Secret Agents —
A Security Architecture for KQML *

Chelliah Thirunavukkarasu
Enterprise Integration Technologies
Menlo Park
California CA 940257

Abstract

KQML is a message protocol and format for software agents
to communicate with each other. In this paper we discuss
the security features that a KQML user would expect and an
architecture to satisfy those expectations. The proposed ar-
chitecture is based on cryptographic techniques and would
allow agents to verify the identity of other agents, detect
message integrity violations, protect confidential data, en-
sure non-repudiation of message origin and take counter
measures against cipher attacks.

1 Introduction

Agents, in their different manifestations as filter agents, per-
sonal agents, softbots, knowbots etc, have become an impor-
tant topic and is one of the primary research areas in the
academia and the industry. These agents, to successfully in-
teroperate with each other and share their knowledge, need
a common interface standard.

KQML, Knowledge Query and Manipulation Language
[1] is such a message format and protocol, which enables au-
tonomous and asynchronous agents to share their knowledge
and or work towards cooperative problem solving.

With the popularity of internet and the possibilities of-
fered by the agent technology we can expect an explosion of
agents in the internet. For KQML to be an effective agent
communication protocol in such an environment, it should
provide some means for agents to communicate in a secure
manner to protect the privacy and integrity of data and to
provide for the authentication of other agents.

In this paper we discuss a security architecture which
would enhance KQML and allow KQML speaking agents to
authenticate senders, verify message integrity and have a
private conversation.

*This work was supported in part by the Air Force Office of Scien-
tific Research under contract F49620-92-J-0174, and the Advanced
Research Projects Agency monitored under USAF contracts F30602—
93—-C—-0177 and F30602-93-C-0028 by Rome Laboratory.

TThis work was done while the author was at the Univerisyt of
Maryland Baltimore County

Submitted to the CIKM’95 Intelligent Information
Agents Workshop, Baltimore, December 1995.

Tim Finin and James Mayfield

Computer Science and Flectrical Engineering
University of Maryland Baltimore County

Baltimore MD 21228 USA

2 Functional Requirements

We arrived upon the following requirements for a KQML
security model based on the analysis of the security models
for Privacy Enhanced Mail [4], Corba [3] and DCE [5]. In-
terested readers are referred to [2], for a thorough treatment
of security threats and mechanisms to counter them.

o Independence of KQML and application semantics. The
security architecture should not depend on the seman-
tics of KQML performative (i.e., an ask-all from an
agent will entail a tell or sorry from the receiver. The
security model should not rely upon this kind of in-
teraction semantics). The security model should be
general and flexible enough to support different mod-
els of agent interaction (e.g contract net, electronic
commerce).

o Authentication of principals. Agents should be capable
of proving their identities (they are who they actually
claim to be) to other agents and verifying the identity
of other agents.

o Preservation of message integrity. Agents should be
able to detect intensional or accidental corruption of
messages.

e Protection of privacy. The security architecture should
provide facilities for agents to exchange confidential
data.

o Detection of Message duplication or replay. A rogue
agent may record a legitimate conversation and later
play it back to disguise its identity. Agents should
be able to detect and prevent such playback security
attacks.

o Non-repudiation of messages. Non-repudiation of mes-
sage is necessary to enforce accountability. An agent
should be accountable for the messages that they have
sent or received, i.e, they should not be able to deny
having sent or received a message.

e Independence of transport layer. The security archi-
tecture should not depend on the features offered by
the transport layer. This is critical to facilitate agents
to communicate across heterogeneous transport mech-
anisms and to extend the security model to accommo-

date embedded KQML messages.

e Non dependence on a global clock or clock synchroniza-
tion. The security architecture should not be clock de-
pendent, as global synchronization of time is difficult
to achieve and would lead to further security issues
of its own. Further such a security model may have
inherent security weaknesses [7].

o Prevention of message hijacking. A rogue agent should
not be able to extract the authentication information
from an authenticated message and use it to masquer-
ade as a legitimate agent.

o Authentication by crypto-unaware agents. An agent
need not have cryptographic capabilities to authenti-
cate the sender of a message.

o Support for a wide variety of crypto systems. Agents

should be able to use different cryptographic algorithms.

But for two agents to interact, they should have a com-
mon denominator. The security architecture should
not depend on any specific cryptographic algorithm.

