
Lecture 18 – Indexing and
Hashing Part 3

These slides are based on “Database System Concepts” 6th
edition book (whereas some quotes and figures are used from the
book) and are a modified version of the slides which accompany
the book (http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html),
in addition to the 2009/2012 CMSC 461 slides by Dr. Kalpakis

CMSC 461, Database Management Systems
Spring 2018

Dr. Jennifer Sleeman https://www.csee.umbc.edu/~jsleem1/courses/461/spr18

Logistics

● Homework #4 due 4/9/2018
● Homework #5 due 4/18/2018
● Phase 4 due 4/23/2018

First:
B-Tree and B+-Tree Background

B+-Tree Index Files

● Disadvantage of indexed-sequential files
− performance degrades as file grows, since many

overflow blocks get created.
− Periodic reorganization of entire file is required.

● Advantage of B+-tree index files:
− automatically reorganizes itself with small, local,

changes, in the face of insertions and deletions.
− Reorganization of entire file is not required to maintain

performance.
● (Minor) disadvantage of B+-trees:
− extra insertion and deletion overhead, space

overhead.
● Advantages of B+-trees outweigh disadvantages
− B+-trees are used extensively

B+-tree indices are an alternative to indexed-sequential files.

Based on and image from “Database System Concepts” book and slides, 6th edition

B+-Tree Index Files

● All paths from root to leaf are of the same length
● Each node that is not a root or a leaf has between
⎡n/2⎤ and n children.

● A leaf node has between ⎡(n–1)/2⎤ and n–1 values
● Special cases:
− If the root is not a leaf, it has at least 2 children.
− If the root is a leaf (that is, there are no other nodes

in the tree), it can have between 0 and (n–1)
values.

A B+-tree is a rooted tree satisfying the following properties:

Based on and image from “Database System Concepts” book and slides, 6th edition

B+-Tree Node Structure
● Typical node

− Ki are the search-key values
− Pi are pointers to children (for non-leaf nodes) or pointers to

records or buckets of records (for leaf nodes).
● The search-keys in a node are ordered

 K1 < K2 < K3 < . . . < Kn–1

 (Initially assume no duplicate keys, address duplicates later)

Based on and image from “Database System Concepts” book and slides, 6th edition

Leaf Nodes in B+-Trees

● For i = 1, 2, . . ., n–1, pointer Pi points to a file record with search-key
value Ki,

● If Li, Lj are leaf nodes and i < j, Li’s search-key values are less than or
equal to Lj’s search-key values

● Pn points to next leaf node in search-key order

● Properties of a leaf node:

Based on and image from “Database System Concepts” book and slides, 6th edition

Non-Leaf Nodes in B+-Trees
● Non leaf nodes form a multi-level sparse index on the leaf nodes. For

a non-leaf node with m pointers:
− All the search-keys in the subtree to which P1 points are less than

K1
− For 2 ≤ i ≤ n – 1, all the search-keys in the subtree to which Pi

points have values greater than or equal to Ki–1 and less than Ki
− All the search-keys in the subtree to which Pn points have values

greater than or equal to Kn–1

Based on and image from “Database System Concepts” book and slides, 6th edition

Example of B+-tree

● Leaf nodes must have between 3 and 5 values
(⎡(n–1)/2⎤ and n –1, with n = 6).

● Non-leaf nodes other than root must have between 3 and 6
children (⎡(n/2⎤ and n with n =6).

● Root must have at least 2 children.

● B+-tree for instructor file (n = 6)

Based on and image from “Database System Concepts” book and slides, 6th edition

Queries on B+-Trees
Find record with search-key value V.
Start a C, compare V to Ki

While C is not a leaf node do the following:
 if (V= Ki) Set C = Pi +1 else Set C = Pi once Ki = V

1. If there is such a value i, follow pointer Pi to the desired record.
2. Else no record with search-key value k exists.

