
Lecture 14 - Chapter 8 Relational 
Database Design Wrap-up

These slides are based on “Database System Concepts” 6th 
edition book and are a modified version of the slides which 
accompany the book 
(http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html), in addition 
to the 2009/2012 CMSC 461 slides by Dr. Kalpakis

These slides are based on “Database System Concepts” 6th 
edition book and are a modified version of the slides which 
accompany the book 
(http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html), in addition 
to the 2009/2012 CMSC 461 slides by Dr. Kalpakis

CMSC 461, Database Management Systems
Spring 2018

Dr. Jennifer Sleeman https://www.csee.umbc.edu/~jsleem1/courses/461/spr18



Logistics

● Homework #3 due today 3/26/2018
● Phase 3 of project due 3/28/2018

2



Lecture Outline

• An Example
• Functional Dependencies Review
• BCNF Decomposition
• 3NF Decomposition
• Multivalued Decomposition
• Fourth Normal Form
• Database Design Process

3



An Example

CREATE TABLE film_actor_nn (
film_actor_id BIGINT NOT NULL PRIMARY KEY,   
first_name VARCHAR(50) NOT NULL,   
last_name VARCHAR(50) NOT NULL, 
film_name varchar(100), 
producer varchar(50));

4



An Example

insert into film_actor_nn values (1,'Michael', 'Douglas', 
'The American President', 'Rob Reiner');
insert into film_actor_nn values (2,'Michael', 'Douglas', 
'BettleJuice','Larry Wilson');
insert into film_actor_nn values (3,'Michael', 'Douglas', 
'Fatal Attraction','Stanley R. Jaffe');

5



An Example

SELECT film_actor_id, first_name, last_name, COUNT(*) 
FROM film_actor_nn GROUP BY film_actor_id ORDER BY 
COUNT(*) DESC;
+---------------+------------+-----------+----------+
| film_actor_id | first_name | last_name |  COUNT(*)|
+---------------+------------+-----------+----------+
|             2 | Michael    | Douglas   |        1 |
|             3 | Michael    | Douglas   |        1 |
|             1 | Michael    | Douglas   |        1 |
+---------------+------------+-----------+----------+
3 rows in set (0.00 sec)

6



An Example

CREATE TABLE film_actor_nn (
film_actor_id BIGINT NOT NULL PRIMARY KEY,   
first_name VARCHAR(50) NOT NULL,   
last_name VARCHAR(50) NOT NULL, 
film_name varchar(100), 
producer varchar(50));

7



An Example
CREATE TABLE actor (
actor_id BIGINT NOT NULL PRIMARY KEY,
first_name VARCHAR(50) NOT NULL,
last_name VARCHAR(50) NOT NULL);

CREATE TABLE film (film_id BIGINT NOT NULL 
PRIMARY KEY,   film_name VARCHAR(50) NOT NULL,   
producer VARCHAR(50) NOT NULL );

CREATE TABLE film_actor (actor_id BIGINT NOT NULL 
REFERENCES actor(actor_id),   film_id BIGINT NOT 
NULL references film(film_id),   PRIMARY KEY (actor_id, 
film_id)); 8



An Example
insert into actor values (1, 'Michael', 'Douglas');
insert into actor values (2, 'Michael', 'Douglas');

insert into film values (100, 'The American 
President','Rob Reiner');
insert into film values (200, 'BettleJuice','Larry Wilson');

insert into film_actor values (1,100);
insert into film_actor values (2,200);

9



An Example
SELECT actor_id, first_name, last_name, COUNT(*) 
FROM actor JOIN film_actor USING (actor_id) GROUP 
BY actor_id ORDER BY COUNT(*) DESC;

+----------+------------+-----------+----------+
| actor_id | first_name | last_name | COUNT(*) |
+----------+------------+-----------+----------+
|        1 | Michael    | Douglas   |        1 |
|        2 | Michael    | Douglas   |        1 |
+----------+------------+-----------+----------+

10



An Example
insert into film values (300, 'Fatal Attraction','Stanley R. 
Jaffe');
insert into film_actor values (1,300);

11



An Example
SELECT actor_id, first_name, last_name, COUNT(*) 
FROM actor JOIN film_actor USING (actor_id) GROUP 
BY actor_id ORDER BY COUNT(*) DESC;

+----------+------------+-----------+----------+
| actor_id | first_name | last_name | COUNT(*) |
+----------+------------+-----------+----------+
|        1 | Michael    | Douglas   |        2 |
|        2 | Michael    | Douglas   |        1 |
+----------+------------+-----------+----------+

