
Lecture 20 – Transactions

These slides are based on “Database System Concepts” 6th
edition book (whereas some quotes and figures are used from the
book) and are a modified version of the slides which accompany
the book (http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html),
in addition to the 2009/2012 CMSC 461 slides by Dr. Kalpakis

CMSC 461, Database Management Systems
Spring 2018

Dr. Jennifer Sleeman https://www.csee.umbc.edu/~jsleem1/courses/461/spr18

Logistics

● Homework #4 due 4/9/2018
● Homework #5 due 4/18/2018
● Phase 4 due 4/23/2018

2

Lecture Outline

• Transaction Concepts
• Transaction Isolation
• Serializability
• Transaction Isolation and Atomicity
• Transactions as SQL Statements

3

Transaction Concept

● A transaction is a unit of program
execution that accesses and possibly
updates various data items.
− E.g. transaction to transfer $50 from

account A to account B:
1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

● Two main issues to deal with:
− Failures of various kinds, such as hardware

failures and system crashes
− Concurrent execution of multiple

transactions 4
Based on and image from “Database System Concepts” book and slides, 6th edition

Example of Fund Transfer
● Atomicity requirement

○ if the transaction fails after step 3 and before
step 6, money will be “lost” leading to an
inconsistent database state
■ Failure could be due to software or hardware

○ the system should ensure that updates of a
partially executed transaction are not reflected
in the database

● Durability requirement — once the user has
been notified that the transaction has completed
(i.e., the transfer of the $50 has taken place), the
updates to the database by the transaction must
persist even if there are software or hardware
failures.

Transaction to transfer
$50 from account A to
account B:

1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

5
Based on and image from “Database System Concepts” book and slides, 6th edition

● Transaction to transfer $50 from account A to account B:
1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

● Consistency requirement in above example:
− Explicitly specified integrity constraints such as primary keys and foreign keys
− Implicit integrity constraints

● e.g. sum of balances of all accounts, minus sum of loan amounts must equal
value of cash-in-hand

− A transaction must see a consistent database.
− During transaction execution the database may be temporarily inconsistent.
− When the transaction completes successfully the database must be consistent

● Erroneous transaction logic can lead to inconsistency

Example of Fund Transfer

6
Based on and image from “Database System Concepts” book and slides, 6th edition

● Isolation requirement — if between steps
3 and 6, another transaction T2 is allowed
to access the partially updated database, it
will see an inconsistent database (the sum
A + B will be less than it should be).
 T1 T2
1. read(A)
2. A := A – 50
3. write(A)

 read(A), read(B),
print(A+B)

4. read(B)
5. B := B + 50
6. write(B

Example of Fund Transfer

7
Based on and image from “Database System Concepts” book and slides, 6th edition

● Isolation can be ensured trivially by
running transactions serially
− that is, one after the other.

● However, executing multiple transactions
concurrently has significant benefits (WED)

Example of Fund Transfer

8
Based on and image from “Database System Concepts” book and slides, 6th edition

ACID Properties

● Atomicity. Either all operations of the
transaction are properly reflected in the
database or none are.

● Consistency. Execution of a transaction in
isolation preserves the consistency of the
database.

A transaction is a unit of program execution that accesses and possibly updates
various data items.To preserve the integrity of data the database system must ensure:

9
Based on and image from “Database System Concepts” book and slides, 6th edition

ACID Properties
● Isolation. Although multiple transactions

may execute concurrently, each transaction
must be unaware of other concurrently
executing transactions. Intermediate
transaction results must be hidden from
other concurrently executed transactions.
− That is, for every pair of transactions Ti and Tj, it

appears to Ti that either Tj, finished execution
before Ti started, or Tj started execution after Ti
finished.

● Durability. After a transaction completes
successfully, the changes it has made to the
database persist, even if there are system
failures. 10

Based on and image from “Database System Concepts” book and slides, 6th edition

Storage Structure

● Volatile – does not usually survive crashes
(main memory, cache memory)

● Nonvolatile – survives system crashes
(magnetic disk and flash)

● Stable -
− data loss highly unlikely
− Approximated by techniques

● Replicate in several nonvolatile storage media
with independent failure modes

● More in 16.2.1

11
Based on and image from “Database System Concepts” book and slides, 6th edition

Transaction State

● Active – the initial state; the transaction
stays in this state while it is executing

● Partially committed – after the final
statement has been executed.

● Failed -- after the discovery that normal
execution can no longer proceed.