3 Architecture Overview

The proposed security architecture is based on data encryp-
tion techniques [9]. In tune with the asynchronous nature
of KQML, the model expects a secure message to be self
authenticating and does not support any challenge/response
mechanism to authenticate a message after it has been deliv-
ered. The architecture supports two security models, basic
and enhanced. The basic security model supports authen-
tication of sender, message integrity and privacy of data.
The enhanced security model additionally supports non-
repudiation of origin (proof of sending) and protection from
message replay attacks. The enhanced security model also
supports frequent change of encryption keys to protect from
cipher attacks.

3.1 Definitions

The following paragraphs define the cryptographic techniques
used by this architecture and the new performative and the
parameters that have been introduced to implement the ar-
chitecture.

Data Encryption Keys. An agent that implements the
proposed security architecture should have a master key, Ka,
which it would use to communicate with other agents. This
key can be based on a symmetric or asymmetric key cryp-
tosystem. If a symmetric key mechanism is used, we suggest
that the agent, in addition to the general master key, also use
a specific master key, Kal,a2 for each agent that it commu-
nicates with, for better privacy and stronger authentication.
If more than two agents share a single master key, any of
those agents can masquerade as the other or eavesdrop on
all the conversations between the agents sharing the key. If a
master key is shared by more than two agents, the strength
of security is directly related to the degree of trust between
the agents.

If an agent does not share a master key, Kal,a2 with
another agent, it can use its master key, Ka, or can use the
services of a central authentication server to generate such a
key. The agents may use different keys in either direction of
message flow i.e Kal,a2 is created by af and would be used
when a1 is sending a message to a2 and Ka2,al is created by
a2 and would be used when a2 is sending a message to al.

If more than two agents share a single master key, any
of those agents can masquerade as the other or eavesdrop
on all the conversations between the agents sharing the key.
If keys are shared by more than two agents, the strength
of the security provided is directly related to the degree of
trust between these agents.

If an asymmetric key mechanism is used, a unique key
for each pair of agents is not necessary, as the agent can use
the public key of its peer agent to encrypt the message and
prevent eavesdropping. It can also use its private key to sign
the message and prove its identity to its peer.

We assume that the agents know the master key of the
other agents. We also suggest a secure mechanism to do
master key lookup.

In the enhanced model, the agents use an additional
key, the session key, to ensure privacy, message integrity
and proof of identity. The session key can be symmetric
or asymmetric and can be generated with the help of the
authentication server. The session keys are set up by us-
ing a handshake protocol explained later. This handshake
protocol requires the use of a master key to ensure security.

The agents can use either the session or master key for
exchanging messages and must inform the other agent of the
key that was used for encryption to ensure proper decryp-
tion.

When agents exchange keys, they encrypt them using the
current session or master key. Keys are never exchanged in
clear text form.

We recommend using the enhanced security model (if
possible, as the enhanced model cannot be used under all
circumstances) with an expensive master key and a cheap
session key which is changed frequently.

Message |d. The message ID is used in the enhanced se-
curity model to protect agents from attacks by message re-
play. When the two agents establish a session key, they also
exchange a message ID which the sender would use in the
next message. Every message from an agent would carry
a message 1D and a new message ID for the next message.
Each message 1D is used only once to prevent replay and
they are encrypted using the session or master key for secu-
rity.

Message Digest. FEach secure message generated using
this architecture has a message digest or signature associated
with it. The digest is calculated using a secure hash function
like MD2, MD5 or SHS [9]. This hash function computes a
digital fingerprint of the message (i.e acts as a ”checksum”
for the message). The sender then encrypts this digest using
the session or master key and attaches it to the message.

This encrypted message digest forms the core of the secu-
rity architecture. The receiver of a message uses this digest
to verify the identity of the sender and the integrity of the
message. The digest also protects the message 1D field from
being hijacked and used in a different message.

3.2 New KQML Parameters

The following new KQML parameters have been added to
implement the security architecture.

:auth-master-key <boolean>. If T, the :auth-digest
and :auth-mesg (if present) are encrypted using the mas-
ter key. FElse the session key is used. An agent would use
the master key for encryption, if it does not share a session
key with the receiving agent or if it does not know the re-
ceiver in advance. Under these circumstances, it could use

this parameter to help the receiver in choosing the proper
decryption key.

