
Lecture 11 – Indexing and
Hashing Part 2

These slides are based on “Database System Concepts” 6th
edition book (whereas some quotes and figures are used from the
book) and are a modified version of the slides which accompany
the book (http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html),
in addition to the 2009/2012 CMSC 461 slides by Dr. Kalpakis

CMSC 461, Database Management Systems
Spring 2018

Dr. Jennifer Sleeman https://www.csee.umbc.edu/~jsleem1/courses/461/spr18

Logistics

● Project Phase 2 due

B-Trees and B+-Trees

First:
B-Tree and B+-Tree Background

These slides are an extension
of the copyright of 2004
Goodrich, Tamassia

(A,B) Trees

● Each node has between a and b children
● Each node stores between a-1 and b-1 entries
● What is a?
● What is b?

These slides are an extension
of the copyright of 2004
Goodrich, Tamassia

B-Trees

● Generalization of a binary search tree
● Self-balancing
● Search, insert and delete O(log n)
● Optimized for reading/writing large blocks of data
● Type of (a,b) tree

These slides are an extension
of the copyright of 2004
Goodrich, Tamassia

B-Trees - Properties

A B-tree of order n has the following properties:
1. Every node has at most n children
2. A non-leaf node with k children contains k-1

keys
3. Root is going to have at least two children if it is

not a leaf node
4. Every non-leaf node except root has at least

[n/2] children
5. All leaves on the same level

7
These slides are an extension
of the copyright of 2004
Goodrich, Tamassia

These slides are an extension
of the copyright of 2004
Goodrich, Tamassia

All leaves on the
same level

Every non-leaf node
except root has at
least [n/2] children

Root is going to have at
least two children if it is not
a leaf node

A non-leaf node with k
children contains k-1 keys

Every node has
at most n
children

Image from
http://slideplayer.com/slide/5107822/

B-Trees - Properties

Extension: B+Trees

1. With a B+ tree:
a. Internal nodes have no data
b. Only the leaves have data
c. Each internal node still has (up to) N-1

keys

These slides are an extension
of the copyright of 2004
Goodrich, Tamassia

▪ Order property:
– subtree between two keys x and y
contain leaves with values v
such that x ≤ v < y

▪ Leaf nodes have up to L
sorted keys

10
These slides are an extension
of the copyright of 2004
Goodrich, Tamassia

Extension: B+Trees

B+-Tree Index Files

● Disadvantage of indexed-sequential files
− performance degrades as file grows, since many

overflow blocks get created.
− Periodic reorganization of entire file is required.

● Advantage of B+-tree index files:
− automatically reorganizes itself with small, local,

changes, in the face of insertions and deletions.
− Reorganization of entire file is not required to maintain

performance.
● (Minor) disadvantage of B+-trees:
− extra insertion and deletion overhead, space

overhead.
● Advantages of B+-trees outweigh disadvantages
− B+-trees are used extensively

B+-tree indices are an alternative to indexed-sequential files.

Based on and image from “Database System Concepts” book and slides, 6th edition

B+-Tree Index Files

● All paths from root to leaf are of the same length
● Each node that is not a root or a leaf has between
⎡n/2⎤ and n children.

● A leaf node has between ⎡(n–1)/2⎤ and n–1 values
● Special cases:
− If the root is not a leaf, it has at least 2 children.
− If the root is a leaf (that is, there are no other nodes

in the tree), it can have between 0 and (n–1)
values.

A B+-tree is a rooted tree satisfying the following properties:

Based on and image from “Database System Concepts” book and slides, 6th edition

B+-Tree Node Structure
● Typical node

− Ki are the search-key values
− Pi are pointers to children (for non-leaf nodes) or pointers to

records or buckets of records (for leaf nodes).
● The search-keys in a node are ordered

 K1 < K2 < K3 < . . . < Kn–1

 (Initially assume no duplicate keys, address duplicates later)

Based on and image from “Database System Concepts” book and slides, 6th edition

Leaf Nodes in B+-Trees

● For i = 1, 2, . . ., n–1, pointer Pi points to a file record with search-key
value Ki,