Based on and image from “Database System Concepts” book and slides, 6th edition

Updates on B+-Trees: Insertion
1. Find the leaf node in which the search-key value would appear
2. If the search-key value is already present in the leaf node

1. Add record to the file
2. If necessary add a pointer

3. If the search-key value is not present, then
1. Add the record to the main file
2. If there is room in the leaf node, insert (key-value, pointer) pair in

the leaf node
3. Otherwise, split the node (along with the new (key-value, pointer)

entry) as discussed in the next slide.

Based on and image from “Database System Concepts” book and slides, 6th edition

Leaf Full Index Full Action

No No Place the record in sorted position in the appropriate leaf node

Yes No 1. Split the leaf
2. Place middle key in the index node in sorted order
3. Left leaf node contains records with keys below the middle
key.
4. Right leaf node contains records with keys equal to or greater
than the middle key.

Yes Yes 1. Split the leaf node.
2. Records with keys < middle key go to the left leaf node.
3. Records with keys >= middle key go to the right leaf node.
4. Split the index node.
5. Keys < middle key go to the left index node.
6. Keys > middle key go to the right index node.
7. The middle key goes to the next (higher level) index.
8. IF the next level index node is full, continue splitting the
index node.

Updates on B+-Trees: Insertion

Adaption: https://www.sci.unich.it/~acciaro/bpiutrees.pdf

● Splitting a leaf node:
− take the n (search-key value, pointer) pairs (including the one

being inserted) in sorted order. Place the first ⎡n/2⎤ in the original
node, and the rest in a new node.

− let the new node be p, and let k be the least key value in p. Insert
(k,p) in the parent of the node being split.

− If the parent is full, split it and propagate the split further up.
● Splitting of nodes proceeds upwards till a node that is not full is

found.

● Result of splitting node containing Brandt, Califieri and Crick on inserting Adams
● Next step: insert entry with (Califieri,pointer-to-new-node) into parent

Updates on B+-Trees: Insertion

Based on and image from “Database System Concepts” book and slides, 6th edition

● B+-Tree before and after insertion of “Adams”

B+-Trees Insertion

Based on and image from “Database System Concepts” book and slides, 6th edition

Before Adams

After Adams

● B+-Tree before and after insertion of “Lamport”

B+-Trees Insertion

Based on and image from “Database System Concepts” book and slides, 6th edition

Before Lamport

After Lamport

Leaf Node Below
Fill Factor

Index Node Below
Fill Factor

Action

No No 1. Delete the record from the leaf node
2. Arrange keys in ascending order to fill void
3. If the key of the deleted record appears in the index node,
use the next key to replace it.

Yes No 1. Combine the leaf node and its sibling
2. Change the index node to reflect the change

Yes Yes 1. Combine the leaf node and its sibling
2. Adjust the index node to reflect the change
3. Combine the index node with its sibling
4. Continue combining index node until you reach a node with
the correct fill factor or you reach the root node

Updates on B+-Trees: Deletion

Adaption: https://www.sci.unich.it/~acciaro/bpiutrees.pdf

Deleting “Srinivasan” causes merging of under-full leaves

Before and after deleting “Srinivasan”

Example of B+-tree Deletion

Based on and image from “Database System Concepts” book and slides, 6th edition

● Deletion of “Singh” and “Wu” from result of previous example
● Leaf containing Singh and Wu became underfull, and borrowed a value Kim

from its left sibling
● Search-key value in the parent changes as a result

Example of B+-tree Deletion

Based on and image from “Database System Concepts” book and slides, 6th edition

Hashing

Static Hashing

● A bucket is a unit of storage containing
one or more records (a bucket is typically
a disk block).

● In a hash file organization we obtain the
bucket of a record directly from its
search-key value using a hash function.

Based on and image from “Database System Concepts” book and slides, 6th edition

Static Hashing

● Hash function h is a function from the set
of all search-key values K to the set of all
bucket addresses B.

h(Ki)=address of the bucket where record is stored

Based on and image from “Database System Concepts” book and slides, 6th edition

Static Hashing

● Hash function is used to locate records for
access, insertion as well as deletion.

