
Lecture 13 - Chapter 8 Relational
Database Design Part 3
These slides are based on “Database System Concepts” 6th
edition book and are a modified version of the slides which
accompany the book
(http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html), in addition
to the 2009/2012 CMSC 461 slides by Dr. Kalpakis

These slides are based on “Database System Concepts” 6th
edition book and are a modified version of the slides which
accompany the book
(http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html), in addition
to the 2009/2012 CMSC 461 slides by Dr. Kalpakis

CMSC 461, Database Management Systems
Spring 2018

Dr. Jennifer Sleeman https://www.csee.umbc.edu/~jsleem1/courses/461/spr18

Logistics

● Midterm 3/14/2018

2

Lecture Outline

• Functional Dependencies Review
• BCNF Decomposition
• Database Design Process
• Midterm Review

3

Functional Dependencies
We represent constraints by using keys
- super keys
- primary keys
- candidate keys

We can also represent constraints using functional
dependencies

Based on and image from “Database System Concepts” book and slides, 6th edition

4

Functional Dependencies
● A functional dependency is a relationship between two

attributes, where is functionally dependent on
● is usually the primary key
● For every valid instance of , that value uniquely

determines the value of .

Based on and image from “Database System Concepts” book and slides, 6th edition

5

determinant dependent

Functional Dependencies

What are the dependencies in Table Foo?

Based on and image from “Database System Concepts” book and slides, 6th edition, example table from
https://opentextbc.ca/dbdesign01/chapter/chapter-11-functional-dependencies/

6

Table Foo:

A B C D E

a1 b1 c1 d1 e1

a2 b1 c2 d2 e1

a3 b2 c1 d1 e1

a4 b2 c2 d2 e1

Functional Dependencies
Can we say this:

A → B, A → C, A → D, A → E

7

Table Foo:

A B C D E

a1 b1 c1 d1 e1

a2 b1 c2 d2 e1

a3 b2 c1 d1 e1

a4 b2 c2 d2 e1

Based on and image from “Database System Concepts” book and slides, 6th edition, example table from
https://opentextbc.ca/dbdesign01/chapter/chapter-11-functional-dependencies/

Functional Dependencies
If we can say this:
A → B, A → C, A → D, A → E

Then we can say:
 A →BC (or any other subset of ABCDE)

8

Table Foo:

A B C D E

a1 b1 c1 d1 e1

a2 b1 c2 d2 e1

a3 b2 c1 d1 e1

a4 b2 c2 d2 e1

Based on and image from “Database System Concepts” book and slides, 6th edition, example table from
https://opentextbc.ca/dbdesign01/chapter/chapter-11-functional-dependencies/

Functional Dependencies
We can summarize this as
A →BCDE

9

Table Foo:

A B C D E

a1 b1 c1 d1 e1

a2 b1 c2 d2 e1

a3 b2 c1 d1 e1

a4 b2 c2 d2 e1

Based on and image from “Database System Concepts” book and slides, 6th edition, example table from
https://opentextbc.ca/dbdesign01/chapter/chapter-11-functional-dependencies/

Functional Dependencies
Other dependencies we can observe?

10

Table Foo:

A B C D E

a1 b1 c1 d1 e1

a2 b1 c2 d2 e1

a3 b2 c1 d1 e1

a4 b2 c2 d2 e1

Based on and image from “Database System Concepts” book and slides, 6th edition, example table from
https://opentextbc.ca/dbdesign01/chapter/chapter-11-functional-dependencies/

Functional Dependency Theory

Based on and image from “Database System Concepts” book and slides, 6th edition

11

We now consider the formal theory that tells us which
functional dependencies are implied logically by a given set of
functional dependencies.

Closure of a Set of Functional
Dependencies

● Given a set F of functional dependencies, there
are certain other functional dependencies that
are logically implied by F

○ For example:
Given a schema r(A,B,C)
If A → B and B → C
then we can infer that A → C

● The set of all functional dependencies logically
implied by F is the closure of F