12



Lecture Outline

• An Example
• Functional Dependencies Review
• BCNF Decomposition
• 3NF Decomposition
• Multivalued Decomposition
• Fourth Normal Form
• Database Design Process

13



Closure of a Set of Functional 
Dependencies

● Given a set F of functional dependencies, there 
are certain other functional dependencies that 
are logically implied by F

○ For example: 
Given a schema r(A,B,C) 
If A → B and B → C
then we can infer that A → C 

● The set of all functional dependencies logically 
implied by F is the closure of F

● We denote the closure of F by F+ 
● F+ is a superset of F

Based on and image from  “Database System Concepts” book and slides, 6th edition

14



Closure of a Set of Functional 
Dependencies

Based on and image from  “Database System Concepts” book and slides, 6th edition

15



Computing F+

Based on and image from  “Database System Concepts” book and slides, 6th edition

16



Closure of a set of Functional 
Dependencies

Based on and image from  “Database System Concepts” book and slides, 6th edition

17



Closure of a set of Functional 
Dependencies Example

Based on and image from  “Database System Concepts” book and slides, 6th edition

18

by union rule, since CG → H and CG → I, implies 
CG → HI



Closure of Attribute Sets

Based on and image from  “Database System Concepts” book and slides, 6th edition

19



Closure of Attribute Sets Example

Based on and image from  “Database System Concepts” book and slides, 6th edition

20



Closure of Attribute Sets Uses

Based on and image from  “Database System Concepts” book and slides, 6th edition

21



Closure of Attribute Sets Examples

Based on and image from  “Database System Concepts” book and slides, 6th edition

22



Lossless-join Decomposition
● For the case of R = (R1, R2), we require 

that for all possible relations r on schema R
r = ∏R1 (r )    ∏R2 (r ) 

● A decomposition of R into R1 and R2 is 
lossless join if at least one of the following 
dependencies is in F+:
− R1 ∩ R2 → R1
− R1 ∩ R2 → R2

● The above functional dependencies are a 
sufficient condition for lossless join 
decomposition; the dependencies are a 
necessary condition only if all constraints 
are functional dependencies 23

Based on “Database System Concepts” book and slides, 6th edition



Example
● R = (A, B, C)

F = {A → B, B → C)
− Can be decomposed in two different ways

● R1 = (A, B),   R2 = (B, C)
− Lossless-join decomposition:

 R1  ∩ R2 = {B} and B → BC
− Dependency preserving

● R1 = (A, B),   R2 = (A, C)
− Lossless-join decomposition:

 R1  ∩ R2 = {A} and A → AB
− Not dependency preserving 

(cannot check B → C without computing R1     R2)

24
Based on “Database System Concepts” book and slides, 6th edition



Dependency Preservation

●  Let Fi be the set of dependencies F + that 
include only attributes in Ri. 

●  A  decomposition is dependency preserving,  if
         (F1 ∪ F2 ∪ … ∪ Fn )

+ = F +

● If it is not, then checking updates for violation of 
functional dependencies may require computing 
joins, which is expensive.

25
Based on “Database System Concepts” book and slides, 6th edition



Testing for Dependency 
Preservation

● To check if a dependency α → β is preserved in 
a decomposition of R into R1, R2, …, Rn we apply 
the following test (with attribute closure done 
with respect to F)
− result = α

while (changes to result) do
for each Ri in the decomposition

t = (result ∩ Ri)
+ ∩ Ri

result  =  result  ∪ t
− If result contains all attributes in β, then the functional 

dependency 
α → β is preserved.

26
Based on “Database System Concepts” book and slides, 6th edition



Testing for Dependency 
Preservation

● We apply the test on all dependencies in F  to 
check if a decomposition is dependency 
preserving

● This procedure takes polynomial time, instead of 
the exponential time required to compute F+ and 
(F1 ∪ F2 ∪ … ∪ Fn)+ 

27
Based on “Database System Concepts” book and slides, 6th edition



Testing for BCNF

● To check if a non-trivial dependency α→β  
causes a violation of BCNF
1.  compute α+ (the attribute closure of α), and 
2.  verify that it includes all attributes of R, that is, 

it is a superkey of R.