● Records with different search-key values
may be mapped to the same bucket

● Entire bucket has to be searched
sequentially to locate a record

Based on and image from “Database System Concepts” book and slides, 6th edition

Hash Functions

● Worst hash function maps all search-key
values to the same bucket; this makes
access time proportional to the number of
search-key values in the file.

Based on and image from “Database System Concepts” book and slides, 6th edition

Hash Functions

● An ideal hash function is uniform, i.e., each
bucket is assigned the same number of
search-key values from the set of all
possible values

● Ideal hash function is random, so each
bucket will have the same number of
records assigned to it irrespective of the
actual distribution of search-key values in
the file

AND...should be easy/fast to compute

Based on and image from “Database System Concepts” book and slides, 6th edition

Hash Functions

● Typical hash functions perform computation
on the internal binary representation of the
search-key.

Based on and image from “Database System Concepts” book and slides, 6th edition

Hash file organization of instructor file, using
dept_name as key

Example of Hash File Organization

Based on and image from “Database System Concepts” book and slides, 6th edition

Example of Hash File Organization
● There are 8 buckets,
● The binary representation

of the ith character is
assumed to be the integer i.

● The hash function returns
the sum of the binary
representations of the
characters modulo 8

h(Music) = 1 h(History) = 2
h(Physics) = 3 h(Elec. Eng.) = 3

Based on and image from “Database System Concepts” book and slides, 6th edition

Handling of Bucket Overflows

● Bucket overflow can occur because of
- Insufficient buckets
- Skew in distribution of records. This can occur
due to two reasons:

� multiple records have same search-key value
� chosen hash function produces non-uniform

distribution of key values
● Although the probability of bucket overflow

can be reduced, it cannot be eliminated; it
is handled by using overflow buckets.

Based on and image from “Database System Concepts” book and slides, 6th edition

Handling of Bucket Overflows

● Overflow chaining – the overflow buckets of a given
bucket are chained together in a linked list.

● Above scheme is called closed hashing.
- An alternative, called open hashing, which does not use
overflow buckets, is not suitable for database applications.

Based on and image from “Database System Concepts” book and slides, 6th edition

Hash Indices

● Hashing can also for index-structure
creation.

● A hash index organizes the search keys,
with their associated record pointers, into a
hash file structure.

● Strictly speaking, hash indices are always
secondary indices
- if the file itself is organized using hashing, a
separate primary hash index on it using the same
search-key is unnecessary.
- However, we use the term hash index to refer to
both secondary index structures and hash
organized files.

Based on and image from “Database System Concepts” book and slides, 6th edition

Example of Hash Index

● hash index on instructor, on attribute ID

Based on and image from “Database System Concepts” book and slides, 6th edition

Static Hashing

What do you think?

Deficiencies of Static Hashing

● In static hashing, function h maps
search-key values to a fixed set of B of
bucket addresses. Databases grow or shrink
with time.

Based on and image from “Database System Concepts” book and slides, 6th edition

Deficiencies of Static Hashing

Deficiencies of Static Hashing

Deficiencies of Static Hashing

● One solution: periodic re-organization of the
file with a new hash function
- Expensive, disrupts normal operations

● Better solution: allow the number of buckets
to be modified dynamically

Based on and image from “Database System Concepts” book and slides, 6th edition

Dynamic Hashing

Dynamic Hashing

● Good for database that grows and shrinks in
size

● Allows the hash function to be modified
dynamically

● Extendable hashing – one form of dynamic
hashing

Based on and image from “Database System Concepts” book and slides, 6th edition

Extendable Hashing

● Hash function generates values over a large
range — typically b-bit integers, with b = 32.

● At any time use only a prefix of the hash
function to index into a table of bucket
addresses

Based on and image from “Database System Concepts” book and slides, 6th edition

Extendable Hashing

Let the length of the prefix be i bits,
0 ≤ i ≤ 32

Bucket address table size = 2i.