● We denote the closure of F by F+
● F+ is a superset of F

Based on and image from “Database System Concepts” book and slides, 6th edition

12

Closure of a Set of Functional
Dependencies

Based on and image from “Database System Concepts” book and slides, 6th edition

13

Computing F+

Based on and image from “Database System Concepts” book and slides, 6th edition

14

Closure of a set of Functional
Dependencies

Based on and image from “Database System Concepts” book and slides, 6th edition

15

Closure of a set of Functional
Dependencies Example

Based on and image from “Database System Concepts” book and slides, 6th edition

16

by union rule, since CG → H and CG → I, implies
CG → HI

Closure of Attribute Sets

Based on and image from “Database System Concepts” book and slides, 6th edition

17

Closure of Attribute Sets Example

Based on and image from “Database System Concepts” book and slides, 6th edition

18

Closure of Attribute Sets Uses

Based on and image from “Database System Concepts” book and slides, 6th edition

19

Closure of Attribute Sets Examples

Based on and image from “Database System Concepts” book and slides, 6th edition

20

Lecture Outline

• Functional Dependencies Review
• BCNF Decomposition
• Database Design Process
• Midterm Review

21

Lossless-join Decomposition

● For the case of R = (R1, R2), we require
that for all possible relations r on schema R

r = ∏R1 (r) ∏R2 (r)
● A decomposition of R into R1 and R2 is

lossless join if at least one of the following
dependencies is in F+:
− R1 ∩ R2 → R1
− R1 ∩ R2 → R2

● The above functional dependencies are a
sufficient condition for lossless join
decomposition; the dependencies are a
necessary condition only if all constraints
are functional dependencies 22

Based on “Database System Concepts” book and slides, 6th edition

Example

● R = (A, B, C)
F = {A → B, B → C)
− Can be decomposed in two different ways

● R1 = (A, B), R2 = (B, C)
− Lossless-join decomposition:

 R1 ∩ R2 = {B} and B → BC
− Dependency preserving

● R1 = (A, B), R2 = (A, C)
− Lossless-join decomposition:

 R1 ∩ R2 = {A} and A → AB
− Not dependency preserving

(cannot check B → C without computing R1
R2) 23

Based on “Database System Concepts” book and slides, 6th edition

Dependency Preservation

● Let Fi be the set of dependencies F + that
include only attributes in Ri.

● A decomposition is dependency preserving, if
 (F1 ∪ F2 ∪ … ∪ Fn)

+ = F +

● If it is not, then checking updates for violation of
functional dependencies may require computing
joins, which is expensive.

24
Based on “Database System Concepts” book and slides, 6th edition

Testing for Dependency
Preservation

● To check if a dependency α → β is preserved in
a decomposition of R into R1, R2, …, Rn we apply
the following test (with attribute closure done
with respect to F)
− result = α

while (changes to result) do
for each Ri in the decomposition

t = (result ∩ Ri)
+ ∩ Ri

result = result ∪ t
− If result contains all attributes in β, then the functional

dependency
α → β is preserved.

25
Based on “Database System Concepts” book and slides, 6th edition

Testing for Dependency
Preservation

● We apply the test on all dependencies in F to
check if a decomposition is dependency
preserving

● This procedure takes polynomial time, instead of
the exponential time required to compute F+ and
(F1 ∪ F2 ∪ … ∪ Fn)+

26
Based on “Database System Concepts” book and slides, 6th edition

Example

● R = (A, B, C)
F = {A → B
 B → C}
Key = {A}

● R is not in BCNF
● Decomposition R1 = (A, B), R2 = (B, C)

− R1 and R2 in BCNF
− Lossless-join decomposition
− Dependency preserving

27
Based on “Database System Concepts” book and slides, 6th edition

Testing for BCNF

● To check if a non-trivial dependency α→β
causes a violation of BCNF
1. compute α+ (the attribute closure of α), and
2. verify that it includes all attributes of R, that is,

it is a superkey of R.

28
Based on “Database System Concepts” book and slides, 6th edition

Testing for BCNF

● Simplified test: To check if a relation
schema R is in BCNF, it suffices to check
only the dependencies in the given set F for
violation of BCNF, rather than checking all
dependencies in F+.
− If none of the dependencies in F causes a

violation of BCNF, then none of the
dependencies in F+ will cause a violation of
BCNF either.

29
Based on “Database System Concepts” book and slides, 6th edition

Testing for BCNF

● However, simplified test using only F is
incorrect when testing a relation in a
decomposition of R
− Consider R = (A, B, C, D, E), with F = { A → B,

BC → D}
● Decompose R into R1 = (A,B) and R2 = (A,C,D, E)
● Neither of the dependencies in F contain only

attributes from
 (A,C,D,E) so we might be mislead into thinking R2
satisfies BCNF.

