CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING

LECTURE 24, SPRING 2013

TOPICS TODAY

- Example: Sequence Detector
- Finite State Machine Simplification
 - Circuit Minimization
 - State Reduction
 - State Assignment
 - Choice of Flip Flop (not covered)

EXAMPLE: SEQUENCE DETECTOR

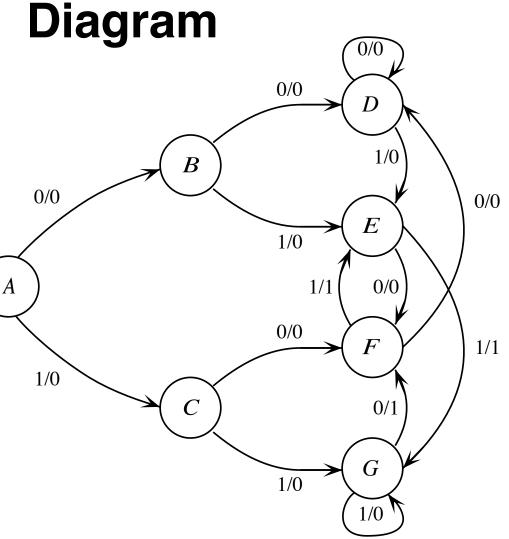
Example: A Sequence Detector

- <u>Example</u>: Design a machine that outputs a 1 when exactly two of the last three inputs are 1.
- e.g. input sequence of 011011100 produces an output sequence of 001111010.
- Assume input is a 1-bit serial line.
- Use D flip-flops and 8-to-1 Multiplexers.
- Start by constructing a state transition diagram (next slide).

Principles of Computer Architecture by M. Murdocca and V. Heuring

Sequence Detector State Transition Diagram

 Design a machine that outputs a 1 when exactly two of the last three inputs are 1.



Principles of Computer Architecture by M. Murdocca and V. Heuring

Sequence Detector State Table

Input	X		
Present state	0 1		
A	<i>B</i> /0 <i>C</i> /0		
В	<i>D</i> /0 <i>E</i> /0		
С	<i>F</i> /0 <i>G</i> /0		
D	<i>D</i> /0 <i>E</i> /0		
E	<i>F</i> /0 <i>G</i> /1		
F	<i>D</i> /0 <i>E</i> /1		
G	<i>F</i> /1 <i>G</i> /0		

Principles of Computer Architecture by M. Murdocca and V. Heuring

Sequence Detector State Assignment

Input	X		
Present state	0 1		
$A: \begin{array}{c} S_2 S_1 S_0 \\ 000 \end{array}$	$\begin{array}{ccc} s_2 s_1 s_0 z & s_2 s_1 s_0 z \\ 001/0 & 010/0 \end{array}$		
<i>B</i> : 001	011/0 100/0		
<i>C</i> : 010	101/0 110/0		
D: 011	011/0 100/0		
<i>E</i> : 100	101/0 110/1		
<i>F</i> : 101	011/0 100/1		
<i>G</i> : 110	101/1 110/0		

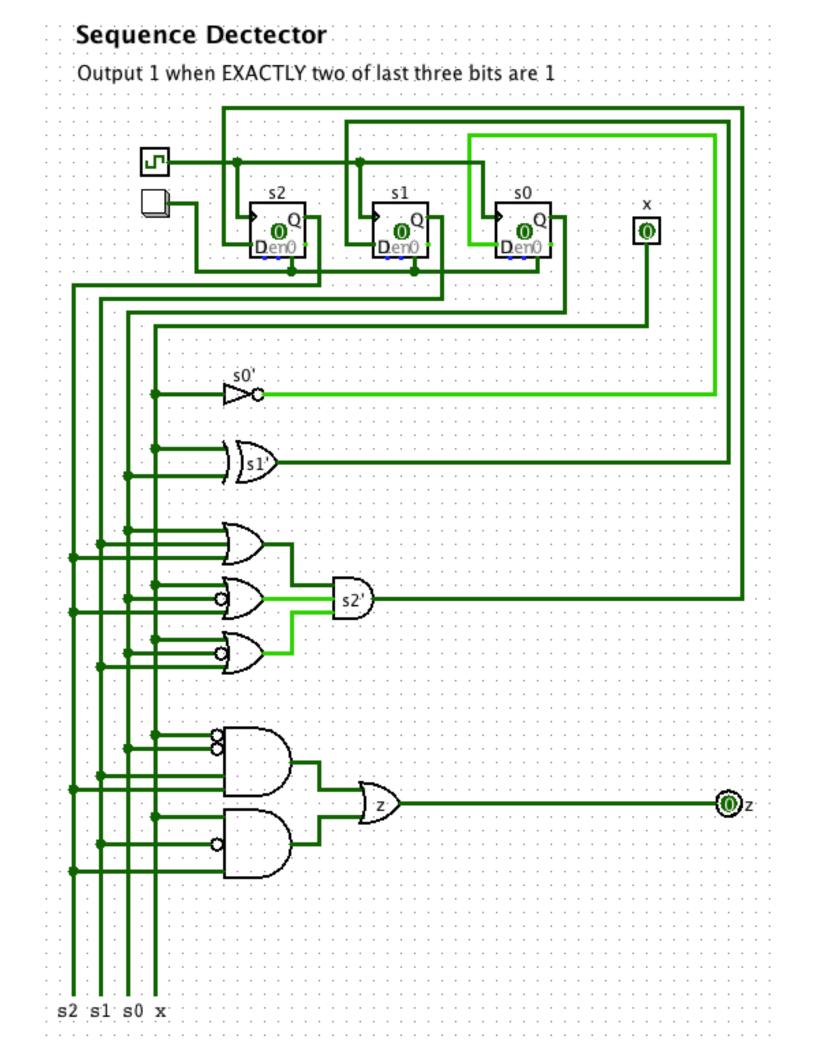
(a)

Input and	Next state
state at	and output at
time t	time <i>t</i> +1

<i>s</i> ₂	<i>s</i> ₁	<i>s</i> ₀	x	$s_2 s_1 s_0 z$
0	0	0	0	0010
0	0	0	1	0 1 0 0
0	0	1	0	0 1 1 0
0	0	1	1	$1 \ 0 \ 0 \ 0$
0	1	0	0	1 0 1 0
0	1	0	1	1 1 0 0
0	1	1	0	0 1 1 0
0	1	1	1	1000
1	0	0	0	1010
1	0	0	1	1 1 0 1
1	0	1	0	0 1 1 0
1	0	1	1	1 0 0 1
1	1	0	0	1 0 1 1
1	1	0	1	1 1 0 0
1	1	1	0	d d d d
1	1	1	1	d d d d