:auth-digest (<digest-type> <encrypted-digest>).
The digest-type specifies the hashing function used (MDA4,
MDS5, etc.) to compute the message digest. The encrypted-
digestis the message digest encrypted using the key specified
by the :auth-master-key parameter. This parameter should
be present to prevent message hijack, and to provide for
sender authentication and integrity assurance.

:auth-mesg-id <string>. The value of this parameter
is a pre-agreed random string. This parameter is required
only in the enhanced security model to prevent message re-
play. After verifying the current message, to prevent a reuse
of the same message 1D, the receiver should reset its internal
message 1D field to the :auth-new-mesg-id or NIL.

:auth-new-mesg-id <encrypted-string>. The value
of this enhanced model parameter is the message 1D for the
next message and is encrypted using the key specified by
the rauth-master-key parameter. For effective prevention of
message replay, this parameter should be present in each
message.

:auth-new-session-key (<key-type encrypted-key>).

The value of this parameter specifies the session key for sub-
sequent messages. If the value is T and the :auth-shared-key
parameter is NIL, the current session key is destroyed and
the sender will use the master key for subsequent messages.
If the value is NIL, the session key, is left undisturbed. If it
is not T or NIL, it is the new session key encrypted using
the key specified by the :auth-master-key parameter. This
parameter can be used to change the session key from time
to time to protect from cipher attacks. Since the session
key can be changed frequently, a cheap (computation-wise)
cipher can be used as the session key.

:auth-mesg <encrypted-KQML-message>>. This pa-
rameter is used only in auth-private performative. The value
of this performative is a confidential KQML message which
has been encrypted using the key specified by the :auth-
master-key performative.

:auth-key-list ((<al>, <key-type> <encrypted-
key>) ...). This parameter is used by an agent during
master key registration with the authenticator. The value
is a list of 3-tuple. The first element is the agent name, the
second element is the key type and the third element is the
encrypted master key. If the agent name is NIL, that key
is shared with all the agents. If an agent uses asymmetric
master key, the parameter contains only key agent name set

to NIL.

New KQML Performatives

The following new KQML performatives have been added
to implement the security architecture.

auth-link. The sender wishes to authenticate itself to
the receiver and set up a session key and message 1D.

auth-challenge. The sender challenges the identity of
the receiver in response to an auth-link. The sender encrypts
a random string using the master key Ksr or Ks and sends
it as :content.

auth-link-request. The sender asks the receiver to
send an auth-link and start the authentication process.

auth-private. The sender is sending a confidential
message to the receiver. The :auth-mesg parameter contains
the encrypted message and the :auth-master-key parame-
ter specifies the encryption key. The rauth-digest parameter
should be present to verify the identity of the sender and the
rauth-mesg-id, :auth-new-mesg-td and :auth-new-session-key

parameters may be present if enhanced security model is
used.

auth-challenge-help. A crypto-unaware agent is en-
listing the help of a trusted friend to construct a challenge
message. The :from parameter will specify the agent to
which the challenge message has to be sent.

auth-mesg-help. A crypto-unaware agent is enlisting
the help of its trusted friend to authenticate a message with
rauth-digest parameter. The message will contain the :from
parameter whose value is the agent from which this message
was received and the :content parameter’s value will be the
received message.

auth-key-request. The sender is requesting the au-
thenticator to provide the master key for the agent specified
in the :from field. If a master key pair exists for the two
agents, the authenticator returns it. The :content parame-
ter specifies the requested key’s type. This performative can
also be used to generate a master or session key. A key is
generated if :to1s used instead of :from and it is an error to
use both. If :tois used, the :content parameter is a 2-tuple.
The first element is the key-type and the second element is a
boolean flag which will be true, if a master key is requested.
If a master key is requested, the generated key is added to
the key list of the sender.

4 Basic security model

An implementation should support the following protocol to
conform with the basic security model. This model supports
authentication, integrity and privacy of data. If asymmetric
keys are used for session and master keys, this model also
supports non-repudiation of origin.

When R2D2 sends a secure message to C3PO, it would
compute a message digest and encrypt it using the master
key.