● Aborted – after the transaction has been
rolled back and the database restored to its
state prior to the start of the transaction.
Two options after it has been aborted:

○ restart the transaction
■ can be done only if no internal logical error

○ kill the transaction
● Committed – after successful completion. 12

Based on and image from “Database System Concepts” book and slides, 6th edition

Transaction State

13
Based on and image from “Database System Concepts” book and slides, 6th edition

Lecture Outline

• Transaction Concepts
• Transaction Isolation
• Serializability
• Transaction Isolation and Atomicity
• Transactions as SQL Statements

14

Concurrent Executions

● Multiple transactions are allowed to run
concurrently in the system. Advantages
are:
− increased processor and disk utilization,

leading to better transaction throughput
● E.g. one transaction can be using the CPU while

another is reading from or writing to the disk
− reduced average response time for

transactions: short transactions need not wait
behind long ones.

15
Based on and image from “Database System Concepts” book and slides, 6th edition

Concurrent Executions

● Concurrency control schemes –
mechanisms to achieve isolation
− that is, to control the interaction among the

concurrent transactions in order to prevent
them from destroying the consistency of the
database

16
Based on and image from “Database System Concepts” book and slides, 6th edition

● Schedule – a sequences of instructions that
specify the chronological order in which
instructions of concurrent transactions are
executed
− a schedule for a set of transactions must

consist of all instructions of those transactions
− must preserve the order in which the

instructions appear in each individual
transaction.

Schedules

17
Based on and image from “Database System Concepts” book and slides, 6th edition

● A transaction that successfully completes its
execution will have a commit instructions as
the last statement
− by default transaction assumed to execute

commit instruction as its last step
● A transaction that fails to successfully

complete its execution will have an abort
instruction as the last statement

Schedules

18
Based on and image from “Database System Concepts” book and slides, 6th edition

Schedule 1
Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance
from A to B.
A serial schedule in which T1 is followed by T2 :

19
Based on and image from “Database System Concepts” book and slides, 6th edition

Schedule 2
 A serial schedule where T2 is followed by T1

20
Based on and image from “Database System Concepts” book and slides, 6th edition

Schedule 3
Let T1 and T2 be the transactions defined previously. The
following schedule is not a serial schedule, but it is
equivalent to Schedule 1.

In Schedules 1, 2 and 3, the sum A + B is preserved.
21

Based on and image from “Database System Concepts” book and slides, 6th edition

Schedule 4
The following concurrent schedule does not preserve the
value of (A + B).

22
Based on and image from “Database System Concepts” book and slides, 6th edition

Lecture Outline

• Transaction Concepts
• Transaction Isolation
• Serializability
• Transaction Isolation and Atomicity
• Transactions as SQL Statements

23

Serializability

● Basic Assumption – Each
transaction preserves database
consistency

● Thus serial execution of a set of
transactions preserves database
consistency.

● A (possibly concurrent) schedule is
serializable if it is equivalent to a serial
schedule. Different forms of schedule
equivalence give rise to the notions of:

- conflict serializability
- view serializability

 24

Based on and image from “Database System Concepts” book and slides, 6th edition

Simplified view of transactions

− We ignore operations other than read

and write instructions
− We assume that transactions may

perform arbitrary computations on data
in local buffers in between reads and
writes.

− Our simplified schedules consist of only
read and write instructions.

25
Based on and image from “Database System Concepts” book and slides, 6th edition

Conflicting Instructions

● Instructions li and lj of transactions Ti
and Tj respectively, conflict if and only
if there exists some item Q accessed by
both li and lj, and at least one of these
instructions wrote Q.
 1. li = read(Q), lj = read(Q). li and lj don’t conflict.

 2. li = read(Q), lj = write(Q). They conflict.
 3. li = write(Q), lj = read(Q). They conflict
 4. li = write(Q), lj = write(Q). They conflict

26
Based on and image from “Database System Concepts” book and slides, 6th edition

Conflict Serializability

● If a schedule S can be transformed into a
schedule S´ by a series of swaps of
non-conflicting instructions, we say that S
and S´ are conflict equivalent.

● We say that a schedule S is conflict
serializable if it is conflict equivalent to a
serial schedule

27
Based on and image from “Database System Concepts” book and slides, 6th edition

● Schedule 3 can be transformed into Schedule 6, a serial schedule
where T2 follows T1, by series of swaps of non-conflicting
instructions. Therefore Schedule 3 is conflict serializable.

Schedule 3 Schedule 6

Conflict Serializability

28
Based on and image from “Database System Concepts” book and slides, 6th edition

● Example of a schedule that is not

conflict serializable:

● We are unable to swap instructions in

the above schedule to obtain either the
serial schedule < T3, T4 >, or the serial
schedule < T4, T3 >.

Conflict Serializability

29
Based on and image from “Database System Concepts” book and slides, 6th edition

Testing for Serializability

● Consider some schedule of a set of
transactions T1, T2, ..., Tn

● Precedence graph — a directed
graph where the vertices are the
transactions (names).

● We draw an arc from Ti to Tj if the two
transaction conflict, and Ti accessed
the data item on which the conflict
arose earlier.

● We may label the arc by the item that
was accessed.