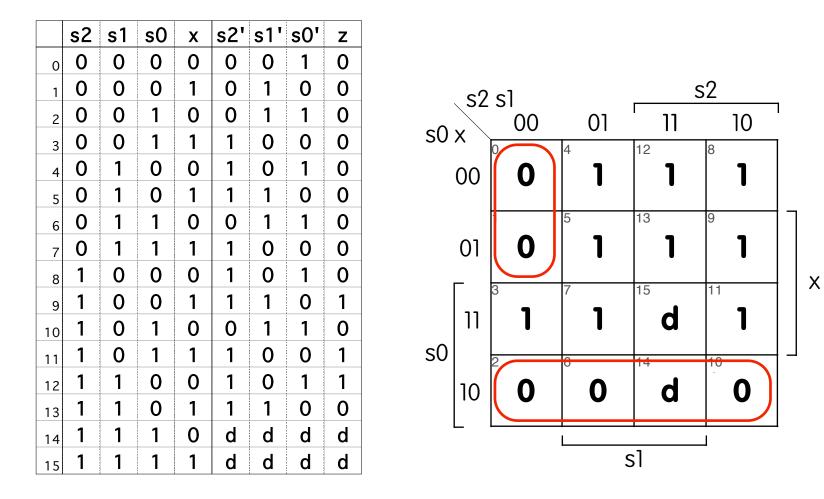
(b)

Principles of Computer Architecture by M. Murdocca and V. Heuring

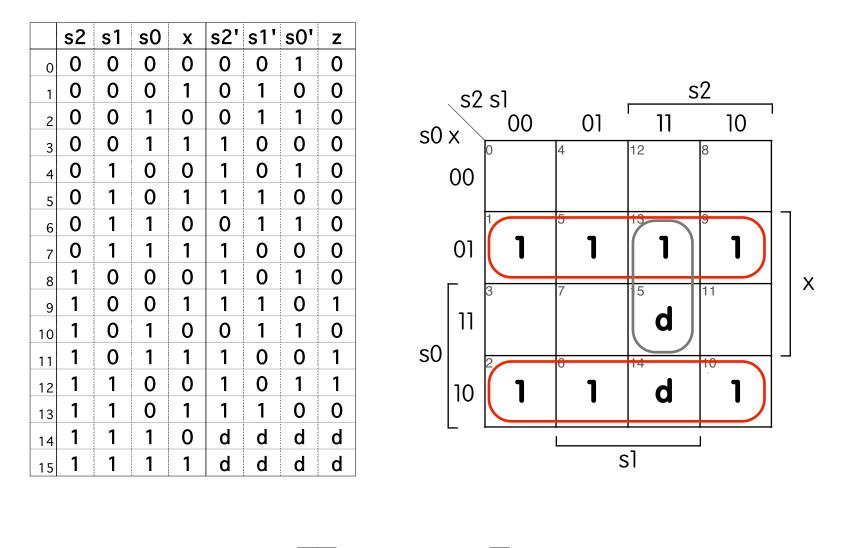


FINITE STATE MACHINE SIMPLIFICATION

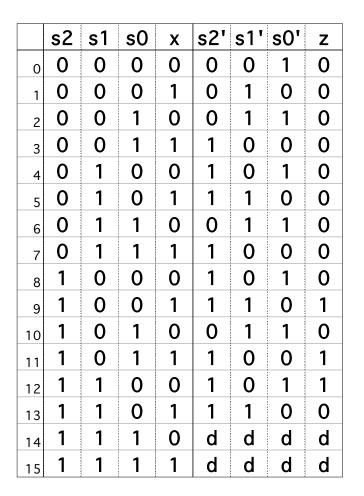
CIRCUIT MINIMIZATION

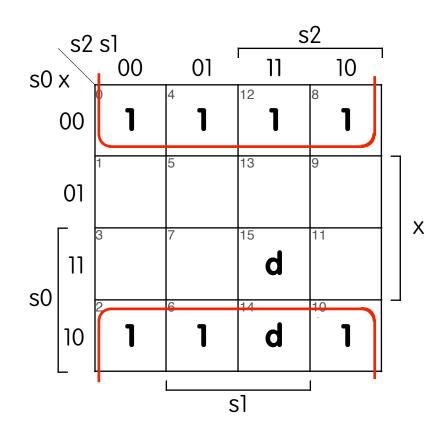


 $s2' = (\overline{s0} + x)(s2 + s1 + s0)$

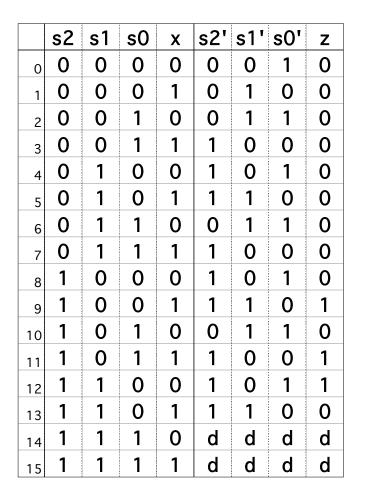


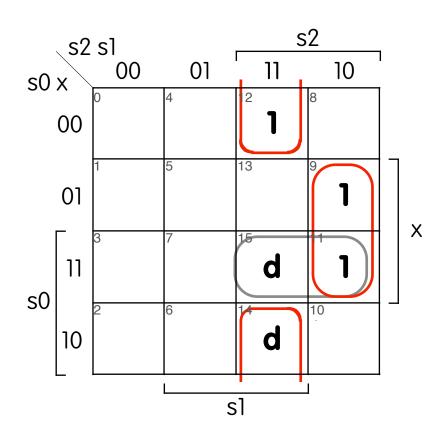
 $s1' = \overline{s0} x + s0 \overline{x} = s0 x r x$