● If Li, Lj are leaf nodes and i < j, Li’s search-key values are less than or
equal to Lj’s search-key values

● Pn points to next leaf node in search-key order

● Properties of a leaf node:

Based on and image from “Database System Concepts” book and slides, 6th edition

Non-Leaf Nodes in B+-Trees
● Non leaf nodes form a multi-level sparse index on the leaf nodes. For

a non-leaf node with m pointers:
− All the search-keys in the subtree to which P1 points are less than

K1
− For 2 ≤ i ≤ n – 1, all the search-keys in the subtree to which Pi

points have values greater than or equal to Ki–1 and less than Ki
− All the search-keys in the subtree to which Pn points have values

greater than or equal to Kn–1

Based on and image from “Database System Concepts” book and slides, 6th edition

Example of B+-tree

● Leaf nodes must have between 3 and 5 values
(⎡(n–1)/2⎤ and n –1, with n = 6).

● Non-leaf nodes other than root must have between 3 and 6
children (⎡(n/2⎤ and n with n =6).

● Root must have at least 2 children.

● B+-tree for instructor file (n = 6)

Based on and image from “Database System Concepts” book and slides, 6th edition

Example of B+-Tree

Based on and image from “Database System Concepts” book and slides, 6th edition

Observations about B+-trees
● Since the inter-node connections are done by pointers, “logically”

close blocks need not be “physically” close.
● The non-leaf levels of the B+-tree form a hierarchy of sparse indices.
● The B+-tree contains a relatively small number of levels

● Level below root has at least 2* ⎡n/2⎤ values
● Next level has at least 2* ⎡n/2⎤ * ⎡n/2⎤ values
● .. etc.

− If there are K search-key values in the file, the tree height is no
more than ⎡ log⎡n/2⎤(K)⎤

− thus searches can be conducted efficiently.
● Insertions and deletions to the main file can be handled efficiently, as

the index can be restructured in logarithmic time (as we shall see).

Based on “Database System Concepts” book and slides, 6th edition

Queries on B+-Trees
● Find record with search-key value V.

1. C=root
2. While C is not a leaf node {

1. Let i be least value s.t. V ≤ Ki.
2. If no such exists, set C = last non-null pointer in C
3. Else { if (V= Ki) Set C = Pi +1 else set C = Pi}}

3. Let i be least value s.t. Ki = V
4. If there is such a value i, follow pointer Pi to the desired record.
5. Else no record with search-key value k exists.

Based on and image from “Database System Concepts” book and slides, 6th edition

Queries on B+-Trees

● If there are K search-key values in the file, the
height of the tree is no more than ⎡log⎡n/2⎤(K)⎤.

● A node is generally the same size as a disk
block

Based on and image from “Database System Concepts” book and slides, 6th edition

Queries on B+-Trees

● With 1 million search key values and n = 100
− at most log50(1,000,000) = 4 nodes are accessed in

a lookup.
● Contrast this with a balanced binary tree with 1

million search key values — around 20 nodes
are accessed in a lookup
− above difference is significant since every node

access may need a disk I/O, costing around 20
milliseconds

Based on and image from “Database System Concepts” book and slides, 6th edition

Updates on B+-Trees: Insertion
1. Find the leaf node in which the search-key value would appear
2. If the search-key value is already present in the leaf node

1. Add record to the file
2. If necessary add a pointer

3. If the search-key value is not present, then
1. Add the record to the main file
2. If there is room in the leaf node, insert (key-value, pointer) pair in

the leaf node
3. Otherwise, split the node (along with the new (key-value, pointer)

entry) as discussed in the next slide.

Based on and image from “Database System Concepts” book and slides, 6th edition

● Splitting a leaf node:
− take the n (search-key value, pointer) pairs (including the one

being inserted) in sorted order. Place the first ⎡n/2⎤ in the original
node, and the rest in a new node.

− let the new node be p, and let k be the least key value in p. Insert
(k,p) in the parent of the node being split.

− If the parent is full, split it and propagate the split further up.
● Splitting of nodes proceeds upwards till a node that is not full is

found.
− In the worst case the root node may be split increasing the height

of the tree by 1.