28
Based on “Database System Concepts” book and slides, 6th edition



Testing for BCNF

● Simplified test: To check if a relation 
schema R is in BCNF, it suffices to check 
only the dependencies in the given set F for 
violation of BCNF, rather than checking all 
dependencies in F+.
− If none of the dependencies in F causes a 

violation of BCNF, then none of the 
dependencies in F+ will cause a violation of 
BCNF either.

29
Based on “Database System Concepts” book and slides, 6th edition



Testing for BCNF

● However, simplified test using only F is 
incorrect when testing a relation in a 
decomposition of R
− Consider R = (A, B, C, D, E), with F = { A → B, 

BC → D}
● Decompose R into R1 = (A,B) and R2 = (A,C,D, E) 
● Neither of the dependencies in F contain only 

attributes from
 (A,C,D,E) so we might be mislead into thinking R2 
satisfies BCNF.  

● In fact, dependency AC → D in F+ shows R2 is not in 
BCNF. 

30
Based on “Database System Concepts” book and slides, 6th edition



BCNF Decomposition Algorithm
result := {R };

done := false;
compute F +;
while (not done) do
if (there is a schema Ri in result  that is not in BCNF)

then begin
let α → β  be a nontrivial functional dependency that 

                       holds on Ri  such that α → Ri is not in F +, 
   and α ∩ β  = ∅;

   result := (result – Ri ) ∪ (Ri – β) ∪ (α, β );
    end

else done := true; 
 
     Note:  each Ri is in BCNF, and decomposition is lossless-join.

31
Based on “Database System Concepts” book and slides, 6th edition



Example of BCNF Decomposition

● class (course_id, title, dept_name, credits, 
sec_id, semester, year, building, 
room_number, capacity, time_slot_id)

● Functional dependencies:
− course_id→ title, dept_name, credits
− building, room_number→capacity
− course_id, sec_id, semester, year→building, 

room_number, time_slot_id

32
Based on “Database System Concepts” book and slides, 6th edition



Example of BCNF Decomposition

● A candidate key {course_id, sec_id, 
semester, year}.

● BCNF Decomposition:
− course_id→ title, dept_name, credits  holds

● but course_id is not a superkey.
−  We replace class by:

● course(course_id, title, dept_name, credits)
● class-1 (course_id, sec_id, semester, year, building,           

             room_number, capacity, time_slot_id)

33
Based on “Database System Concepts” book and slides, 6th edition



BCNF Decomposition 

● course is in BCNF
− How do we know this?

● building, room_number→capacity  holds on 
class-1
−  but {building, room_number} is not a superkey 

for class-1.
− We replace class-1 by:

● classroom (building, room_number, capacity)
● section (course_id, sec_id, semester, year, 

building, room_number, time_slot_id)
● classroom and section are in BCNF.

34
Based on “Database System Concepts” book and slides, 6th edition



BCNF and Dependency 
Preservation

● R = (J, K, L )
F = {JK → L
  L → K }
Two candidate keys = JK and JL

● R is not in BCNF
● Any decomposition of R will fail to 

preserve
JK → L

      This implies that testing for JK → L 
requires a join

 

It is not always possible to get a BCNF decomposition that is 
dependency preserving

35
Based on “Database System Concepts” book and slides, 6th edition



Lecture Outline

• An Example
• Functional Dependencies Review
• BCNF Decomposition
• 3NF Decomposition
• Multivalued Decomposition
• Fourth Normal Form
• Database Design Process

36



Third Normal Form: Motivation

● There are some situations where 
− BCNF is not dependency preserving, and 
− efficient checking for FD violation on 

updates is important
● Solution: define a weaker normal form, 

called Third Normal Form (3NF)
− Allows some redundancy (with resultant 

problems; we will see examples later)
− But functional dependencies can be 

checked on individual relations without 
computing a join.

− There is always a lossless-join, 
dependency-preserving decomposition into 
3NF. 37

Based on “Database System Concepts” book and slides, 6th edition



3NF Example

● Relation dept_advisor:
− dept_advisor (s_ID, i_ID, dept_name)

F = {s_ID, dept_name → i_ID,  i_ID → 
dept_name}

− Two candidate keys:  s_ID, dept_name, and  
i_ID, s_ID

− R is in 3NF
● s_ID, dept_name → i_ID   

−  S_ID,dept_name is a superkey
●  i_ID → dept_name 

− dept_name is contained in a candidate key

 
 

38
Based on “Database System Concepts” book and slides, 6th edition



Redundancy  in 3NF

J

j1 
j2
 j3 

null

L

l1
 l1
 l1 

l2

K

k1
 k1
 k1 

k2

● repetition of information (e.g., the relationship l1, k1) 
● - (i_ID, dept_name)

● need to use null values (e.g., to represent the relationship
   - l2, k2 where there is no corresponding value for J).
● - (i_ID, dept_name) if there is no separate relation mapping instructors to 

departments

● There is some redundancy in this schema
● Example of problems due to redundancy in 

3NF
− R = (J, K, L)

F = {JK → L, L → K }

39
Based on “Database System Concepts” book and slides, 6th edition



Testing for 3NF

● Optimization: Need to check only FDs in F, 
need not check all FDs in F+.