● In fact, dependency AC → D in F+ shows R2 is not in
BCNF.

30
Based on “Database System Concepts” book and slides, 6th edition

Testing Decomposition for BCNF

● To check if a relation Ri in a decomposition
of R is in BCNF,
− Either test Ri for BCNF with respect to the

restriction of F to Ri (that is, all FDs in F+ that
contain only attributes from Ri)

− or use the original set of dependencies F that
hold on R, but with the following test:

− for every set of attributes α ⊆ Ri, check that α+ (the
attribute closure of α) either includes no attribute of Ri- α,
or includes all attributes of Ri.

● If the condition is violated by some α�→ β in F, the
dependency
 α�→ (α+ - α�) ∩ Ri
can be shown to hold on Ri, and Ri violates BCNF.

● We use above dependency to decompose Ri 31
Based on “Database System Concepts” book and slides, 6th edition

Example of BCNF Decomposition

● R = (A, B, C)
F = {A → B
 B → C}
Key = {A}

● R is not in BCNF (B → C but B is
not superkey)

● Decomposition
− R1 = (B, C)
− R2 = (A,B)

32
Based on “Database System Concepts” book and slides, 6th edition

Example of BCNF Decomposition

● class (course_id, title, dept_name, credits,
sec_id, semester, year, building,
room_number, capacity, time_slot_id)

● Functional dependencies:
− course_id→ title, dept_name, credits
− building, room_number→capacity
− course_id, sec_id, semester, year→building,

room_number, time_slot_id

33
Based on “Database System Concepts” book and slides, 6th edition

Example of BCNF Decomposition

● A candidate key {course_id, sec_id,
semester, year}.

● BCNF Decomposition:
− course_id→ title, dept_name, credits holds

● but course_id is not a superkey.
− We replace class by:

● course(course_id, title, dept_name, credits)
● class-1 (course_id, sec_id, semester, year, building,

 room_number, capacity, time_slot_id)

34
Based on “Database System Concepts” book and slides, 6th edition

BCNF Decomposition

● course is in BCNF
− How do we know this?

● building, room_number→capacity holds on
class-1
− but {building, room_number} is not a superkey

for class-1.
− We replace class-1 by:

● classroom (building, room_number, capacity)
● section (course_id, sec_id, semester, year,

building, room_number, time_slot_id)
● classroom and section are in BCNF.

35
Based on “Database System Concepts” book and slides, 6th edition

BCNF and Dependency
Preservation

● R = (J, K, L)
F = {JK → L
 L → K }
Two candidate keys = JK and JL

● R is not in BCNF
● Any decomposition of R will fail to

preserve
JK → L

 This implies that testing for JK → L
requires a join

It is not always possible to get a BCNF decomposition that is
dependency preserving

36
Based on “Database System Concepts” book and slides, 6th edition

Design Goals

● Goal for a relational database design is:
− BCNF.
− Lossless join.
− Dependency preservation.

● If we cannot achieve this, we accept one of
− Lack of dependency preservation
− Redundancy due to use of 3NF

37
Based on “Database System Concepts” book and slides, 6th edition

Design Goals

● Interestingly, SQL does not provide a direct way
of specifying functional dependencies other than
superkeys.
Can specify FDs using assertions, but they are

expensive to test, (and currently not supported
by any of the widely used databases!)

● Even if we had a dependency preserving
decomposition, using SQL we would not be able
to efficiently test a functional dependency whose
left hand side is not a key.

38
Based on “Database System Concepts” book and slides, 6th edition

Lecture Outline

• Functional Dependencies Review
• BCNF Decomposition
• Database Design Process
• Midterm Review

39

Overall Database Design Process

● We have assumed schema R is given
− R could have been generated when converting

E-R diagram to a set of tables.
− R could have been a single relation containing all

attributes that are of interest (called universal
relation).

− Normalization breaks R into smaller relations.
− R could have been the result of some ad hoc

design of relations, which we then test/convert to
normal form.

40

ER Model and Normalization

● When an E-R diagram is carefully designed, identifying all
entities correctly, the tables generated from the E-R diagram
should not need further normalization.