● Result of splitting node containing Brandt, Califieri and Crick on inserting Adams
● Next step: insert entry with (Califieri,pointer-to-new-node) into parent

Updates on B+-Trees: Insertion

Based on and image from “Database System Concepts” book and slides, 6th edition

● B+-Tree before and after insertion of “Adams”

B+-Trees Insertion

Based on and image from “Database System Concepts” book and slides, 6th edition

● B+-Tree before and after insertion of “Lamport”

B+-Trees Insertion

Based on and image from “Database System Concepts” book and slides, 6th edition

● Splitting a non-leaf node: when inserting (k,p) into an already full
internal node N
− Copy N to an in-memory area M with space for n+1 pointers and

n keys
− Insert (k,p) into M
− Copy P1,K1, …, K ⎡n/2⎤-1,P ⎡n/2⎤ from M back into node N
− Copy P⎡n/2⎤+1,K ⎡n/2⎤+1,…,Kn,Pn+1 from M into newly allocated node

N’
− Insert (K ⎡n/2⎤,N’) into parent N

● Read pseudocode in book!

● Crick

Insertion in B+-Trees

● Adams Brandt Califieri
Crick

● Adams
Brandt

● Califieri●

Based on and image from “Database System Concepts” book and slides, 6th edition

● Deleting “Srinivasan” causes merging of under-full leaves

● Before and after deleting “Srinivasan”

Example of B+-tree Deletion

Based on and image from “Database System Concepts” book and slides, 6th edition

● Deletion of “Singh” and “Wu” from result of previous example

● Leaf containing Singh and Wu became underfull, and borrowed a value Kim
from its left sibling

●
● Search-key value in the parent changes as a result

Example of B+-tree Deletion

Based on and image from “Database System Concepts” book and slides, 6th edition

Updates on B+-Trees: Deletion

● Find the record to be deleted, and remove it
from the main file

● Remove (search-key value, pointer) from
the leaf node

Based on and image from “Database System Concepts” book and slides, 6th edition

Updates on B+-Trees: Deletion

● If the node has too few entries due to the
removal, and the entries in the node and a
sibling fit into a single node, then merge
siblings:
− Insert all the search-key values in the two

nodes into a single node (the one on the left),
and delete the other node.

− Delete the pair (Ki–1, Pi), where Pi is the pointer
to the deleted node, from its parent, recursively
using the above procedure.

Based on and image from “Database System Concepts” book and slides, 6th edition

Updates on B+-Trees: Deletion

● Otherwise, if the node has too few entries
due to the removal, but the entries in the
node and a sibling do not fit into a single
node, then redistribute pointers:
− Redistribute the pointers between the node

and a sibling such that both have more than
the minimum number of entries.

− Update the corresponding search-key value in
the parent of the node.

Based on and image from “Database System Concepts” book and slides, 6th edition

Updates on B+-Trees: Deletion

● The node deletions may cascade upwards
till a node which has ⎡n/2⎤ or more pointers
is found.

● If the root node has only one pointer after
deletion, it is deleted and the sole child
becomes the root.

Based on and image from “Database System Concepts” book and slides, 6th edition

B-Tree Index Files
● Similar to B+-tree, but B-tree allows search-key

values to appear only once; eliminates
redundant storage of search keys.

● Search keys in nonleaf nodes appear nowhere
else in the B-tree; an additional pointer field for
each search key in a nonleaf node must be
included.

● Generalized B-tree leaf node

Non-leaf node – pointers Bi are the bucket or file
record pointers.

B-Tree Index File Example

B-tree (above) and B+-tree (below) on same
data

B-Tree Index Files

● Advantages of B-Tree indices:
- May use less tree nodes than a corresponding
B+-Tree.
- Sometimes possible to find search-key value
before reaching leaf node.

B-Tree Index Files

● Disadvantages of B-Tree indices:
- Only small fraction of all search-key values are
found early
- Non-leaf nodes are larger, so fan-out is reduced.
Thus, B-Trees typically have greater depth than
corresponding B+-Tree
- Insertion and deletion more complicated than in
B+-Trees
- Implementation is harder than B+-Trees.

● Typically, advantages of B-Trees do not out
weigh disadvantages.