<performative>
:sender R2D2
:receiver C3P0
auth-master-key T
rauth-digest (<digest-type><encrypted-digest>)

Or, if R2D2 needs to send a confidential message to
C3PO, it can encrypt the message and embed it in an auth-
private performative.

auth-private
:sender R2D2
:receiver C3P0
auth-master-key T
rauth-digest (<digest-type> <encrypted-digest>)
:auth-mesg <encrypted-KQML-message>

This model can be used when R2D2 does not know the
recipient in advance e.g. broadcast and facilitation perfor-
mative. Orif R2D2 and C3PO do not require prevention of
message replay and can afford the cost of using the master
key.

In the above message, the :auth-digest parameter can be
used to verify the integrity of the message, authenticate the
sender and ensure non-repudiation of origin (if the master
key is asymmetric in nature). If the message has been cor-
rupted, the message digest will not agree with the value of
the :auth-digest parameter. Since the message digest is en-
crypted with the master key of the :sender, only the :sender
or the agents with which the :sender shares the encryption
key could have generated the message. If the master key

is an asymmetric key, only the :sender could have gener-
ated the message, as only the :sender knows the private key
that has been used for encryption. Note that we can only
verify the identity of the generator (i.e. the message was en-
crypted by the :sender agent) of the message. This message
can be a replay of a legitimate message previously sent by
the generator.

5 Enhanced security model

This model in addition to the basic security, supports pre-
vention of message replay, and stronger non-repudiation of
message origin (if asymmetric keys are used). Even though
non-repudiation can be achieved in the basic security model,
we can only be sure that the message was generated by the
sender, as a rogue agent can replay a message and we will
not be able to detect it.

In the remainder of this section we will demonstrate how
the new KQML performatives and parameters can be used
to converse/communicate securely.

5.1 Self authentication

Agent R2D2 has cryptographic capabilities and would like
to prove its identity to agent C3PO. The agents would follow
the following handshake protocol to achieve it.

1. auth-link >
- 2. auth-challenge

3. reply -
- 4.rep|y/error.

5. <B]erformat|ve>/

auth-private

Figure 1: Self authentication protocol

1. R2D2 sends an auth-link performative to C3PO.

auth-link
:sender R2D2
:receiver C3P0
:reply-with <expression>

2. If C3PO will not authenticate senders, it can respond
with an error, otherwise it sends a auth-challenge with
a random string encrypted using the master key. A
random string is used to prevent message replay.

auth-challenge
:sender C3P0
:receiver R2D2
:in-reply-to <expression>
:reply-with <expression>
:content <encrypted-random-string>

3. R2D2 responds with a reply performative with the
rauth-digest, :auth-new-mesg-idand :auth-new-session-
key (if present) encrypted in the master key. The value
of :contentand :auth-mesg-idis the decrypted random
string. The session key parameter is optional.

reply
:sender R2D2
:receiver C3P0
:in-reply-to <expression>
:reply-with <expression>

auth-master-key T

rauth-digest (<digest-type> <encrypted-digest>)
rauth-mesg-id <mesg-id>

rauth-new-mesg-id <encrypted-new-mesg-id>
rauth-new-session-key (<key-type> <encrypted-key>)
:content <random-string>

Now, C3PO can verify if the sender is R2D2 by in-
specting the random string. Only R2D2 (or in the
case of symmetric key, one of the other agents which
shares the same key) could have decrypted the ran-
dom string as it was encrypted using the master key.
The message digest can be used for non-repudiation if
asymmetric keys are used.

4. C3PO responds with a reply or an error depending on
the success of authentication.

5. Now, R2D2 can send an authenticated message to C3PO
by using the session key or master key to encrypt the
message digest and a non replayable message by using
rauth-mesg-id and :auth-new-mesg-id parameters.