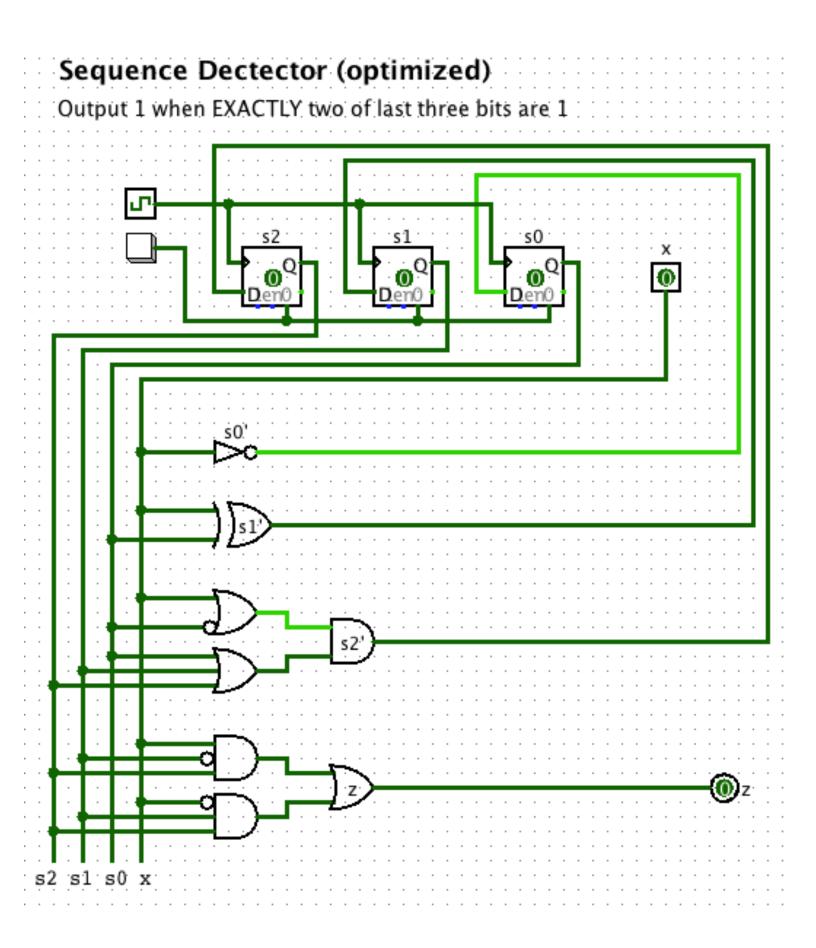


$$s0' = \overline{x}$$





$$z = s2 \overline{s1} x + s2 s1 \overline{x}$$



Notes on K-maps

- Also works for POS
- Takes 2ⁿ time for formulas with n variables
- Only optimizes two-level logic
 - \diamond Reduces number of terms, then number of literals in each term
- Assumes inverters are free
- Does not consider minimizations across functions
- Circuit minimization is generally a hard problem
- Quine-McCluskey can be used with more variables
- CAD tools are available if you are serious

Karnaugh Maps

- Implicant: rectangle with 1, 2, 4, 8, 16 ... 1's
- Prime Implicant: an implicant that cannot be extended into a larger implicant
- Essential Prime Implicant: the only prime implicant that covers some 1
- K-map Algorithm (not from M&H):

1. Find ALL the prime implicants. Be sure to check every 1 and to use don't cares.

2. Include all essential prime implicants.

3. Try all possibilities to find the minimum cover for the remaining 1's.

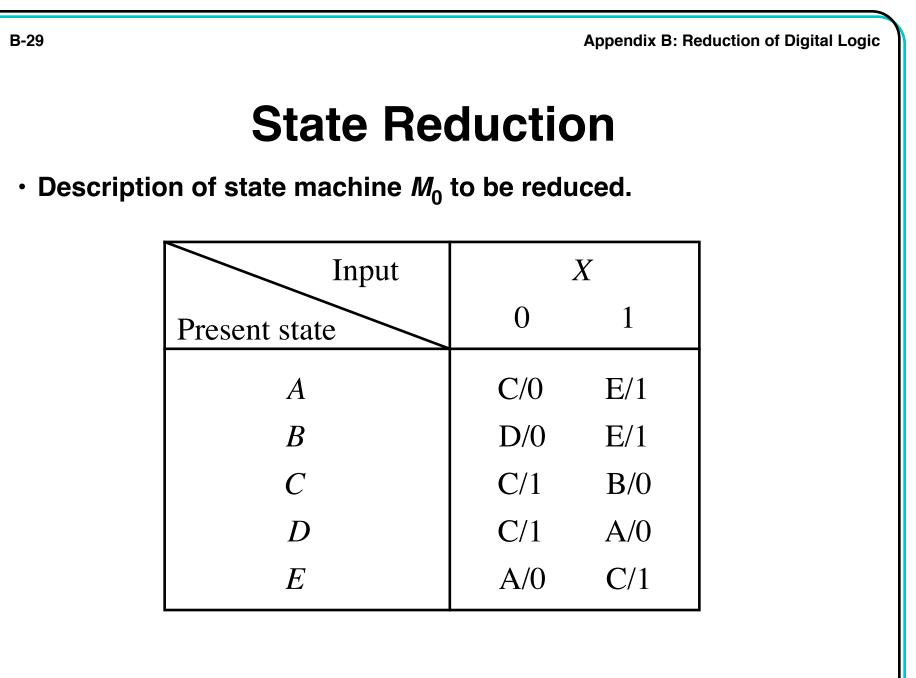
CIRCUIT MINIMIZATION IS HARD

- Unix systems store passwords in encrypted form.
 - User types x, system computes f(x) and looks for f(x) in a file
- Suppose we use 64-bit passwords and I want to find the password x such that f(x) = y.
- Let $g_i(x) = 0$ if f(x) = y and the ith bit of x is 0. 1 otherwise
- If the ith bit of x is 1, then g_i(x) outputs 1 for every x and g_i(x) has a very, very simple circuit.
- If you can simplify every circuit quickly, then you can crack passwords quickly.

Simplifying Finite State Machines

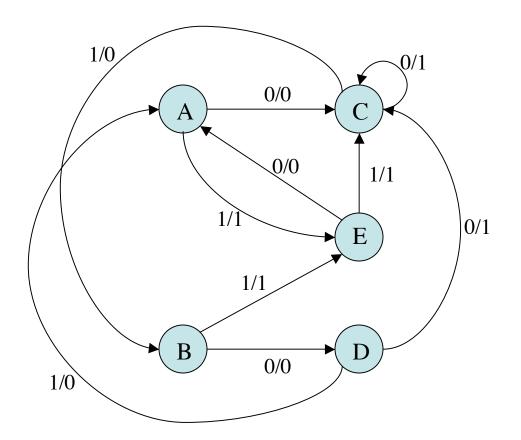
- State Reduction: equivalent FSM with fewer states
- State Assignment: choose an assignment of bit patterns to states (e.g., A is 010) that results in a smaller circuit
- Choice of flip-flops: use D flip-flops, J-K flip-flops or a T flip-flops? a good choice could lead to simpler circuits.

STATE REDUCTION



Principles of Computer Architecture by M. Murdocca and V. Heuring

State Reduction Example: original transition diagram



State Reduction Algorithm

1. Use a 2-dimensional table — an entry for each pair of states.

2. Two states are "distinguished" if:

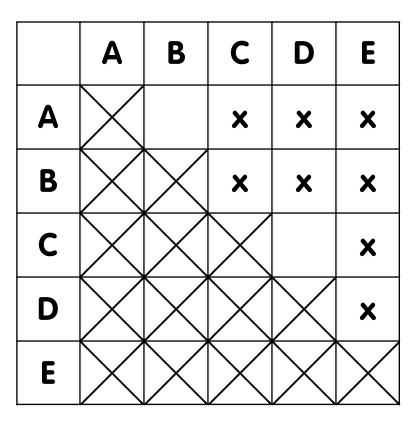
a. States X and Y of a finite state machine M are distinguished if there exists an input r such that the output of M in state X reading input r is different from the output of M in state Y reading input r.

b. States X and Y of a finite state machine are distinguished if there exists an input r such that M in state X reading input r goes to state X', M in state Y reading input r goes to state Y' and we already know that X' and Y' are distinguished states.

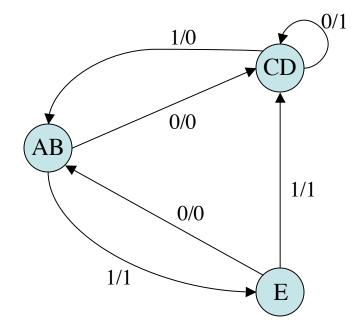
- 3. For each pair (X,Y), check if X and Y are distinguished using the definition above.
- 4. At the end of the algorithm, states that are not found to be distinguished are in fact equivalent.

