
CMSC 641 Design & Analysis of Algorithms
Spring 2008, Spring 2010, Fall 2014 Richard Chang

Notes on Disjoint Set Union

These notes provide a simplified analysis of the amortized running time of the disjoint set union
data structure compared to the one presented in the textbook. The running time analysis is worse.
We only achieve O(m log logn), O(m log log log n) and O(m log∗ n) running times for m operations
on n items instead of the mα(n) bound in the text. However, understanding this analysis will help
you understand the one in the textbook.1

Read Chapter 21 of the textbook if you are not already familiar with the Disjoint Set data
structure with Union by Rank and Path Compression. Make sure that you understand rank and
how union by rank guarantees that a Find operation takes O(log n) time. We define size(x) to
be the number of items in the subtree rooted at x (including x itself). We make the following
observations about rank(x) and size(x).

Observations

1. If x is not a root, then rank(x) < rank(parent(x)). Note that this is strictly less than.

2. If x becomes a non-root, then rank(x) becomes fixed forever.

3. If x is a root, size(x) ≥ 2rank(x). This is an easy proof by induction on rank. When the rank
of the root is 0, the tree has 1 item and the claim holds. A rank of r+ 1 can only be achieved
by linking two trees with roots with rank r. This means the size of the tree doubles while the
rank increases by 1.

4. For r ≥ 0, there are at most n/2r items that ever achieve rank r during the entire run of the
data structure (i.e., not just for a fixed point in time).

Pf: This obviously holds for r = 0. Now, fix an r > 0. (Note: this is not a proof by induction.)
When an item x achieves rank r, label all of its descendants with x. By above, at least 2r

items are labeled with x. Furthermore, note that none of the descendants of x have ever been
labeled, because this has to be the first time that any of these nodes have a root with rank
r. (In this labeling procedure, we are only considering rank r. The claim for each rank is
done separately.) Also, none of the descendants of x will ever have a different root with rank
r in the future. Thus, each item is labeled at most once during the entire run of the data
structure. Since there are only n items and at least 2r items are labeled by each label, at
most n/2r items can ever achieve rank r. �

5. For all items x, rank(x) ≤ blog nc. Otherwise, size(x) > n.

Amortized Analysis 1: O(m log logn)

A sequence of m operations of the disjoint set data structure must include n MakeSet operations
followed by some number of Link and Find operations. Assuming that Link is already given the
roots of the two subtrees, this takes O(1) time and we won’t change that. The Find operation is
more costly since it has to implement path compression. With the exception of the root and the
child of the root, each node visited by the Find operation must be examined and in the second
pass, must have its pointer adjusted to point to the root. This takes O(1) time per node and the
time must be “charged” to someone. We will either make the Find operation pay for these visits
or make the node pay for the visit to itself. (The Find operation will pay for visiting the root and
the child of the root, but that is just another O(1).)

1I have lost track of the origins of this analysis. If anyone knows where it came from, please let me know.

So, we have two things to do:

1. Explain when we charge a visit to the Find operation and when we charge a visit to the node.

2. Add up the charges to the Find operation and the charges to the nodes.

How we charge a visit depends on the rank of a node and the rank of its parent. To do this we
separate the rank values into blocks. (The definition of the blocks are a bit arbitrary, so don’t try
to make sense of them right away.) The blocks are named B0, B1, B2, We want the size of the
blocks to increase exponentially:

B0 = {0}, B1 = {1}, B2 = {2, 3}, B3 = {4, 5, 6, 7},

B4 = {8, 9, 10, . . . , 15}, B5 = {16, 17, 18, . . . , 31}, B6 = {32, 33, 34, . . . , 63}, . . .

Note that for i > 0, the number of values in block Bi is 2i−1. Also, there can be at most log log n
blocks since the largest rank is at most log n.

Now, consider a node x that is visited during a Find operation. If rank(x) and rank(parent(x))
are in the same block (before path compression), then we charge the visit to x to x itself. Otherwise,
rank(x) and rank(parent(x)) are in different blocks and we charge the visit to x to the Find
operation.

Think about the Find operation as it follows the pointers from a node y to the root of the tree.
The ranks of the nodes along this path are strictly increasing. Now, think about the blocks that
these rank values belong to. Every time the rank values enter a new block, the Find operation is
charged for a visit. Since there are only log log n blocks, the Find operation is charged for at most
log logn visits. Thus, the amortized running time of Find is O(log log n).

Now, think about the charges to a node x. Each time a node x is charged, its parent’s rank must
increase by at least 1. (Recall that this is because x has a new parent which has larger rank than
x’s old parent and not because x’s old parent had its rank increased.) After a while rank(parent(x))
is big enough to be in a different block from rank(x). Then, x will never be charged again. For
example, suppose rank(x) is 16 which puts rank(x) in block B5. Then rank(parent(x)) is at least
17. After 15 charges to x, rank(parent(x)) must be at least 32 which puts rank(parent(x)) in block
B6. Thus, after 15 charges, x will never be charged again. In general, a node with rank r, where
r ∈ Bi, can be charged at most 2i−1 times. (Verify this yourself.) We could have claimed that a
node with rank r is charged at most r times, but it will help us in our calculations below to make
the weaker claim of 2i−1 instead. By treating all the ranks in block Bi the same, we can remove
one of the summations.