● Use attribute closure to check for each 
dependency α → β, if α is a superkey.

● If α is not a superkey, we have to verify if 
each attribute in β is contained in a 
candidate key of R
− this test is rather more expensive, since it 

involve finding candidate keys
− testing for 3NF has been shown to be NP-hard
− Interestingly, decomposition into third normal 

form (described shortly) can be done in 
polynomial time 40

Based on “Database System Concepts” book and slides, 6th edition



3NF Decomposition Algorithm
Let Fc be a canonical cover for F;

i := 0;
for each  functional dependency α → β in Fc do
if none of the schemas Rj, 1 ≤ j  ≤ i contains  α β 

then begin
i := i  + 1;
Ri  := α β 

end
if none of the schemas Rj, 1 ≤ j  ≤ i contains a candidate key for R
then begin

i := i  + 1;
Ri := any candidate key for R;

end 
/* Optionally, remove redundant relations */

      repeat
if any schema Rj is contained in another schema Rk
        then /* delete Rj  */
           Rj = R;;
           i=i-1;
return (R1, R2, ..., Ri)     

41
Based on “Database System Concepts” book and slides, 6th edition



3NF Decomposition Algorithm

● Above algorithm ensures:
− each relation schema Ri is in 3NF
− decomposition is dependency preserving and 

lossless-join
− For proof of correctness see original slides that 

accompany book

42
Based on “Database System Concepts” book and slides, 6th edition



3NF Decomposition: An Example

● Relation schema:
cust_banker_branch = (customer_id, employee_id, 

branch_name, type )
● The functional dependencies for this relation 

schema are:
- customer_id, employee_id → branch_name, type
- employee_id → branch_name
- customer_id, branch_name → employee_id

43
Based on “Database System Concepts” book and slides, 6th edition



3NF Decomposition: An Example

● We first compute a canonical cover
- branch_name is extraneous in the r.h.s. of the 1st 
dependency
- No other attribute is extraneous, so we get FC =
        customer_id, employee_id → type

    employee_id → branch_name
    customer_id, branch_name → employee_id

 

44
Based on “Database System Concepts” book and slides, 6th edition



3NF Decomposition Example 
● The for loop generates following 3NF 

schema:
            (customer_id, employee_id, type )

                  (employee_id, branch_name)
                  (customer_id, branch_name, 

employee_id)
− Observe that (customer_id, employee_id, type ) 

contains a candidate key of the original schema, 
so no further relation schema needs be added

45
Based on “Database System Concepts” book and slides, 6th edition



3NF Decomposition Example 
● At end of for loop, detect and delete 

schemas, such as  (employee_id, 
branch_name), which are subsets of other 
schemas
− result will not depend on the order in which FDs 

are considered
● The resultant simplified 3NF schema is:

    (customer_id, employee_id, type)
                (customer_id, branch_name, 

employee_id)

46
Based on “Database System Concepts” book and slides, 6th edition



Comparison of BCNF and 3NF

● It is always possible to decompose a 
relation into a set of  relations that are in 
3NF such that:
− the decomposition is lossless
− the dependencies are preserved

● It is always possible to decompose a 
relation into a set of relations that are in 
BCNF such that:
− the decomposition is lossless
− it may not be possible to preserve 

dependencies.
 

47
Based on “Database System Concepts” book and slides, 6th edition



Design Goals

● Goal for a relational database design is:
− BCNF.
− Lossless join.
− Dependency preservation.

● If we cannot achieve this, we accept one of
− Lack of dependency preservation 
− Redundancy due to use of 3NF

48
Based on “Database System Concepts” book and slides, 6th edition



Design Goals

● Interestingly, SQL does not provide a direct way 
of specifying functional dependencies other than 
superkeys.
Can specify FDs using assertions, but they are 

expensive to test, (and currently not supported 
by any of the widely used databases!)