State Reduction Table

- An x entry indicates that the pair of states are known to be distinguished.
- A & B are equivalent, C & D are equivalent



State Reduction Example: reduced transition diagram



UMBC, CMSC 313, Richard Chang <chang@umbc.edu>

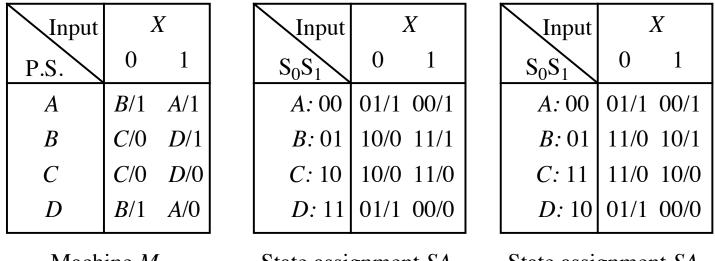
State Reduction Algorithm Performance

- As stated, the algorithm takes O(n⁴) time for a FSM with n states, because each pass takes O(n²) time and we make at most O(n²) passes.
- A more clever implementation takes O(n²) time.
- The algorithm produces a FSM with the fewest number states possible.
- Performance and correctness can be proven.

STATE ASSIGNMENT

The State Assignment Problem

• Two state assignments for machine M_2 .

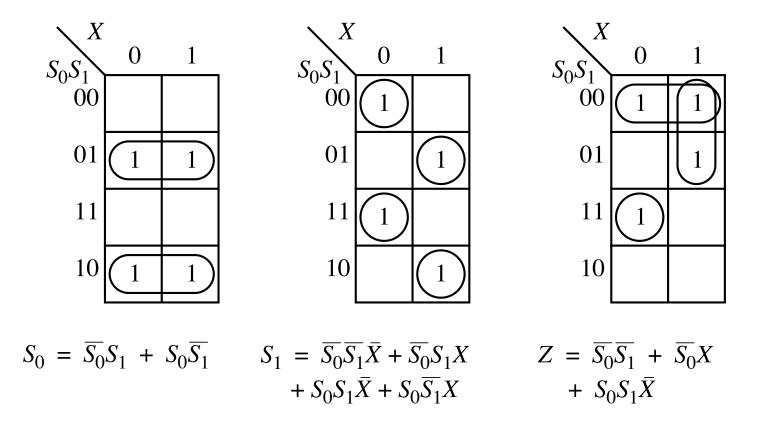


Machine M_2

State assignment SA_0

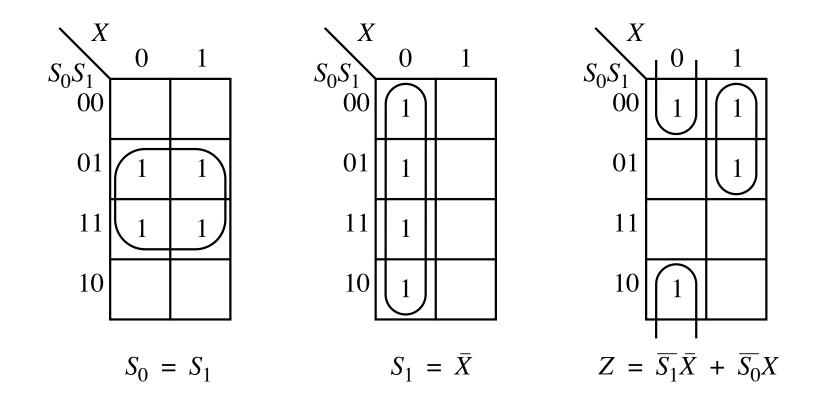
State assignment SA_1

• Boolean equations for machine M_2 using state assignment SA₀.



State Assignment SA₁

• Boolean equations for machine M_2 using state assignment SA₁.



State Assignment Heuristics

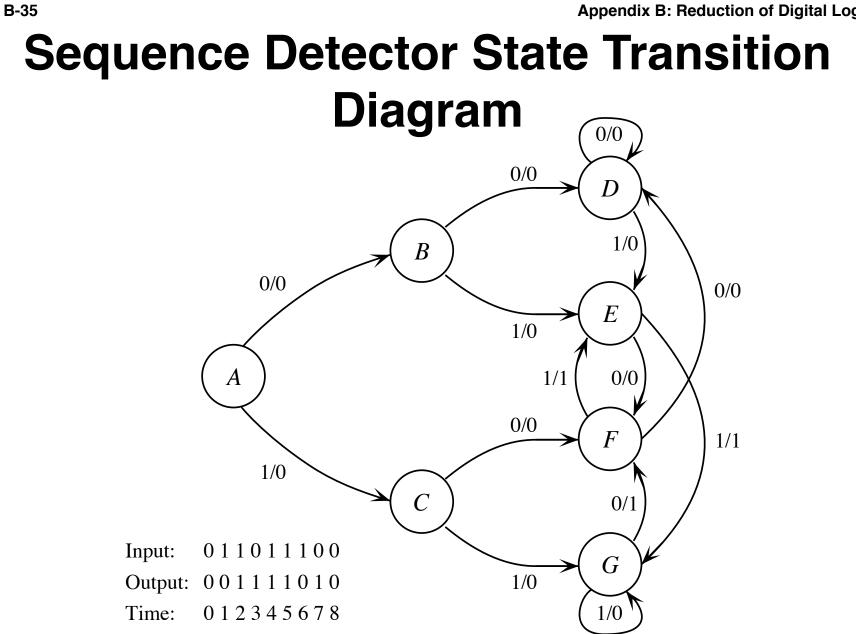
• No known efficient alg. for best state assignment

• Some heuristics (rules of thumb):

- \diamond The initial state should be simple to reset all zeroes or all ones.
- Minimize the number of state variables that change on each transition.
- Maximize the number of state variables that don't change on each transition.
- Second Second
- If there are unused states (when the number of states s is not a power of 2), choose the unused state variable combinations carefully. (Don't just use the first s combination of state variables.)
- Decompose the set of state variables into bits or fields that have well-defined meaning with respect to the input or output behavior.
- Consider using more than the minimum number of states to achieve the objectives above.