<performative>
:sender R2D2
:receiver C3P0
auth-master-key T or NIL
rauth-digest (<digest-type> <encrypted-digest>)
rauth-mesg-id <mesg-id>
rauth-new-mesg-id <encrypted-new-mesg-id>
rauth-new-session-key (<key-type> <encrypted-key>)

Or if R2D2 needs to send a confidential message to
C3PO, it can encrypt the message and embed it in an
auth-private performative.

auth-private
:sender R2D2
:receiver C3P0
auth-master-key T or NIL
rauth-digest (<digest-type> <encrypted-digest>)
rauth-mesg-id <mesg-id>
rauth-new-mesg-id <encrypted-new-mesg-id>
rauth-new-session-key (<key-type> <encrypted-key>)
:auth-mesg <encrypted-KQML-message>

5.2 Authentication by request

R2D2 may expect some of the incoming messages from C3PO
to be authenticated and it can initiate the authentication
process by following the handshake protocol given below:

1. auth-link-request

.
- 2. auth-link
3. auth-challenge -
- 4. reply
5. reply/error -

-private

6. < ﬂ1erfor mative>/
- au

Figure 2: Authentication by request protocol

1. R2D2 can initiate the authentication process by send-
ing an auth-link-request to C3PO.

auth-link-request
:sender R2D2
:receiver C3P0
:reply-with <expression>

2. C3PO and R2D2 would then follow the steps outlined
in Self Authentication.

5.3 Crypto un-aware agents

Agent Leia may not have crypto capabilities. But it trusts
its friend R2D2 and R2D2 is prepared to authenticate mes-
sages on behalf of Leia. Since Leia does not have crypto ca-
pabilities, it will not accept auth-private performative. The
agents would follow the handshake protocol given below to
verify SkyWalker’s identity.

1. auth-link

—_— 2. auth-challenghelp
4. auth-challenge %L
I e 6. auth mesghelp

8. reply/error 7‘@|y/error

® SR :

Figure 3: Trusted friend protocol

1. Agent SkyWalker sends Agent Leia an auth-link mes-
sage to initiate the process of proving its identity to
Leia.

auth-link
:sender SkyWalker
:receiver Leia
:reply-with <expression>

2. When Leia receives an auth-link message from Sky-
Walker, Leia requests a challenge string from its trusted

friend, R2D2.

auth-challenge-help\vspace{-0.30cm}
:sender Leia
:receiver R2D2
:reply-with <expression>
:from SkyWalker

3. R2D2 will generate a random string on behalf of Leia,
encrypt it using the master key (shared by Leia and
SkyWalker or Leia’s master key, which R2D2 knows)
and will forward it to Leia.

reply
:sender R2D2
:receiver Leia
:in-reply-to <expression>
:content (SkyWalker <encrypted-random-string>)

4. Leia will construct an auth-challenge performative and
send it to SkyWalker. Subsequent performative from
SkyWalker with an :auth-digest will be forwarded to
R2D2.

auth-challenge
:sender Leia
:receiver SkyWalker
:reply-with <expression>
:in-reply-to <expression>
:content <encrypted-random-string>

5. SkyWalker will respond with a secure reply.

reply
:sender SkyWalker
:receiver Leia
:reply-with <expression>
:in-reply-to <expression>
auth-master-key T

rauth-digest (<digest-type> <encrypted-digest>)

rauth-mesg-id <mesg-id>
rauth-new-mesg-id <encrypted-new-mesg-id>

rauth-new-session-key (<key-type> <encrypted-new-key>)

:content random-string

6. Leia will wrap the response in an auth-mesg-help and
send it to R2D2.

auth-mesg-help
:sender Leia
:receiver R2D2
:reply-with <expression>
:from SkyWalker
:content message-from-SkyWalker

7. R2D2 will respond with a reply or an error.
8. Leia would forward the R2D2’s reply to SkyWalker.

9. The handshake is now complete and SkyWalker can
send secure performative to Leia, which Leia would
verify with the help of R2D2.

6 Authenticator Agent

The authenticator acts as a repository of the agent’s master
keys. It can also generate session or master keys for the
agents. The security architecture does not depend on the
existence of an authenticator.

An agent and the authenticator share a master key which
is known only to the agent and the authenticator. The mas-
ter key may actually be a pair, one for the agent to send
messages to the authenticator and the other for the authen-
ticator to send messages to the agent.

The authenticator accepts only messages in the enhanced
model, 1.e., the messages should have an :auth-mesg-id. So,
each agent should have established a secure link using auth-
link-requestand auth-linkwith the authenticator upon startup.
It is the agent’s responsibility to verify the identity of the
authenticator and prove its identity to the authenticator.

6.1 Key lookup using the Authenticator

Agent Solo has received a message from Chewie and would
like to know the master key used by Chewie. Solo uses the
following protocol to get the master key from the authenti-
cator.