Now, we can bound the total number of node charges to every node in the data structure:

log logn∑
i=1

∑
r∈Bi

(n
2r

)
2i−1.

Here the first summation sums over each block and the second summation sums over each rank in
the block. The value n

2r is the number of nodes with rank r and 2i−1 is the number of times that
a node with rank in Bi can be charged. Now a bit of arithmetic gives us

log logn∑
i=1

∑
r∈Bi

(n
2r

)
2i−1 =

log logn∑
i=1

2i−1∑
r=2i−1

(n
2r

)
2i−1 ≤

log logn∑
i=1

[
2i−1

(
n

22i−1

)
2i−1

]

= n

log logn∑
i=1

(
22i−2

22i−1

)
< n

log logn∑
i=1

1 = n log logn.

Here’s how we got rid of the second summation (the one over r). There are 2i−1 terms in the sum

and the largest term is
(

n

22i−1

)
2i−1, when r = 2i−1 Thus,

2i−1∑
r=2i−1

(n
2r

)
2i−1 ≤ 2i−1

(
n

22i−1

)
2i−1.

Now of the m operations, n are MakeSet and the rest are either Find or Link. If we charge each
MakeSet operation log log n credits, this would pay for all of the node charges used during path
compression for all of the Find operations. Then, MakeSet takes O(log log n) amortized time, Find
takes O(log log n) amortized time and Link takes O(1) real time. Thus, the total running time for
m operations is O(m log log n).

Amortized Analysis 2: O(m log log log n)

The analysis in the previous section is not tight. We can see this because we used the estimate that(
22i−2

22i−1

)
< 1.

This is a rather gross over estimate and suggest that we can improve the analysis by making the
nodes pay for more of the time used for path compression. We do this by making the blocks larger.
In our second analysis, we redefine the blocks by:

B0 = {0, 1}, B1 = {2, 3}, B2 = {4, 5, 6, . . . , 15}, B3 = {16, 17, . . . , 255},

B4 = {256, . . . , 216 − 1}, B5 = {216, . . . , 232 − 1}, . . . , Bi = {22i−1
, . . . , 22

i − 1}.

Since the largest rank is log n, the number of blocks is bounded by log log log n. The number of
ranks in block Bi is 22

i − 22
i−1

< 22
i
. Keeping everything else the same as before, a Find operation

will be charged at most log log log n times and each node with rank in block Bi will be charged
at most 22

i
times (after which the rank of its parent will be in a different block). Then, the total

number of node charges is:

log log logn∑
i=1

∑
r∈Bi

(n
2r

)
22

i
= n

log log logn∑
i=1

22
i

22
i−1∑

r=22i−1

(
1

2r

)
< n

log log logn∑
i=1

[
22

i · 22i
(

1

222
i−1

)]

= n

log log logn∑
i=1

(
22

i+1

222
i−1

)

< n

log log logn∑
i=1

1

= n log log log n.

Again we can charge log log log n credits to each MakeSet operation and get O(m log log log n)
running time for m operations.

Amortized Analysis 3: O(m log∗ n)

Even, the O(m log log log n) analysis is not tight. We can make the running time even smaller
by making the blocks even larger. There’s good reason for us to stop at O(m log log log n). For
example, let n = 1080 which some physicists estimate to be the number of elementary particles in
the universe. For n = 1080, log log log n = 3.0096 . . ., but log∗ n = 5. Thus, O(m log∗ n) is a better
bound only for very, very large n.

The blocks in this analysis are very large. We define block Bi = {bi, . . . , bi+1 − 1} where the bi
are defined recursively by:

b0 = 0, bi+1 = 2bi .

If you unwind the recursion, you get that bi is a stack of i− 1 2’s in the exponent:

bi = 2
22

...2
}
i−1

As before we charge the time for path compression either to a node or to the Find operation.
Since there are at most log∗ n blocks, the amortized running time of Find is O(log∗ n).

We estimate the total number of node charges as follows. First, recall that the number of nodes
with rank equal to bi is ≤ n/2bi . Then, the number of nodes with rank at least bi is

n

2bi
+

n

2bi+1
+

n

2bi+2
+

n

2bi+3
+ · · · = n

2bi

(
1 +

1

2
+

1

4
+

1

8
+ · · ·

)
≤ 2n

2bi
.

Thus, the number of nodes with rank in block Bi is upper bounded by 2n/2bi (this is an over
estimate). Since each node with rank in block Bi can be charged at most 2bi times (this is a rough
upper bound on |Bi|), we can bound the total number of node charges by:

log∗ n∑
i=1

[(
2n

2bi

)
2bi
]

= 2n

log∗ n∑
i=1

1 = 2n log∗ n.

Note that as before we sum over each block Bi. This time, however, we do not sum over the ranks
r ∈ Bi. Instead, we count the number of nodes that have a rank that is in block Bi and multiply
it with the number of node charges to such nodes.

Thus we have the upper bound of O(m log∗ n) for m disjoint set operations. The textbook has
a further improvement to O(mα(n)) where α(n) is the inverse Ackermann function.