APPLY STATE REDUCTION & STATE ASSIGNMENT TO SEQUENCE DETECTOR

Appendix B: Reduction of Digital Logic



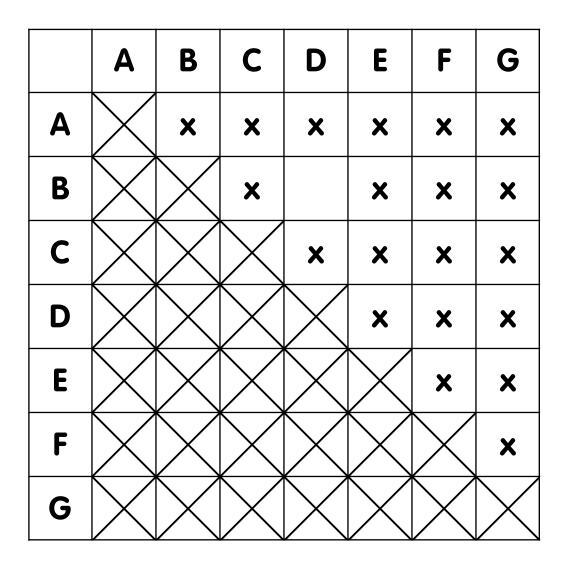
Principles of Computer Architecture by M. Murdocca and V. Heuring

Sequence Detector State Table

Input	X		
Present state	0 1		
A	<i>B</i> /0 <i>C</i> /0		
В	<i>D</i> /0 <i>E</i> /0		
C	<i>F</i> /0 <i>G</i> /0		
D	<i>D</i> /0 <i>E</i> /0		
E	<i>F</i> /0 <i>G</i> /1		
F	<i>D</i> /0 <i>E</i> /1		
G	<i>F</i> /1 <i>G</i> /0		

Principles of Computer Architecture by M. Murdocca and V. Heuring

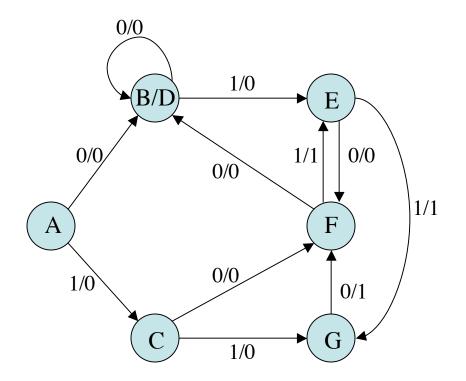
Sequence Detector State Reduction Table



Sequence Detector Reduced State Table

Input	X		
Present state	0	l	
A:A'		'/0	
BD: B' C: C'		'/0 '/0	
E:D'	E'/0 F	/1	
F: E' G: F'		'/1 '/0	

Principles of Computer Architecture by M. Murdocca and V. Heuring



Sequence Detector State Assignment

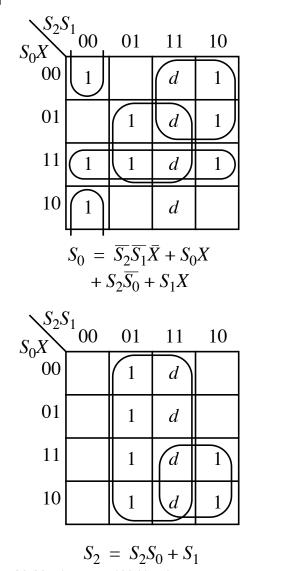
X
0 1
$S_2S_1S_0Z$ $S_2S_1S_0Z$
001/0 010/0
001/0 011/0
100/0 101/0
100/0 101/1
001/0 011/1
100/1 101/0

Principles of Computer Architecture by M. Murdocca and V. Heuring

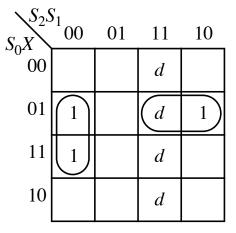
Appendix B: Reduction of Digital Logic

Sequence Detector K-Maps

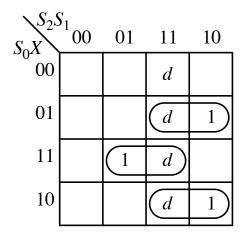
 K-map reduction of next state and output functions for sequence detector.



Principles of Computer Architecture by M. Murdocca and V. Heuring



 $S_1 = \overline{S_2}\overline{S_1}X + S_2\overline{S_0}X$



 $Z = S_2 \overline{S_0} X + S_1 S_0 X + S_2 S_0 \overline{X}$

© 1999 M. Murdocca and V. Heuring

B-40

Improved Sequence Detector?

• Formulas from the 7-state FSM:

$$s2' = (\overline{s0} + x) (s2 + s1 + s0)$$

$$s1' = \overline{s0} x + s0 \overline{x} = s0 \text{ xor } x$$

$$s0' = \overline{x}$$

$$z = s2 \overline{s1} x + s2 \overline{s1} \overline{x}$$

• Formulas from the 6-state FSM:

$$s2' = s2 s0 + s1$$

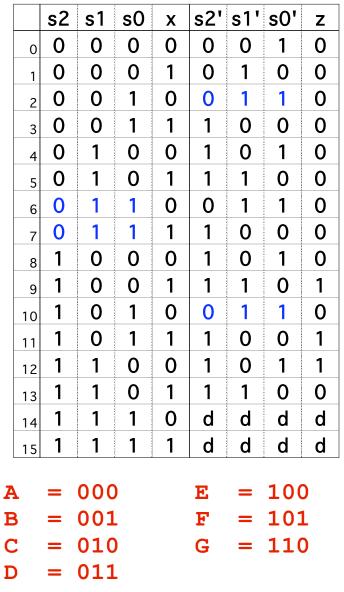
$$s1' = \overline{s2} \overline{s1} x + s2 \overline{s0} x$$

$$s0' = \overline{s2} \overline{s1} \overline{x} + s0 x + s2 \overline{s0} + s1 x$$

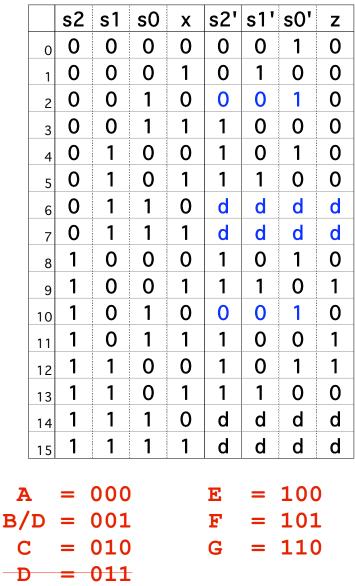
$$z = s2 \overline{s0} x + s1 s0 x + s2 s0 \overline{x}$$