1. auth-key-request
(with :from) >

Authenticator

2. reply/error

Figure 4: Key request (lookup) protocol

1. Agent Solo would send an auth-key-request to the au-
thenticator to lookup the master key used by Chewie

to send out messages. The :contentparameter contains
the requested key-type.

auth-key-request
:sender Solo
:receiver Authenticator
:reply-with <expression>
:from Chewie
auth-master-key T or NIL

rauth-digest (<digest-type> <encrypted-digest>)

rauth-mesg-id <mesg-id>
rauth-new-mesg-id <encrypted-new-mesg-id>

rauth-new-session-key (<key-type> <encrypted-new-key>)

:content <key-type>

2. If Chewie had previously registered a master key for
communication with Solo, the authenticator will re-
turn that key in a reply performative. If there is no
such key, the authenticator will reply with an error.

reply
:sender Authenticator
:receiver Solo
:in-reply-to <expression>
auth-master-key T or NIL

rauth-digest (<digest-type> <encrypted-digest>)

rauth-mesg-id <mesg-id>
rauth-new-mesg-id <encrypted-new-mesg-id>

rauth-new-session-key (<key-type> <encrypted-new-key>)
:content (Chewie <key-type> <encrypted-master-key>)

6.2 Key creation using the Authenticator

Agent Solo would like to send a secure message to Chewie
and needs a session or master key for that purpose. It can
send an auth-key-request to the authenticator to create such
a key. If a master key has been requested, the authenticator
would store the key in its database.

A master key creation would not be necessary if asym-
metric keys are used as a single master key per agent is
suffice to talk securely to all the agents. Further, non-
repudiation of message origin is not possible if the authen-
ticator knows the private key.

1. auth-key-request
(with :to) >

Authenticator

2. reply/error

Figure 5: Key request (creation) protocol

1. Agent Solo would send an auth-key-request to generate
a master or session key to send messages to Chewie.
The :content parameter is a 2-tuple. The first element
is the requested key’s type and the second element is
T if a master key is requested.

auth-key-request
:sender Solo
:receiver Authenticator
:reply-with <expression>
:to Chewie
auth-master-key T or NIL

rauth-digest (<digest-type> <encrypted-digest>)

rauth-mesg-id <mesg-id>

rauth-new-mesg-id <encrypted-new-mesg-id>

rauth-new-session-key (<key-type> <encrypted-new-key>)

:content (<key-type> T-or-NIL)

2. Authenticator creates a key and sends it in a reply
performative. If the requested key is a master key, the
key 1s added to Solo’s key list. If the authenticator
is not able to create the key for whatever reason, it
responds with an error performative.

reply
:sender Authenticator
:receiver Solo
:in-reply-to <expression>
auth-master-key T or NIL
rauth-digest (<digest-type> <encrypted-digest>)
rauth-mesg-id <mesg-id>
rauth-new-mesg-id <encrypted-new-mesg-id>

rauth-new-session-key (<key-type> <encrypted-new-key>)
:content (Chewie <key-type> <encrypted-master-or-session-k

6.3 Key registration with Authenticator using KQML

Agent Yoda would like to register its master keys with the
authenticator.

1. register

Authenticator

2. reply/error

Figure 6: Key register protocol

1. Yoda would send a secure register with the keys in the
sauth-key-list parameter. The keys are encrypted using
the key specified by the :auth-master-key parameter.
The agent can also use this performative to change
the master key that it shares with the authenticator.

register
:sender Yoda
:receiver Authenticator
:reply-with <expression>
auth-master-key T or NIL
rauth-digest
(<digest-type> <encrypted-digest>)
rauth-mesg-id <mesg-id>
rauth-new-mesg-id <encrypted-new-mesg-id>
rauth-new-session-key
(<key-type> <encrypted-new-key>)
rauth-key-list
((<agent> <key-type> <encrypted-key>)...)
:ontology tcp-address-ontology
:content (tcp-host tcp-port)

2. If the key registration is successful, the authenticator
responds with a reply else with an error.

6.4 Initial key registration with the authenticator

Agent Yoda is starting up for the first time and would like
to register the master key that it shares with the authen-
ticator. This can be achieved either using KQML or some
other external mechanism.

