted if it is compatible with all earlier
locks

● Unlock requests result in the request being
deleted, and later requests are checked to
see if they can now be granted

● If transaction aborts, all waiting or granted
requests of the transaction are deleted
− lock manager may keep a list of locks

held by each transaction, to implement
this efficiently

Based on and image from “Database System Concepts” book and slides, 6th edition

24

Graph-Based Protocols

● Graph-based protocols are an alternative to
two-phase locking

● Impose a partial ordering → on the set
D = {d1, d2 ,..., dh} of all data items.
− If di → dj then any transaction accessing both

di and dj must access di before accessing dj.
− Implies that the set D may now be viewed as a

directed acyclic graph, called a database
graph.

● The tree-protocol is a simple kind of graph
protocol.

Based on and image from “Database System Concepts” book and slides, 6th edition

25

Tree Protocol
1. Only exclusive locks are

allowed.
2. The first lock by Ti may be on

any data item. Subsequently, a
data Q can be locked by Ti
only if the parent of Q is
currently locked by Ti.

3. Data items may be unlocked at
any time.

4. A data item that has been
locked and unlocked by Ti
cannot subsequently be
relocked by Ti

Based on and image from “Database System Concepts” book and slides, 6th edition

26

● The tree protocol ensures conflict
serializability as well as freedom from
deadlock.

● Unlocking may occur earlier in the
tree-locking protocol than in the two-phase
locking protocol.
− shorter waiting times, and increase in

concurrency
− protocol is deadlock-free, no rollbacks are

required

Graph-Based Protocols

Based on and image from “Database System Concepts” book and slides, 6th edition

27

● Drawbacks
− Protocol does not guarantee recoverability or

cascade freedom
● Need to introduce commit dependencies to ensure

recoverability
− Transactions may have to lock data items that

they do not access.
● increased locking overhead, and additional waiting

time
● potential decrease in concurrency

● Schedules not possible under two-phase
locking are possible under tree protocol, and
vice versa.

Graph-Based Protocols

Based on and image from “Database System Concepts” book and slides, 6th edition

28

Deadlock Handling

● Consider the following two transactions:
 T1: write (X) T2: write(Y)
 write(Y) write(X)
● Schedule with deadlock

Based on and image from “Database System Concepts” book and slides, 6th edition

29

● System is deadlocked if there is a set of
transactions such that every transaction in
the set is waiting for another transaction in
the set.

● Deadlock prevention protocols ensure
that the system will never enter into a
deadlock state. Some prevention strategies
− Require that each transaction locks all its data items

before it begins execution (predeclaration).
− Impose partial ordering of all data items and require

that a transaction can lock data items only in the order
specified by the partial order (graph-based protocol).

Deadlock Handling

Based on and image from “Database System Concepts” book and slides, 6th edition

30

More Deadlock Prevention Strategies

● Following schemes use transaction
timestamps for the sake of deadlock
prevention alone.

● wait-die scheme — non-preemptive
− older transaction may wait for younger one to release

data item. Younger transactions never wait for older
ones; they are rolled back instead.

− a transaction may die several times before acquiring
needed data item

● wound-wait scheme — preemptive
− older transaction wounds (forces rollback) of younger

transaction instead of waiting for it. Younger
transactions may wait for older ones.

− may be fewer rollbacks than wait-die scheme.

Based on and image from “Database System Concepts” book and slides, 6th edition

31

● Both in wait-die and in wound-wait
schemes, a rolled back transactions is
restarted with its original timestamp. Older
transactions thus have precedence over
newer ones, and starvation is hence
avoided.

● Timeout-Based Schemes:
− a transaction waits for a lock only for a specified

amount of time. After that, the wait times out and the
transaction is rolled back.

− thus deadlocks are not possible
− simple to implement; but starvation is possible. Also

difficult to determine good value of the timeout interval.

More Deadlock Prevention Strategies

Based on and image from “Database System Concepts” book and slides, 6th edition

32

Deadlock Detection

● Deadlocks can be described as a wait-for
graph, which consists of a pair G = (V,E),
− V is a set of vertices (all the transactions in the

system)
− E is a set of edges; each element is an

ordered pair Ti →Tj.
● If Ti → Tj is in E, then there is a directed

edge from Ti to Tj, implying that Ti is waiting
for Tj to release a data item.