Sequence Detector State Assignment

7-state

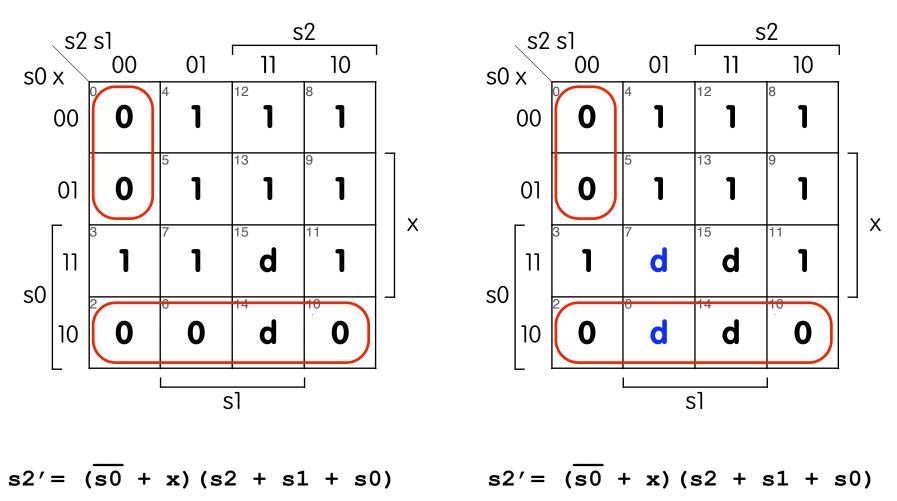


new 6-state



7-state

new 6-state

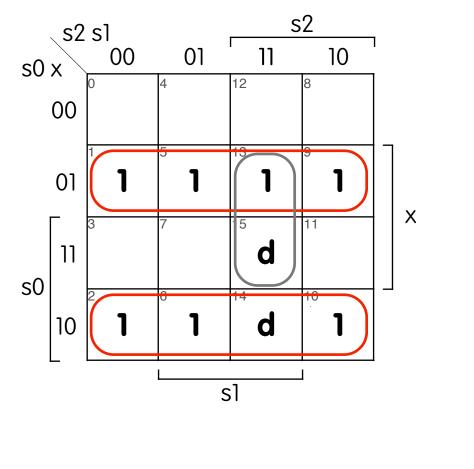


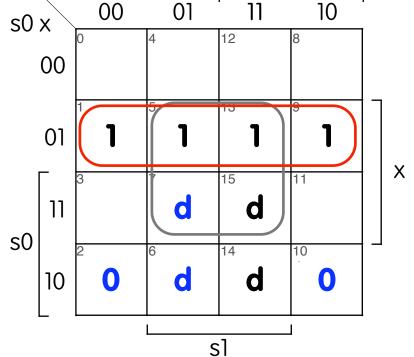
7-state

new 6-state

Г

s2





 $s1' = \overline{s0} x + s0 \overline{x}$

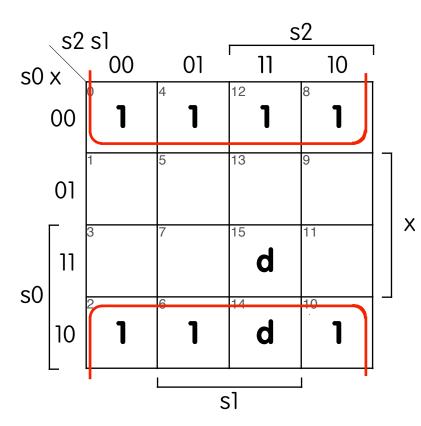
 $s1' = \overline{s0} x$

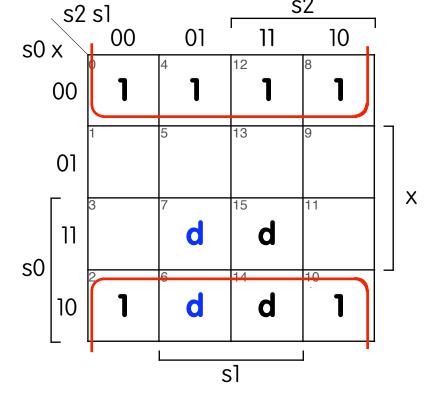
s2 s1

7-state

new 6-state

s2



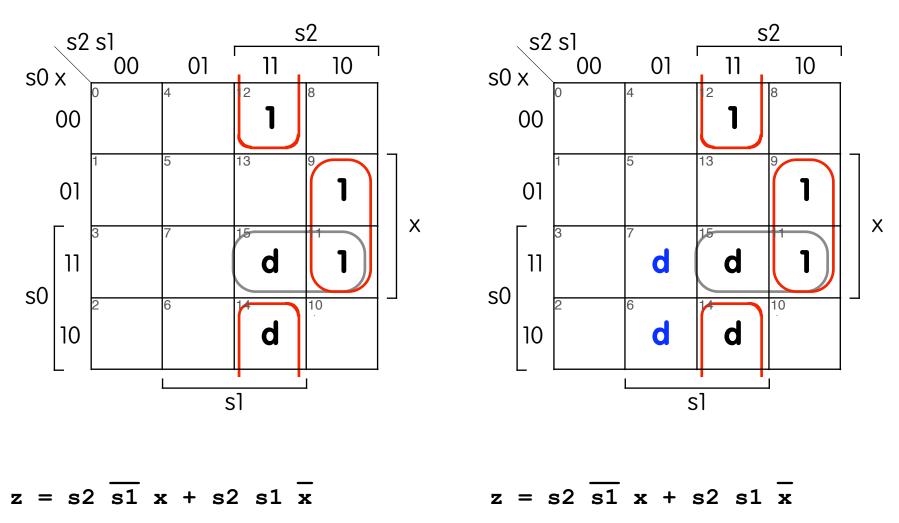


s0' = x

s0' = x

7-state

new 6-state



Improved Sequence Detector

• Textbook formulas for the 6-state FSM:

$$s2' = s2 s0 + s1$$

$$s1' = \overline{s2} \overline{s1} x + s2 \overline{s0} x$$

$$s0' = \overline{s2} \overline{s1} \overline{x} + s0 x + s2 \overline{s0} + s1 x$$

$$z = s2 \overline{s0} x + s1 s0 x + s2 s0 \overline{x}$$

• New formulas for the 6-state FSM:

$$s2' = (\overline{s0} + x) (s2 + s1 + s0)$$

$$s1' = \overline{s0} x$$

$$s0' = \overline{x}$$

$$z = s2 \overline{s1} x + s2 \overline{s1} \overline{x}$$

CHOICE OF FLIP FLOP (NOT COVERED)

D

flip-flop

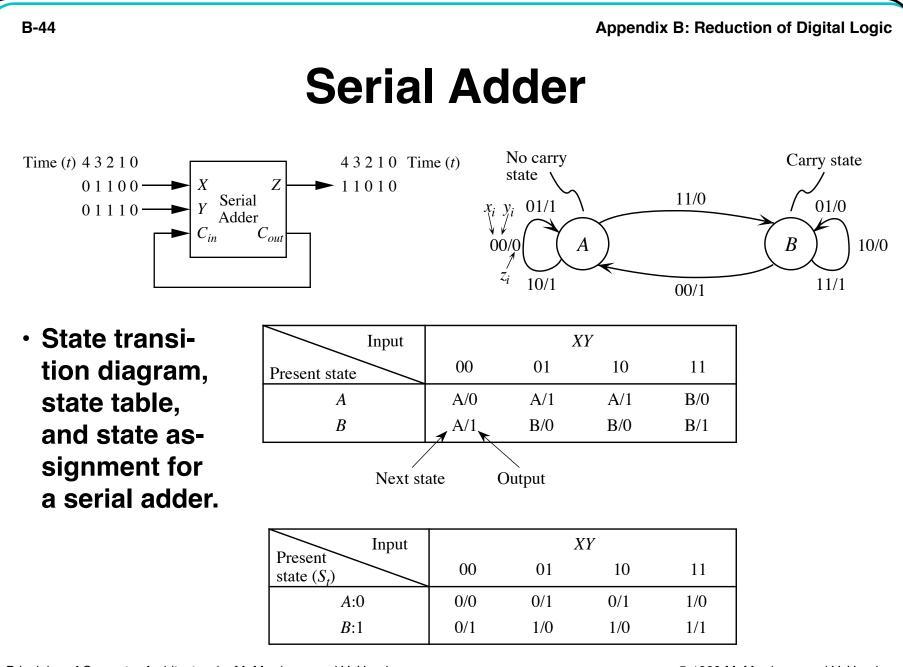
Excitation Tables

• Each table shows the settings that must be applied at the inputs at time t in order to change the outputs at time *t*+1.

