
CMSC 313
COMPUTER ORGANIZATION
&
ASSEMBLY LANGUAGE
PROGRAMMING

LECTURE 04, SPRING 2013

TOPICS TODAY

•  Recap i386 Basic Architecture

•  toupper.asm!

•  gdb debugger demo

Recap i386 Basic Architecture

• Registers are storage units inside the CPU.

• Registers are much faster than memory.

• 8 General purpose registers in i386:
EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP

subparts of EAX, EBX, ECX and EDX have special names

• The instruction pointer (EIP) points to machine code
to be executed.

• Typically, data moves from memory to registers,
processed, moves from registers back to memory.

• Different addressing modes used.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

3-3

BASIC EXECUTION ENVIRONMENT

Figure 3-1. IA-32 Basic Execution Environment

0

232 -1

Eight 32-bit

32-bits

32-bits

General-Purpose Registers

Segment Registers

EFLAGS Register

EIP (Instruction Pointer Register)

Address Space*

*The address space can be

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

flat or segmented. Using

XMM RegistersEight 128-bit
Registers

16-bits Control Register

16-bits Status Register

48-bits FPU Instruction Pointer Register

48-bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

SSE and SSE2 Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16-bits Tag Register

the physical address
extension mechanism, a
physical address space of
236 -1 can be addressed.

3-10

BASIC EXECUTION ENVIRONMENT

3.4.2. Segment Registers

The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors. A segment
selector is a special pointer that identifies a segment in memory. To access a particular segment
in memory, the segment selector for that segment must be present in the appropriate segment
register.

When writing application code, programmers generally create segment selectors with assembler
directives and symbols. The assembler and other tools then create the actual segment selector
values associated with these directives and symbols. If writing system code, programmers may
need to create segment selectors directly. (A detailed description of the segment-selector data
structure is given in Chapter 3, Protected-Mode Memory Management, of the Intel Architecture
Software Developer’s Manual, Volume 3.)

How segment registers are used depends on the type of memory management model that the
operating system or executive is using. When using the flat (unsegmented) memory model, the
segment registers are loaded with segment selectors that point to overlapping segments, each of
which begins at address 0 of the linear address space (as shown in Figure 3-5). These overlap-
ping segments then comprise the linear address space for the program. (Typically, two overlap-
ping segments are defined: one for code and another for data and stacks. The CS segment
register points to the code segment and all the other segment registers point to the data and stack
segment.)

When using the segmented memory model, each segment register is ordinarily loaded with a
different segment selector so that each segment register points to a different segment within the
linear address space (as shown in Figure 3-6). At any time, a program can thus access up to six
segments in the linear address space. To access a segment not pointed to by one of the segment
registers, a program must first load the segment selector for the segment to be accessed into a
segment register.

Figure 3-4. Alternate General-Purpose Register Names

071531 16 8

AH AL

BH BL

CH CL

DH DL

BP

SI

DI

SP

16-bit

AX

DX

CX

BX

32-bit

EAX

EBX

ECX

EDX

EBP

ESI

ESP

General-Purpose Registers

EDI

toupper.asm

• Prompt for user input.

• Use Linux system call to get user input.

• Scan each character of user input and convert all
lower case characters to upper case.

• Use gdb to trace the program.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

THE GDB DEBUGGER

Debugging Assembly Language Programs

• Cannot just put print statements everywhere.

• Use gdb to:
examine contents of registers

exmaine contents of memory

set breakpoints

single-step through program

• READ THE GDB SUMMARY ONLINE!

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Summary of gdb commands

Command Example Description

run start program

quit quit out of gdb

cont continue execution after a break

break [addr] break *_start+5 sets a breakpoint

delete [n] delete 4 removes nth breakpoint

delete removes all breakpoints

info break lists all breakpoints

list _start list a few lines of the source code around _start

list 7 list 10 lines of the source code starting on line 7

list 7, 20 list lines 7 thru 20 of the source code

stepi execute next instruction

stepi [n] stepi 4 execute next n instructions

nexti execute next instruction, stepping over function calls

nexti [n] nexti 4 execute next n instructions, stepping over function calls

where show where execution halted

disas [addr] disas _start disassemble instructions at given address

info registers dump contents of all registers

print/d [expr] print/d $ecx print expression in decimal

print/x [expr] print/x $ecx print expression in hex

print/t [expr] print/t $ecx print expression in binary

x/NFU [addr] x/12xw &msg Examine contents of memory in given format

display [expr] display $eax automatically print the expression each time the program is halted

info display show list of automatically displays

undisplay [n] undisplay 1 remove an automatic display

NEXT TIME

•  i386 Instruction Set Overview

•  i386 Basic Instructions
•  Arithmetic Instructions

•  EFLAGS Register

•  Conditional Jump Instructions

•  Using Jump Instructions