● However, in a real (imperfect) design, there can be functional
dependencies from non-key attributes of an entity to other
attributes of the entity
− Example: an employee entity with attributes

 department_name and building,
and a functional dependency
 department_name→ building

− Good design would have made department an entity
● Functional dependencies from non-key attributes of a

relationship set possible, but rare --- most relationships are
binary

41

Denormalization for Performance

● May want to use non-normalized schema for performance
● For example, displaying prereqs along with course_id, and

title requires join of course with prereq
● Alternative 1: Use denormalized relation containing

attributes of course as well as prereq with all above attributes
− faster lookup
− extra space and extra execution time for updates
− extra coding work for programmer and possibility of error

in extra code
● Alternative 2: use a materialized view defined as

 course prereq
− Benefits and drawbacks same as above, except no extra

coding work for programmer and avoids possible errors

42

Other Design Issues
● Some aspects of database design are not caught by

normalization
● Examples of bad database design, to be avoided:

Instead of earnings (company_id, year, amount), use
− earnings_2004, earnings_2005, earnings_2006, etc., all

on the schema (company_id, earnings).
● Above are in BCNF, but make querying across years

difficult and needs new table each year
− company_year (company_id, earnings_2004,

earnings_2005,
 earnings_2006)
● Also in BCNF, but also makes querying across years

difficult and requires new attribute each year.
● Is an example of a crosstab, where values for one

attribute become column names
● Used in spreadsheets, and in data analysis tools

43

Lecture Outline

• Functional Dependencies Review
• BCNF Decomposition
• 3NF Decomposition
• Multivalued Decomposition
• Fourth Normal Form
• Database Design Process
• Midterm Review

44

Midterm Review
Joins

45

Joined Relations
● Join operations take two relations and return as a result

another relation.
● A join operation is a Cartesian product which requires that

tuples in the two relations match (under some condition).
It also specifies the attributes that are present in the result
of the join

● The join operations are typically used as subquery
expressions in the from clause

46
Based on “Database System Concepts” book and slides, 6th edition

Joined Relations
Cartesian with where clause

Select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID;

47
Based on “Database System Concepts” book and slides, 6th edition

Joined Relations
Natural Join

Select name, course_id
from instructor natural join teaches;

48
Based on “Database System Concepts” book and slides, 6th edition

Joined Relations
● There is also join with using clause

Select name, course_id
from instructor join teaches using (ID);

● You must specify list of attributes to join
upon

● Both relations must have the same name
● Similar to natural join except:

− Not all attributes that are the same are
joined upon

49
Based on “Database System Concepts” book and slides, 6th edition

Joined Relations
● There is also join with on condition

− Select name, course_id
− from instructor join teaches on

(instructor.ID = teaches.ID);
● Arbitrary join condition
● Similar to using where clause to specify

join condition
− The on condition behaves differently for

outer joins

50
Based on “Database System Concepts” book and slides, 6th edition

Join Example

select * from course, prereq where
course.course_id = prereq.course_id;

+-----------+-------------+------------+---------+-----------+-----------+
| course_id | title | dept_name | credits | course_id | prereq_id |
+-----------+-------------+------------+---------+-----------+-----------+
| BIO-301 | Genetics | Biology | 4 | BIO-301 | BIO-101 |
| CS-190 | Game Design | Comp. Sci. | 4 | CS-190 | CS-101 |
+-----------+-------------+------------+---------+-----------+-----------+
2 rows in set (0.00 sec)

51

Join Example

select * from course natural
join prereq;

+-----------+-------------+------------+---------+-----------+
| course_id | title | dept_name | credits | prereq_id |
+-----------+-------------+------------+---------+-----------+
| BIO-301 | Genetics | Biology | 4 | BIO-101 |
| CS-190 | Game Design | Comp. Sci. | 4 | CS-101 |
+-----------+-------------+------------+---------+-----------+
2 rows in set (0.00 sec)

52

Join Example

select * from course join prereq
using(course_id);
+-----------+-------------+------------+---------+-----------+
| course_id | title | dept_name | credits | prereq_id |
+-----------+-------------+------------+---------+-----------+
| BIO-301 | Genetics | Biology | 4 | BIO-101 |
| CS-190 | Game Design | Comp. Sci. | 4 | CS-101 |
+-----------+-------------+------------+---------+-----------+
2 rows in set (0.00 sec)

53

Join Example

select * from course join prereq on
course.course_id = prereq.course_id;
+-----------+-------------+------------+---------+-----------+-----------+
| course_id | title | dept_name | credits | course_id | prereq_id |
+-----------+-------------+------------+---------+-----------+-----------+
| BIO-301 | Genetics | Biology | 4 | BIO-301 | BIO-101 |
| CS-190 | Game Design | Comp. Sci. | 4 | CS-190 | CS-101 |
+-----------+-------------+------------+---------+-----------+-----------+
2 rows in set (0.01 sec)

54

Outer Joins
● An extension of the join operation that

avoids loss of information.
● Computes the join and then adds tuples

from one relation that does not match
tuples in the other relation to the result of
the join.