● Even if we had a dependency preserving 
decomposition, using SQL we would not be able 
to efficiently test a functional dependency whose 
left hand side is not a key.

49
Based on “Database System Concepts” book and slides, 6th edition



Lecture Outline

• An Example
• BCNF Decomposition
• 3NF Decomposition
• Multivalued Decomposition
• Fourth Normal Form
• Database Design Process

50



Multivalued Dependencies

● Suppose we record names of children, and 
phone numbers for instructors:
− inst_child(ID, child_name)
− inst_phone(ID, phone_number)

● If we were to combine these schemas to 
get
− inst_info(ID, child_name, phone_number)
− Example data:

(99999, David, 512-555-1234)
(99999, David, 512-555-4321)
(99999, William, 512-555-1234)
(99999, William, 512-555-4321)

● This relation is in BCNF
51

Based on “Database System Concepts” book and slides, 6th edition



Multivalued Dependencies 
(MVDs)

● Let R be a relation schema and let α ⊆ R and β ⊆ R.   
The multivalued dependency 

α →→ β
holds on R if in any legal relation r(R), for all pairs for 

tuples t1 and t2 in r such that t1[α] = t2 [α], there exist tuples 
t3 and t4 in r such that: 

 t1[α] = t2 [α] = t3 [α] = t4 [α] 
 t3[β]         =  t1 [β] 
 t3[R  – β] =  t2[R  – β] 
 t4 [β]         =  t2[β] 
 t4[R  – β] =  t1[R  – β] 

 

52
Based on “Database System Concepts” book and slides, 6th edition



Multivalued Dependencies 
(MVDs)

● Tabular representation of α →→ β

53
Based on “Database System Concepts” book and slides, 6th edition



Example 

● In our example:
ID →→ child_name

ID →→ phone_number
● The above formal definition is supposed to 

formalize the notion that given a particular 
value of Y (ID) it has associated with it a set 
of values of Z (child_name) and a set of 
values of W (phone_number), and these two 
sets are in some sense independent of each 
other.

54
Based on “Database System Concepts” book and slides, 6th edition



Use of Multivalued Dependencies
● We use multivalued dependencies in two ways: 

1. To test relations to determine whether they are 
legal under a given set of functional and multivalued 
dependencies

2. To specify constraints on the set of legal relations.  
We shall thus concern ourselves only with relations 
that satisfy a given set of functional and multivalued 
dependencies.

● If a relation r fails to satisfy a given multivalued 
dependency, we can construct a relations r′  that does 
satisfy the multivalued dependency by adding tuples to 
r. 

55
Based on “Database System Concepts” book and slides, 6th edition



Theory of MVDs

● From the definition of multivalued 
dependency, we can derive the following 
rule:
− If α → β, then α →→ β
That is, every functional dependency is also 

a multivalued dependency

56
Based on “Database System Concepts” book and slides, 6th edition



Theory of MVDs

● The closure D+ of D is the set of all 
functional and multivalued dependencies 
logically implied by D. 
− We can compute D+ from D, using the formal 

definitions of functional dependencies and 
multivalued dependencies.

− We can manage with such reasoning for very 
simple multivalued dependencies, which seem 
to be most common in practice

57
Based on “Database System Concepts” book and slides, 6th edition



Theory of MVDs

1 4
1     5
3     7

The functional dependency
 α → β

holds on R if and only if for any legal relations r(R), whenever any two tuples t1 and t2 of r 
agree on the attributes α, they also agree on the attributes β.  That is,  

t1[α] = t2 [α]   ⇒   t1[β ]  = t2 [β ] 

● Let R be a relation schema and let α ⊆ R and β ⊆ R.   The multivalued 
dependency 

α →→ β
holds on R if in any legal relation r(R), for all pairs for tuples t1 and t2 in 

r such that t1[α] = t2 [α], there exist tuples t3 and t4 in r such that: 
 t1[α] = t2 [α] = t3 [α] = t4 [α] 

 t3[β]         =  t1 [β] 
 t3[R  – β] =  t2[R  – β] 
 t4 [β]         =  t2[β] 
 t4[R  – β] =  t1[R  – β] 

58
Based on “Database System Concepts” book and slides, 6th edition



Lecture Outline

• An Example
• Review for Midterm  
• BCNF Decomposition
• 3NF Decomposition
• Multivalued Decomposition
• Fourth Normal Form
• Database Design Process

 