If symmetric keys are used, KQML cannot be used to
register the initial key as there is no master key to encrypt
the key. If asymmetric keys are used, the initial master key
is encrypted using the authenticator’s public key. Even if
asymmetric keys are used, there is a security problem. A
rogue agent, agent DarthVader may know that agent Ben
respects performative from agent Yoda. Agent DarthVader
may also find out that Yoda has not registered with the au-
thenticator and therefore the authenticator does not know
the existence of such an agent. Now, DarthVader can reg-
ister itself as Yoda. If this type of masquerading can be an
issue, KQML should not be used for the initial registration.

The protocol would be same as the key register process.
The :auth-key-list parameter will contain only one key pair
and the agent name would be NIL as this is an asymmetric
key and it is suffice to use a single asymmetric master key
for all the agents.

If the authenticator does not have any entry for Yoda,
it accepts the registration and adds it to its database and
sends a reply.

7 Limitations of this model

The security model we are proposing for KQML has a num-
ber of limitation which vary in severity.

e An agent can send out authenticated messages if and
only if it has crypto capabilities (A fair limitation).

e The security architecture introduces state information.
Agent Emperor has to keep track of the next message
ID and optionally the next session key that will be used
by agent DarthVader. The agents can choose not to
use this feature if they are not concerned with message
replay attack and cipher attack.

o Messages delivery must be reliable and in order. (A
fair limitation considering that KQML itself assumes

that).

e The model does not support non-repudiation of receipt
of messages. This would be difficult to implement due
to the asynchronous nature of KQML and can be done
only at the application level.

e There is no support for a mechanism to exchange cre-
dentials. Lets say that agent Emperor trusts agent
DarthVader and would like to delegate DarthVader to
act on its behalf. There is no way for DarthVader to
take up Emperor’s credentials.

e The model does not support replay detection if :auth-
mesg-id and auth-new-mesg-id are not used. These
parameters cannot be used if the recipient is not known
in advance.

e The architecture does not address traffic analysis by
rogue agents. We feel that traffic analysis is best han-
dled at the link/transport layers.

e The model should be enhanced to support the use of
the Crypto APIs recommended by NSA (GSS, GCS
and Cryptoki) [8], especially for the key-type and digest-
type values.

8 Implementation

We have proposed a security model which has not yet been
implemented. We have examined the modifications which
would be required to integrate this model into some existing
KQML API software. We will briefly discuss the approach
to implementing this architecture in the KATS KQML API
[10] software architecture.

in this architecture, each agent application is associated
with its own separate router sub-agent. The routers used by
all the agents are identical and handle all KQMI messages
going to and from the agent. The security enhancement can
be easily added to this KQML implementation by modifying
the router to be security aware, without involving any major
change to the agent application.

The agent application only needs to specify the degree of
security (any combination of provide for message authenti-
cation, protect from replay attack, send a confidential mes-
sage and sign the message-non-repudiation of origin) of an
outgoing message. The router would handshake with the re-
ceiving agent and secure the message to the extent possible
(the receiving agent may not support asymmetric key cryp-
tography, auth-private performative etc or the router may
not know the receiving agent of the embedded message if it
is sending out a broadcast or facilitation performative).

Similarly, when the router receives an authenticate re-
quest from another agent, it can handle the handshake itself,
without involving the agent application. When the router
receives a message from another agent, it would tag the mes-
sage with a security level (confidential, authenticated, etc.).
The agent application can decide to process or ignore the
message based on the message’s security level.

A similar approach can be followed to add security en-
hancement to most other KQML implementations. Most im-
plementations would provide a library with at least a basic
send and receive primitive to send and receive KQML mes-
sages. These primitives can be modified to add the authen-
tication information to the outgoing messages or process the
authentication information in the incoming messages. The
implementations can use one of NSA recommended crypto
APITs [8] for cryptographic capabilities. These APIs provide
support for asymmetric and symmetric key cryptography,
message digest, key generation etc. The use of a standard
API would help agents using different KQML implementa-
tions to interact without any incompatibility problems.

9 Conclusion

The proposed security model addresses privacy, authentica-
tion and non-repudiation (if asymmetric key mechanism is
used for the master and session keys) in agent communica-
tion. It does not fully address the issue of message replay,
especially if the recipient of a performative is not known in
advance. Ultimately, this security model depends on the
strength of the crypto algorithm, message digest function
and the random number generator used by the agent for its
effectiveness.