	Q_t	Q_{t+1}	S	R
S-R	0	0	0	0
flip-flop	0	1	1	0
	1	0	0	1
	1	1	0	0
	Q_t	Q_{t+1}	J	K
J-K	Q_t	Q_{t+1}	<i>J</i> 0	K d
J-K flip-flop			, , , , , , , , , , , , , , , , , , ,	
	0	0	0	d d
	0	0	0 1	d d

Q_t	Q_{t+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

	Q_t	Q_{t+1}	Т
T flip-flop	0 0 1	0 1 0	0 1 1
	1 1	0	
	1	1	0



Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

Serial Adder Next-State Functions

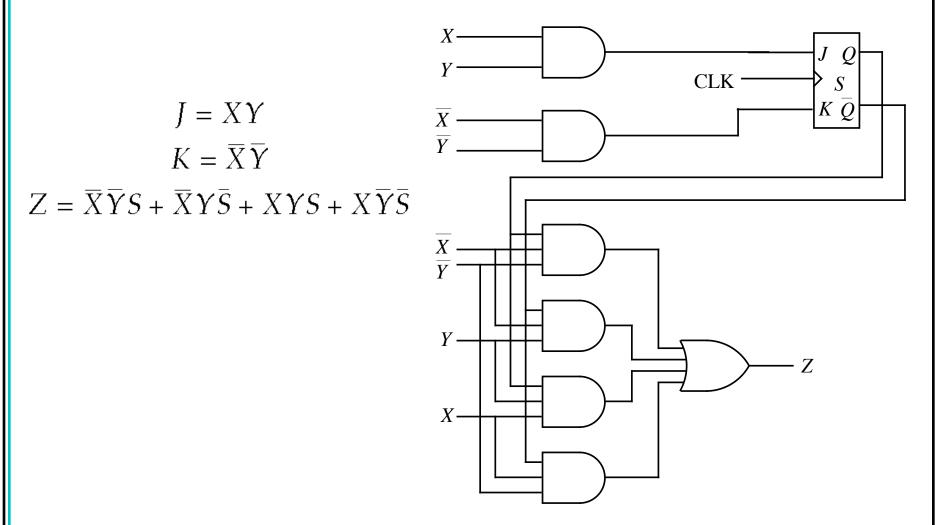
 Truth table showing next-state functions for a serial adder for D, S-R, T, and J-K flip-flops. Shaded functions are used in the example.

		resent State		(Set)	(Reset))			
X		S_t	D	S	R	Т	J	K	Ζ
0	0	0	0	0	0	0	0	d	0
0	0	1	0	0	1	1	d	1	1
0	1	0	0	0	0	0	0	d	1
0	1	1	1	0	0	0	d	0	0
1	0	0	0	0	0	0	0	d	1
1	0	1	1	0	0	0	d	0	0
1	1	0	1	1	0	1	1	d	0
1	1	1	1	0	0	0	d	0	1

Principles of Computer Architecture by M. Murdocca and V. Heuring

Appendix B: Reduction of Digital Logic

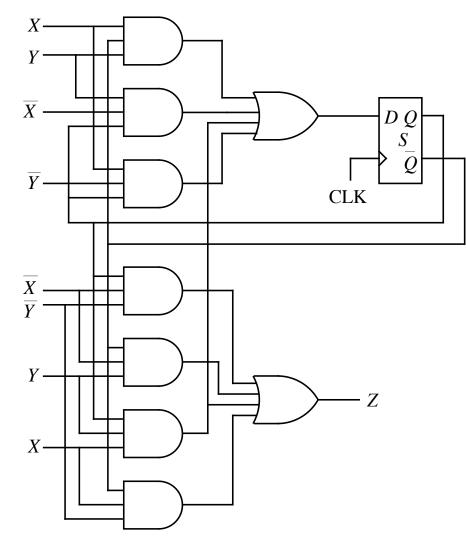
J-K Flip-Flop Serial Adder Circuit



Principles of Computer Architecture by M. Murdocca and V. Heuring

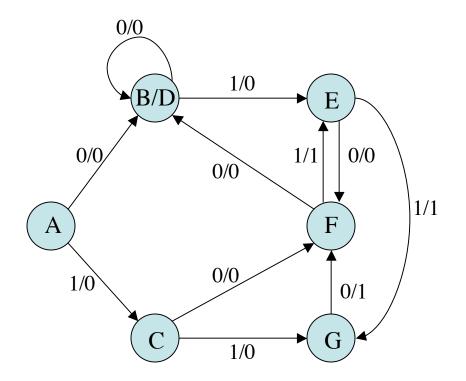
© 1999 M. Murdocca and V. Heuring

D Flip-Flop Serial Adder Circuit



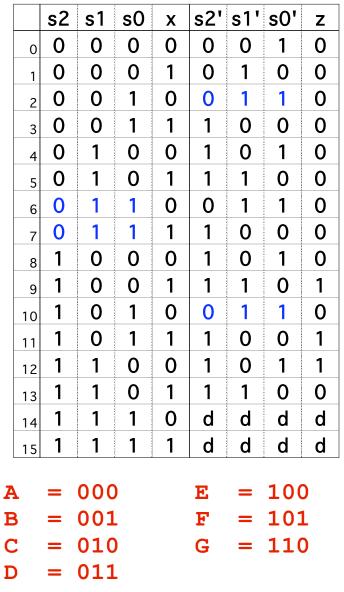
© 1999 M. Murdocca and V. Heuring

CONSIDER FLIP FLOP CHOICE IN SEQUENCE DETECTOR (NOT COVERED)

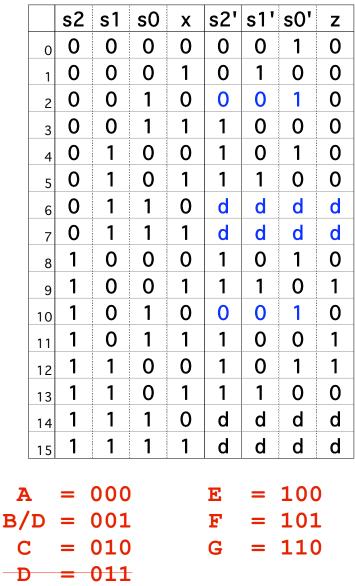


Sequence Detector State Assignment

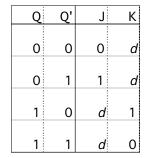
7-state



new 6-state



	s2	s 1	s0	X	s2'	s1'	s0'	Z	j2	k2	j1	k1	j0	k0
0	0	0	0	0	0	0	1	0	0	d	0	d	1	d
1	0	0	0	1	0	1	0	0	0	d	1	d	0	d
2	0	0	1	0	0	0	1	0	0	d	0	d	d	0
3	0	0	1	1	1	0	0	0	1	d	0	d	d	1
4	0	1	0	0	1	0	1	0	1	d	d	1	1	d
5	0	1	0	1	1	1	0	0	1	d	d	0	0	d
6	0	1	1	0	d	d	d	d	d	d	d	d	d	d
7	0	1	1	1	d	d	d	d	d	d	d	d	d	d
8	1	0	0	0	1	0	1	0	d	0	0	d	1	d
9	1	0	0	1	1	1	0	1	d	0	1	d	0	d
10	1	0	1	0	0	0	1	0	d	1	0	d	d	0
11	1	0	1	1	1	0	0	1	d	0	0	d	d	1
12	1	1	0	0	1	0	1	1	d	0	d	1	1	d
13	1	1	0	1	1	1	0	0	d	0	d	0	0	d
14	1	1	1	0	d	d	d	d	d	d	d	d	d	d
15	1	1	1	1	d	d	d	d	d	d	d	d	d	d