Based on and image from “Database System Concepts” book and slides, 6th edition

33

Deadlock Detection

● When Ti requests a data item currently
being held by Tj, then the edge Ti Tj is
inserted in the wait-for graph. This edge is
removed only when Tj is no longer holding
a data item needed by Ti.

● The system is in a deadlock state if and
only if the wait-for graph has a cycle. Must
invoke a deadlock-detection algorithm
periodically to look for cycles.

Based on and image from “Database System Concepts” book and slides, 6th edition

34

Wait-for graph without a cycle Wait-for graph with a cycle

Deadlock Detection

Based on and image from “Database System Concepts” book and slides, 6th edition

35

Deadlock Recovery

● When a deadlock is detected :
− Some transaction will have to rolled back (made

a victim) to break deadlock. Select that
transaction as victim that will incur minimum
cost.

− Rollback -- determine how far to roll back
transaction

● Total rollback: Abort the transaction and then restart
it.

● More effective to roll back transaction only as far as
necessary to break deadlock.

− Starvation happens if same transaction is
always chosen as victim. Include the number of
rollbacks in the cost factor to avoid starvation

Based on and image from “Database System Concepts” book and slides, 6th edition

36

Multiple Granularity

● Allow data items to be of various sizes and
define a hierarchy of data granularities,
where the small granularities are nested
within larger ones

● Can be represented graphically as a tree
(but don't confuse with tree-locking
protocol)

Based on and image from “Database System Concepts” book and slides, 6th edition

37

Multiple Granularity

● When a transaction locks a node in the tree
explicitly, it implicitly locks all the node's
descendents in the same mode.

● Granularity of locking (level in tree where
locking is done):
− fine granularity (lower in tree): high

concurrency, high locking overhead
− coarse granularity (higher in tree): low

locking overhead, low concurrency

Based on and image from “Database System Concepts” book and slides, 6th edition

38

Example of Granularity Hierarchy

The levels, starting from the coarsest (top) level are

− database
− area
− file
− record

Based on and image from “Database System Concepts” book and slides, 6th edition

39

Intention Lock Modes
● In addition to S and X lock modes, there are

three additional lock modes with multiple
granularity:
− intention-shared (IS): indicates explicit locking at a

lower level of the tree but only with shared locks.
− intention-exclusive (IX): indicates explicit locking at a

lower level with exclusive or shared locks
− shared and intention-exclusive (SIX): the subtree

rooted by that node is locked explicitly in shared mode
and explicit locking is being done at a lower level with
exclusive-mode locks.

● Intention locks allow a higher level node to
be locked in S or X mode without having to
check all descendant nodes.

Based on and image from “Database System Concepts” book and slides, 6th edition

40

Compatibility Matrix with Intention Lock Modes

The compatibility matrix for all lock modes is:

Based on and image from “Database System Concepts” book and slides, 6th edition

41

Multiple Granularity Locking Scheme

Based on and image from “Database System Concepts” book and slides, 6th edition

Transaction Ti can lock a node Q, using the following
rules:

1. The lock compatibility matrix must be observed.
2. The root of the tree must be locked first, and may be locked in

any mode.
3. A node Q can be locked by Ti in S or IS mode only if the parent

of Q is currently locked by Ti in either IX or IS mode.
4. A node Q can be locked by Ti in X, SIX, or IX mode only if the

parent of Q is currently locked by Ti in either IX or SIX mode.
5. Ti can lock a node only if it has not previously unlocked any

node (that is, Ti is two-phase).
6. Ti can unlock a node Q only if none of the children of Q are

currently locked by Ti.

42

Multiple Granularity Locking Scheme

Based on and image from “Database System Concepts” book and slides, 6th edition

● Observe that locks are acquired in root-to-leaf
order, whereas they are released in leaf-to-root
order.

● Lock granularity escalation: in case there are
too many locks at a particular level, switch to
higher granularity S or X lock

43