● Uses null values.
● inner join – join operations that do not

preserve non-matched tuples

55
Based on “Database System Concepts” book and slides, 6th edition

Left Outer Join

select * from course natural
left outer join prereq;
+-----------+-------------+------------+---------+-----------+
| course_id | title | dept_name | credits | prereq_id |
+-----------+-------------+------------+---------+-----------+
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-315	Robotics	Comp. Sci.	3	NULL
+-----------+-------------+------------+---------+-----------+
3 rows in set (0.00 sec)

56

Right Outer Join

select * from course natural
right outer join prereq;
+-----------+-----------+-------------+------------+---------+
| course_id | prereq_id | title | dept_name | credits |
+-----------+-----------+-------------+------------+---------+
BIO-301	BIO-101	Genetics	Biology	4
CS-190	CS-101	Game Design	Comp. Sci.	4
CS-347	CS-101	NULL	NULL	NULL
+-----------+-----------+-------------+------------+---------+
3 rows in set (0.00 sec)

57

Full Outer Join

+-----------+-------------+-------------+------------+-----------+
| course_id | title | dept_name | credits | prereq_id |
+-----------+-------------+-------------+------------+-----------+
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-315	Robotics	Comp. Sci.	3	NULL
BIO-301	BIO-101	Genetics	Biology	4
CS-190	CS-101	Game Design	Comp. Sci.	4
CS-347	CS-101	NULL	NULL	NULL
+-----------+-------------+-------------+------------+-----------+
6 rows in set (0.00 sec)

select * from course natural
full outer join prereq;

58

Midterm Review
A large organization has several parking lots which are used by
staff.
Each parking lot has a unique name, location, capacity, and
number of floors.
Each parking lot has parking spaces which are uniquely identified
within that lot using a space number.
Each space is located on a particular floor within the lot.
Members of staff are assigned the use of a parking space.
Each member of staff has a unique id number, name, telephone,
and vehicle license plate number..

59

Midterm Review

How should we begin?

60

Midterm Review

How should we begin?
Create an ER Diagram

What are the entity sets?
What are the relation sets?
Attributes?

61

Midterm Review

Staff
staff_no
name
phone

license_plate

assigned

Space
space_no
floor_no

Lot
lot_name
location
capacity

floors

 in

62

Midterm Review

Staff
staff_no
name
phone

license_plate

assigned

Space
space_no
floor_no

Lot
lot_name
location
capacity

floors

 in

63

Midterm Review

Reduce to a relational model.
Underline primary keys and use a + to indicate
foreign keys.

64

Midterm Review

Staff (staff_no, first_name, last_name, phone,
license_plate)
Assignment(staff_no(+), lot_name(+),
space_number(+))
Space (lot_name(+) , space_number,
floor_number)
Lot (lot_name, location, capacity, floors)

65

Midterm Review

 List the set of functional dependencies for each
relation in your model that originated from the
problem statement above. For each functional
dependency, use the form α → β where α and β
are one or more attributes from your relation
schema.

Indicate the relation and the set of functional
dependencies using this pattern:
Relation name: F= {a→b, c→d }

66

Midterm Review
 Staff:
F = { staff_no→ first_name, last_name, phone,

license_plate}

Assignment:
F = { staff_no, lot_name →space_number}

Space:
F = { lot_name , space_number→ floor_number}

Lot:
F = { lot_name → location, capacity, floors }

67

Midterm Review

Do we pass the test for BCNF?

Why or why not?

68

Midterm Review

Do we pass the test for BCNF?

Yes, because they are all non-trivial and all
superkeys.

69

Midterm Review

 Based on the functional dependencies from
above, use Armstrong’s Axioms and their
derivatives, to derive three new functional
dependencies.

70

Midterm Review
DECOMPOSITION

lot_name → location, capacity, floors
lot_name → location, capacity
lot_name → floors

REFLEXIVITY
staff_no→ staff_no

AUGMENTATION
staff_no→ license_plate
staff_no, phone → license_plate, phone

71