J2

K2

01

d

d

d

d

12

13

15

sl

11

0

0

d

d

s2

10

0

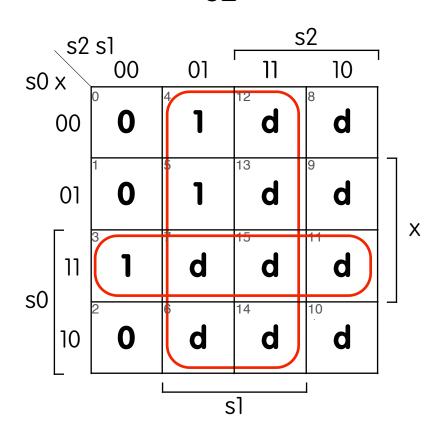
0

0

٦

11

Х



J2 = s1 + s0 x

K2 = s0 x

s2 s1

s0 x

00

01

11

10

s0

00

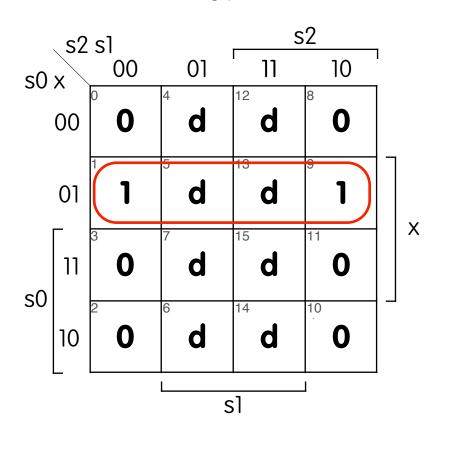
d

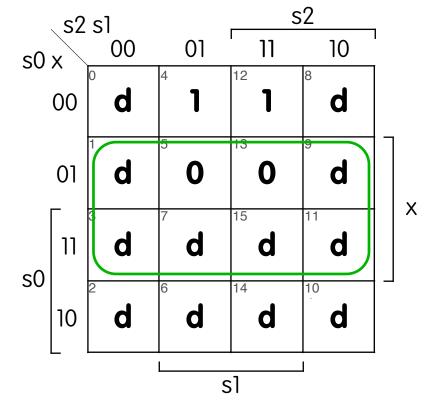
d

d

d

K1



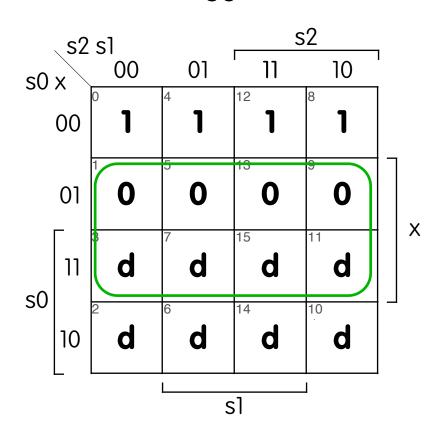


 $J1 = \overline{s0} x$

K1 = x

JO

К0





 $J0 = \overline{x}$

K0 = x

Improved Sequence Detector

• Formulas for the 6-state FSM with D Flip-flops:

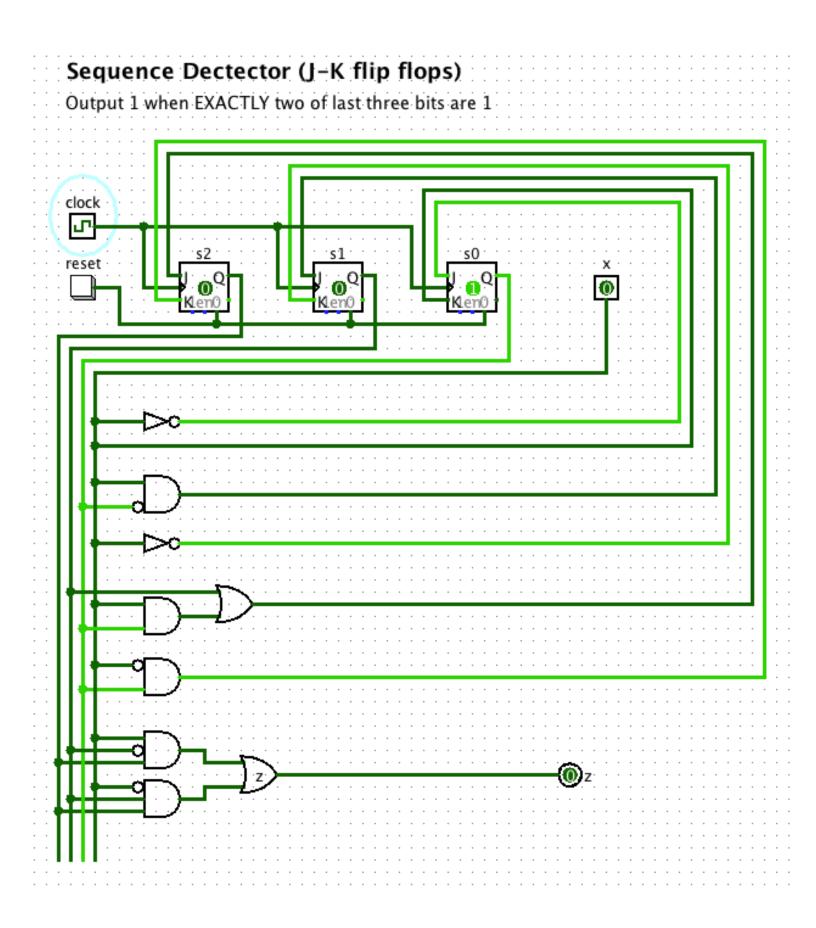
$$s2' = (\overline{s0} + x)(s2 + s1 + s0)$$

$$s1' = \overline{s0} x$$

$$s0' = \overline{x}$$

• Formulas for the 6-state FSM with J-K Flip-flops:

J2 =	s1 + s0 x	K2 = s0 x
J1 =	$=$ $\overline{s0}$ x	$K1 = \overline{x}$
J0 =	— ×	K0 = x



NEXT TIME

• A 2-bit CPU