10 Acknowledgments

This work has been the result of very fruitful collaborations
with a number of colleagues with whom we have worked on
KQML and other aspects of the Knowledge Sharing Effort.
We wish to specifically thank and acknowledge Don McKay,
Robin McEntire, Richard Fritzson, Charles Nicholas, Yannis
Labrou, R. Scott Cost, and Anupama Potlori. Arulnambi

Kaliappan suggested the agent names and and Senthil Peri- [14]
aswamy of the University of South Carolina provided stim-
ulating discussions on possible security threats and attacks.

References [15]

[1] Draft specification of the KQML agent communication
language, Tim Finin, Jay Weber et al, Jun 15 1993,
http://www.cs.umbc.edu/kqml/kqmlspec/spec.html

[2] Security Mechanisms in High-Level Network Protocols,
Victor L.Voydock, Stephen T. Kent, ACM Computing
Surveys, Vol.15, No. 2, 135-171, Jun 83

=

[3] OSTF RFP3 Submission, Corba Se- (16
curity, OMG Document Number 95-3-3, Mar 8 1995,
http://www.omg.org/docs/95-3-3.ps

[4] Privacy Enhancement for
Internet Electronic Mail: Part I: Message Encryption
and Authentication Procedures, J. Linn, Oct 02 1993,
http://ds.internic.net/rfc/rfc1421.txt

[5] Security in
a Distributed Computing Environment, OSF-O-WP11-
1090-3, http://www.osf.org/comm/lit/OSF-O-WP11-
1090-3.ps

—
(=]
=

Project Athena Technical Plan, Section E.2.1, Kerberos
Authentication and Authorization System, S.P.Miller,
B.C.Neuman,

J.I.Schiller and J.H.Saltzer, Oct 27 1988, ftp://athena-
dist.mit.edu/pub/kerberos/doc/techplan.PS

[7] Limitations of the Kerberos Authentication Sys-
tem, S.M. Bellovin, M. Merritt, Proceedings of
the Winter 1991 Usenix Conference, Jan 1991,
ftp:/ /research.att.com/dist /internet_security/kerblimit.usenix.ps

[8] Security Service API: Cryptographic API Recommen-
dation, NSA Cross Organization, CAPI Team, Jun 12
1995, http://www.omg.org/docs/95-6-6.ps

[9] RSA Labs” frequently asked questions (FAQ),
http://www.rsa.com /rsalabs/faq

[10] Software Design Document for KQML, Revision 3.0,
Mar 1995, LORAL Corporation, Paoli PA, USA

[11] Tim Finin, Don McKay, Rich Fritzson, and Robin
McEntire. KQML: an information and knowledge ex-
change protocol. In Kazuhiro Fuchi and Toshio Yokoi,
editors, Knowledge Building and Knowledge Sharing.
Ohmsha and IOS Press, 1994.

[12] Tim Finin, Don McKay, Rich Fritzson, and Robin
McEntire. The KQML information and knowledge ex-
change protocol. In Third International Conference on
Information and Knowledge Management, November
1994.

[13

[t

Yannis Labrou and Tim Finin. A semantics approach
for KQML — a general purpose communication language
for software agents. In Third International Conference
on Information and Knowledge Management, Novem-
ber 1994. Available as http://www.cs.umbc.edu/kqml/-
papers/kgml-semantics.ps.

R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil,
T. Senator, and W. Swartout. FEnabling technology
for knowledge sharing. Al Magazine, 12(3):36-56, Fall
1991.

Ramesh Patil, Richard Fikes, Peter Patel-Schneider,
Donald McKay, Tim Finin, Thomas Gruber, and
Robert Neches. The DARPA knowledge sharing effort:
Progress report. In B. Nebel, C. Rich, and W. Swartout,
editors, Principles of Knowledge Representation and
Reasoning: Proc. of the Third International Confer-
ence (KR’92), San Mateo, CA, November 1992. Morgan
Kaufmann.

Chelliah Thirunavukkarasu. A Security Architecture
for KQML. Technical Report MS-EECS-95-nn, COm-
puter Science and FElectrical Engineering Department,
University of Maryland Baltimore County. August,
1995.