Initially i = 0

Value of i grows and shrinks as the size of the
database grows and shrinks.

Based on and image from “Database System Concepts” book and slides, 6th edition

Extendable Hashing

● Multiple entries in the bucket address table
may point to a bucket

● Actual number of buckets is < 2i

● The number of buckets changes dynamically
due to coalescing and splitting of buckets

Local Depth
Global
Depth

Least significant bits of
binary representation of
Hash(x)

In this example, low
order bits used, in
our book they use
high order bits

Based on and image from “Database System Concepts” book and slides, 6th edition

General Extendable Hash Structure

In this structure, i2 = i3 = i, whereas i1 = i – 1

Based on and image from “Database System Concepts” book and slides, 6th edition

Use of Extendable Hash Structure

● Each bucket j stores a value ij
- All the entries that point to the same bucket

have the same values on the first ij bits.
● To locate the bucket containing search-key

Kj:
1. Compute h(Kj) = X
2. Use the first i high order bits of X as a

displacement into bucket address table, and
follow the pointer to appropriate bucket

Based on and image from “Database System Concepts” book and slides, 6th edition

To insert a record with search-key value Kj
Follow same procedure as look-up and locate the
bucket, say j.
If there is room in the bucket j insert record in the
bucket.
Else the bucket must be split and insertion
re-attempted

Insertion in Extendable Hash Structure

Based on and image from “Database System Concepts” book and slides, 6th edition

Insertion in Extendable Hash Structure

If i > ij (more than one pointer to bucket j)
Allocate a new bucket z, and set ij = iz = (ij + 1)
Update the second half of the bucket address table
entries originally pointing to j, to point to z
Remove each record in bucket j and reinsert (in j or z)
Recompute new bucket for Kj and insert record in the
bucket (further splitting is required if the bucket is still
full)

Based on and image from “Database System Concepts” book and slides, 6th edition

Insertion in Extendable Hash Structure

If i = ij (only one pointer to bucket j)
If i reaches some limit b, or too many splits have
happened in this insertion, create an overflow bucket
Else

� Increment i and double the size of the bucket address table.
� Replace each entry in the table by two entries that point to

the same bucket.
� Recompute new bucket address table entry for Kj

Now i > ij so use the first case above.

Based on and image from “Database System Concepts” book and slides, 6th edition

Deletion in Extendable Hash Structure

To delete a key value,
Locate it in its bucket and remove it.
The bucket itself can be removed if it becomes
empty (with appropriate updates to the bucket
address table).
Coalescing of buckets can be done (can coalesce
only with a “buddy” bucket having same value of ij
and same ij –1 prefix, if it is present)
Decreasing bucket address table size is also
possible

� Note: decreasing bucket address table size is an
expensive operation and should be done only if
number of buckets becomes much smaller than the
size of the table

Based on and image from “Database System Concepts” book and slides, 6th edition

Use of Extendable Hash Structure: Example

Based on and image from “Database System Concepts” book and slides, 6th edition

Example (Cont.)

Initial Hash structure; bucket size = 2

Based on and image from “Database System Concepts” book and slides, 6th edition

Example (Cont.)

Hash structure after insertion of “Mozart”, “Srinivasan”, and “Wu” records

0

1

Based on and image from “Database System Concepts” book and slides, 6th edition

Example (Cont.)
Hash structure after insertion of Einstein record

00

01

10

11

Based on and image from “Database System Concepts” book and slides, 6th edition

Hash structure after insertion of Gold and El Said records

Example (Cont.)

000

001

110

111

101

100

011

010

Based on and image from “Database System Concepts” book and slides, 6th edition

Hash structure after insertion of Katz record

Example (Cont.)

000

001

110

111

101

100

011

010

Based on and image from “Database System Concepts” book and slides, 6th edition

And after insertion of
eleven records

Example (Cont.)