30
Based on and image from “Database System Concepts” book and slides, 6th edition

Testing for Serializability

● Precedence graph for schedule 4.
● Contains edge T1 -> T2

○ T1 executes read(A) before T2 executes
write(A)

● Contains edge T2 -> T1
○ T2 executes read(B) before T1 executes

write(B)

31
Based on and image from “Database System Concepts” book and slides, 6th edition

Schedule 4
Precedence Graph for Schedule 4

Test for Conflict Serializability

● A schedule is conflict
serializable if and only if its
precedence graph is
acyclic.

● Cycle-detection algorithms
exist which take order n2
time, where n is the
number of vertices in the
graph.
− (Better algorithms take order

n + e where e is the number
of edges.)

32
Based on and image from “Database System Concepts” book and slides, 6th edition

Test for Conflict Serializability

● If precedence graph is
acyclic, the serializability
order can be obtained by a
topological sorting of the
graph.
− This is a linear order

consistent with the partial
order of the graph.

− For example, a serializability
order for the schedule (a)
would be one of either (b) or
(c)

33
Based on and image from “Database System Concepts” book and slides, 6th edition

Lecture Outline

• Transaction Concepts
• Transaction Isolation
• Serializability
• Transaction Isolation and Atomicity
• Transactions as SQL Statements

34

Recoverable Schedules

● Recoverable schedule — if a transaction Tj
reads a data item previously written by a
transaction Ti , then the commit operation of
Ti appears before the commit operation of
Tj.

Need to address the effect of transaction failures on concurrently
running transactions.

35
Based on and image from “Database System Concepts” book and slides, 6th edition

Recoverable Schedules
● The following schedule is not recoverable if

T9 commits immediately after the read

● If T8 should abort, T9 would have read (and
possibly shown to the user) an inconsistent
database state. Hence, database must
ensure that schedules are recoverable.

36
Based on and image from “Database System Concepts” book and slides, 6th edition

Cascading Rollbacks

● Cascading rollback – a single
transaction failure leads to a series of
transaction rollbacks. Consider the
following schedule where none of the
transactions has yet committed (so the
schedule is recoverable)

If T10 fails, T11 and T12 must also be
rolled back.

● Can lead to the undoing of a significant
amount of work

37
Based on and image from “Database System Concepts” book and slides, 6th edition

Cascadeless Schedules

● Cascadeless schedules — cascading
rollbacks cannot occur; for each pair of
transactions Ti and Tj such that Tj reads a
data item previously written by Ti, the
commit operation of Ti appears before the
read operation of Tj.

● Every cascadeless schedule is also
recoverable

● It is desirable to restrict the schedules to
those that are cascadeless

38
Based on and image from “Database System Concepts” book and slides, 6th edition

Concurrency Control

● A database must provide a mechanism that
will ensure that all possible schedules are
− either conflict or view serializable, and
− are recoverable and preferably cascadeless

● A policy in which only one transaction can
execute at a time generates serial
schedules, but provides a poor degree of
concurrency
− Are serial schedules recoverable/cascadeless?

● Testing a schedule for serializability after it
has executed is a little too late!

● Goal – to develop concurrency control
protocols that will assure serializability. 39

Based on and image from “Database System Concepts” book and slides, 6th edition

● Schedules must be conflict or view
serializable, and recoverable, for the
sake of database consistency, and
preferably cascadeless.

● A policy in which only one transaction
can execute at a time generates serial
schedules, but provides a poor degree of
concurrency.

Concurrency Control

40
Based on and image from “Database System Concepts” book and slides, 6th edition

Lecture Outline

• Transaction Concepts
• Transaction Isolation
• Serializability
• Transaction Isolation and Atomicity
• Transactions as SQL Statements

41

Levels of Consistency

● Serializable — default
● Repeatable read — only committed

records to be read, repeated reads of
same record must return same value.
− No other transaction allowed to update it
− transaction may not be serializable w/r to other

transactions
● Read committed — only committed

records can be read, but successive
reads of record may return different (but
committed) values.

● Read uncommitted — even
uncommitted records may be read. 42

Based on and image from “Database System Concepts” book and slides, 6th edition

Transaction Definition in SQL

● Data manipulation language must
include a construct for specifying the set
of actions that comprise a transaction.

● In SQL, a transaction begins implicitly.
● A transaction in SQL ends by:

− Commit work commits current transaction
and begins a new one.

− Rollback work causes current transaction
to abort.

43
Based on and image from “Database System Concepts” book and slides, 6th edition

Transaction Definition in SQL

● In almost all database systems, by
default, every SQL statement also
commits implicitly if it executes
successfully
− Implicit commit can be turned off by a

database directive

44
Based on and image from “Database System Concepts” book and slides, 6th edition

Transaction Definition in SQL

● In almost all database systems, by
default, every SQL statement also
commits implicitly if it executes
successfully
− Implicit commit can be turned off by a

database directive

45
Based on and image from “Database System Concepts” book and slides, 6th edition