59



Fourth Normal Form

● A relation schema R is in 4NF with respect 
to a set D of functional and multivalued 
dependencies if for all multivalued 
dependencies in D+ of the form α →→ β, 
where α ⊆ R and β ⊆ R, at least one of the 
following hold:
− α →→ β is trivial (i.e., β ⊆ α or α ∪ β = R)
− α is a superkey for schema R

● If a relation is in 4NF it is in BCNF

60



Restriction of Multivalued 
Dependencies

● The restriction of  D to Ri is the set Di 
consisting of
− All functional dependencies in D+ that include 

only attributes of Ri
− All multivalued dependencies of the form

   α →→ (β ∩ Ri)
    where α ⊆ Ri  and  α →→ β is in D+ 

61



4NF Decomposition Algorithm
     result: = {R};

done := false;
compute D+;
Let Di denote the restriction of D+ to Ri

      while (not done) 
    if (there is a schema Ri in result that is not in 4NF) then
       begin

 let α →→ β be a nontrivial multivalued dependency that 
holds
            on Ri such that α → Ri  is not in Di, and α∩β=φ; 
          result :=  (result - Ri) ∪ (Ri - β)  ∪ (α, β); 
       end
    else done:= true;

      Note: each Ri is in 4NF, and decomposition is lossless-join

62



Example
R =(A, B, C, G, H, I)

F ={ A →→ B
B →→ HI
CG →→ H }

R is not in 4NF since A →→ B and A is not a superkey for R

Decomposition
 R1 = (A, B) (R1 is in 4NF)
 R2 = (A, C, G, H, I)  (R2 is not in 4NF, decompose into R3 

and R4)
 R3 = (C, G, H) (R3 is in 4NF)
 R4 = (A, C, G, I)  (R4 is not in 4NF, decompose into R5 

and R6)− A →→ B and B →→ HI ➔ A →→ HI, (MVD transitivity), and
− and hence A →→ I (MVD restriction to R4)
R5 = (A, I)  (R5 is in 4NF)
R6 = (A, C, G)  (R6 is in  4NF)

63



Lecture Outline

• An Example
• Functional Dependencies Review
• BCNF Decomposition
• 3NF Decomposition
• Multivalued Decomposition
• Fourth Normal Form
• Database Design Process

64



Overall Database Design Process

● We have assumed schema R is given
− R could have been generated when converting 

E-R diagram to a set of tables.
− R could have been a single relation containing all 

attributes that are of interest (called universal 
relation).

− Normalization breaks R into smaller relations.
− R could have been the result of some ad hoc 

design of relations, which we then test/convert to 
normal form.

65



ER Model and Normalization

● When an E-R diagram is carefully designed, identifying all 
entities correctly, the tables generated from the E-R diagram 
should not need further normalization.

66



ER Model and Normalization

● However, in a real (imperfect) design, there can be functional 
dependencies from non-key attributes of an entity to other 
attributes of the entity
− Example: an employee entity with attributes 

   department_name and building, 
and a functional dependency 
   department_name→ building

− Good design would have made department an entity

67



ER Model and Normalization

● Functional dependencies from non-key attributes of a 
relationship set possible...but rare 

● Most relationships are binary 

68



Denormalization for Performance

● May want to use non-normalized schema for performance
● For example, displaying prereqs along with course_id,  and 

title requires join of course with prereq

69



Denormalization for Performance

● Alternative 1:  Use denormalized relation containing 
attributes of course as well as prereq with all above attributes
− faster lookup
− extra space and extra execution time for updates
− extra coding work for programmer and possibility of error 

in extra code

70



Denormalization for Performance

● Alternative 2: use a materialized view defined as
          course      prereq
− Benefits and drawbacks same as above, except no extra 

coding work for programmer and avoids possible errors

71



Other Design Issues
● Some aspects of database design are not caught by 

normalization
● Examples of bad database design, to be avoided

72



Other Design Issues
Instead of earnings (company_id, year, amount ), use 

earnings_2004
earnings_2005
earnings_2006, etc., 
all on the schema (company_id, earnings).

Above are in BCNF, but make querying across years difficult and 
needs new table each year

73



Other Design Issues
company_year (company_id, earnings_2004, earnings_2005,  
                         earnings_2006)

Also in BCNF, but also makes querying across years difficult and 
requires new attribute each year.

Is an example of a crosstab, where values for one attribute 
become column names

Used in spreadsheets, and in data analysis tools

74