Based on and image from “Database System Concepts” book and slides, 6th edition

And after insertion of
Kim record in previous
hash structure

Example (Cont.)

Based on and image from “Database System Concepts” book and slides, 6th edition

Extendable Hashing vs. Other Schemes

● Benefits of extendable hashing:
○ Hash performance does not degrade with growth of file
○ Minimal space overhead

● Disadvantages of extendable hashing
○ Extra level of indirection to find desired record
○ Bucket address table may itself become very big (larger than

memory)
■ Cannot allocate very large contiguous areas on disk either
■ Solution: B+-tree structure to locate desired record in

bucket address table
○ Changing size of bucket address table is an expensive

operation
● Linear hashing is an alternative mechanism

○ Allows incremental growth of its directory (equivalent to
bucket address table)

○ At the cost of more bucket overflows

Based on and image from “Database System Concepts” book and slides, 6th edition

Comparison of Ordered Indexing and Hashing

● Cost of periodic re-organization
● Relative frequency of insertions and deletions
● Is it desirable to optimize average access time at the

expense of worst-case access time?
● Expected type of queries

Based on and image from “Database System Concepts” book and slides, 6th edition

Comparison of Ordered Indexing and Hashing

Expected type of queries:
● Hashing is generally better at retrieving records having a

specified value of the key.
● If range queries are common, ordered indices are to be

preferred

In practice:
● PostgreSQL supports hash indices, but discourages use

due to poor performance
● MySQL supports hash indices
● Oracle supports static hash organization, but not hash

indices
● SQLServer supports only B+-trees

Based on and image from “Database System Concepts” book and slides, 6th edition

Bitmap Indices

Bitmap Indices
● Bitmap indices are a special type of index designed for

efficient querying on multiple keys
● Records in a relation are assumed to be numbered

sequentially from, say, 0
○ Given a number n it must be easy to retrieve record n

■ Particularly easy if records are of fixed size
● Applicable on attributes that take on a relatively small

number of distinct values
○ E.g. gender, country, state, …
○ E.g. income-level (income broken up into a small

number of levels such as 0-9999, 10000-19999,
20000-50000, 50000- infinity)

● A bitmap is simply an array of bits

Based on and image from “Database System Concepts” book and slides, 6th edition

Bitmap Indices (Cont.)
● In its simplest form a bitmap index on an attribute has a bitmap

for each value of the attribute
○ Bitmap has as many bits as records
○ In a bitmap for value v, the bit for a record is 1 if the record

has the value v for the attribute, and is 0 otherwise

Based on and image from “Database System Concepts” book and slides, 6th edition

● Bitmap indices are useful for queries on
multiple attributes
○ not particularly useful for single attribute queries

● Queries are answered using bitmap
operations
○ Intersection (and)
○ Union (or)
○ Complementation (not)

Bitmap Indices (Cont.)

Based on and image from “Database System Concepts” book and slides, 6th edition

● Each operation takes two bitmaps of the
same size and applies the operation on
corresponding bits to get the result bitmap
○ E.g. 100110 AND 110011 = 100010
 100110 OR 110011 = 110111

 NOT 100110 = 011001
○ Males with income level L1: 10010 AND 10100

= 10000
■ Can then retrieve required tuples.
■ Counting number of matching tuples is even faster

Bitmap Indices (Cont.)

Based on and image from “Database System Concepts” book and slides, 6th edition

Index Definition in SQL

● Create an index
create index <index-name> on

<relation-name>
(<attribute-list>)

E.g.: create index b-index on
branch(branch_name)

Based on and image from “Database System Concepts” book and slides, 6th edition

Index Definition in SQL

● Use create unique index to indirectly
specify and enforce the condition that the
search key is a candidate key is a
candidate key.
● Not really required if SQL unique integrity

constraint is supported
● To drop an index

drop index <index-name>
● Most database systems allow specification

of type of index, and clustering.

Based on and image from “Database System Concepts” book and slides, 6th edition

