1. Definitions of $\Theta(g(n)), O(g(n))$ and $\Omega(g(n))$.
$\Theta(g(n))=\left\{f(n)\right.$: there exist positive constants c_{1}, c_{2}, and n_{0} such that $0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ for all $\left.n \geq n_{0}\right\}$.
$O(g(n))=\left\{f(n):\right.$ there exist positive constants c and n_{0} such that $0 \leq f(n) \leq c g(n)$ for all $\left.n \geq n_{0}\right\}$.
$o(g(n))=\left\{f(n):\right.$ for any positive constant c, there exists a positive constant n_{0} such that $0 \leq f(n)<c g(n)$ for all $\left.n \geq n_{0}\right\}$.
$\Omega(g(n))=\left\{f(n):\right.$ there exist positive constants c and n_{0} such that $0 \leq c g(n) \leq f(n)$ for all $\left.n \geq n_{0}\right\}$.
$\omega(g(n))=\left\{f(n):\right.$ for any positive constant c, there exists a positive constant n_{0} such that $0 \leq c g(n)<f(n)$ for all $\left.n \geq n_{0}\right\}$.
2. Master Theorem.

Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

$$
T(n)=a T(n / b)+f(n)
$$

where we interpret n / b to mean either $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$. Then $T(n)$ can be bounded asymptotically as follows.

1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$.
3. If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and if $a f(n / b) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.
4. Exponential Identities. For all real $a \neq 0, m$ and n :

$$
\begin{array}{llll}
a^{0}=1 . & a^{1}=a . & a^{-1}=1 / a . & \left(a^{m}\right)^{n}=a^{m n} . \\
\left(a^{m}\right)^{n}=\left(a^{n}\right)^{m} . & a^{m} a^{n}=a^{m+n} . & a^{m} / a^{n}=a^{m-n} .
\end{array}
$$

4. Logarithmic Identities. For all $a>0, b>0, c>0$ and n :

$$
\begin{array}{lll}
a=b^{\log _{b} a .} & \log _{c}(a b)=\left(\log _{c} a\right)+\left(\log _{c} b\right) . & \log _{b} a^{n}=n \log _{b} a . \\
\log _{b} a=\frac{\log _{c} a}{\log _{c} b} . \\
\log _{b}(1 / a)=-\log _{b} a . & \log _{b} a=1 / \log _{a} b . & a^{\log _{b} n}=n^{\log _{b} a} .
\end{array} n^{1 / \log _{2} n}=2 .
$$

5. Some summations.

$$
\begin{array}{ll}
\sum_{k=1}^{n} k=\frac{1}{2} n(n+1) . & \\
k=0 \\
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x} . \text { when }|x|<1 . & \\
\sum_{k=0}^{\infty} k x^{k}=\frac{x}{(1-x)^{2}} . \text { when }|x|<1 . \\
\sum_{k=1}^{n} 1 / k=\ln n+O(1) . &
\end{array}
$$

