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TOPICS TODAY 

•  Finite State Machine Simplification 

•  A 2-bit "CPU" 



FINITE STATE MACHINE 
SIMPLIFICATION STEPS 

•  Minimize combinational logic circuit (hard) 

•  Reduce number of states 

•  Apply state assignment heuristics 

•  Consider choice of flip flops (e.g., J-K vs D) 

 



EXAMPLE: 
SEQUENCE DETECTOR 



Appendix A: Digital LogicA-65

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example: A Sequence Detector
• Example: Design a machine that outputs a 1 when exactly two of

the last three inputs are 1.
• e.g. input sequence of 011011100 produces an output sequence

of  001111010.
• Assume input is a 1-bit serial line.
• Use D flip-flops and 8-to-1 Multiplexers.
• Start by constructing a state transition diagram (next slide).
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Sequence Detector State Transition
Diagram

• Design a machine that
outputs a 1 when ex-
actly two of the last
three inputs are 1.
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COMBINATIONAL 
LOGIC CIRCUIT  
MINIMIZATION 



Sequence Detector
s2 s1 s0 x s2' s1' s0' z

0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d                 
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       __ 
s2’= ( s0 + x )(s2 + s1 + s0)
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Sequence Detector
s2 s1 s0 x s2' s1' s0' z

0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d                 
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      __        _
s1’=  s0 x + s0 x = s0 xor x
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Sequence Detector
s2 s1 s0 x s2' s1' s0' z

0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d                 
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Sequence Detector
s2 s1 s0 x s2' s1' s0' z

0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d                 
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       __           _
z = s2 s1 x + s2 s1 x
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Circuit Minimization is Hard

• Unix systems store passwords in encrypted form.
User types in x, system computes f(x) and looks for f(x) in a file.

• Suppose we us 64-bit passwords and I want to find 
the password x, such that f(x) = y. Let
    gi(x) = 0 if f(x) = y and the ith bit of x is 0
               1 otherwise.

• If the ith bit of x is 1, then gi(x) outputs 1 for every x 
and has a very, very simple circuit.

• If you can simplify every circuit quickly, then you 
can crack passwords quickly.
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STATE REDUCTION 
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Sequence Detector State Transition
Diagram

• Design a machine that
outputs a 1 when ex-
actly two of the last
three inputs are 1.

A

B
0/0

1/0
C

D

E

F

G

0/0

1/0

0/0

1/0

0/0

1/0

1/0

1/1

0/01/1

0/0

0/1



UMBC, CMSC 313, Richard Chang <chang@umbc.edu>

A

B/D

C

E

F

G

0/1
0/0

0/0
0/0

0/0

0/0

1/0

1/0

1/0

1/1

1/1

6-State Sequence Detector



State Reduction Algorithm
1. Use a 2-dimensional table — an entry for each pair of states.
2. Two states are "distinguished" if:

a. States X and Y of a finite state machine M are 
distinguished if there exists an input r such that the output of 
M in state X reading input r is different from the output of M 
in state Y reading input r.
b. States X and Y of a finite state machine are distinguished if 
there exists an input r such that M in state X reading input r 
goes to state X', M in state Y reading input r goes to state Y' 
and we already know that X' and Y' are distinguished states.

3. For each pair (X,Y), check if X and Y are distinguished using 
the definition above.

4. At the end of the algorithm, states that are not found to be 
distinguished are in fact equivalent.
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Sequence Detector State Reduction Table
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State Reduction Algorithm Performance

• As stated, the algorithm takes O(n4) time for a FSM 
with n states, because each pass takes O(n2) time 
and we make at most O(n2) passes.

• A more clever implementation takes O(n2) time.
• The algorithm produces a FSM with the fewest 

number states possible.

• Performance and correctness can be proven.
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STATE ASSIGNMENT 



State Assignment Heuristics

• No known efficient alg. for best state assignment

• Some heuristics (rules of thumb):
The initial state should be simple to reset — all zeroes or all ones.

Minimize the number of state variables that change on each transition.

Maximize the number of state variables that don't change on each transition.

Exploit symmetries in the state diagram.

If there are unused states (when the number of states s is not a power of 2), 
choose the unused state variable combinations carefully.  (Don't just use the 
first s combination of state variables.)

Decompose the set of state variables into bits or fields that have well-defined 
meaning with respect to the input or output behavior.

Consider using more than the minimum number of states to achieve the 
objectives above.
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Appendix B: Reduction of Digital LogicB-38
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Sequence Detector State Assignment

X
0 1

A':  000 001/0 010/0

Present state

Input

B':  001
C':  010
D':  011
E':  100

001/0 011/0
100/0 101/0
100/0 101/1
001/0 011/1

F':  101 100/1 101/0

S2S1S0 S2S1S0Z S2S1S0Z



Improved Sequence Detector?

• Formulas from the 7-state FSM:
      __ 
s2’= (s0 + x)(s2 + s1 + s0)
      __        _
s1’=  s0 x + s0 x = s0 xor x
     _ 
s0’= x
        __           _
 z = s2 s1 x + s2 s1 x

• Formulas from the 6-state FSM:
     
s2’=  s2 s0 + s1
      __ __        __ 
s1’=  s2 s1 x + s2 s0 x
     __ __ _             __
s0’= s2 s1 x + s0 x + s2 s0 + s1 x
        __                     _
 z = s2 s0 x + s1 s0 x + s2 s0 x
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Sequence Detector State Assignment
7-state new 6-state

s2 s1 s0 x s2' s1' s0' z
0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d  

s2 s1 s0 x s2' s1' s0' z
0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 0 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 d d d d
7 0 1 1 1 d d d d
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 0 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d

 A  = 000  E  = 100
 B  = 001  F  = 101
 C  = 010  G  = 110
 D  = 011

 A  = 000  E  = 100
B/D = 001  F  = 101
 C  = 010  G  = 110
 D  = 011
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Improved Sequence Detector

• Textbook formulas for the 6-state FSM:
     
s2’=  s2 s0 + s1
      __ __        __ 
s1’=  s2 s1 x + s2 s0 x
     __ __ _             __
s0’= s2 s1 x + s0 x + s2 s0 + s1 x
        __                     _
 z = s2 s0 x + s1 s0 x + s2 s0 x

• New formulas for the 6-state FSM:
      __ 
s2’= (s0 + x)(s2 + s1 + s0)
      __
s1’=  s0 x
     _ 
s0’= x
        __           _
 z = s2 s1 x + s2 s1 x
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CHOICE OF FLIP FLOP 



Appendix B: Reduction of Digital LogicB-43
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Excitation Tables
• Each table

shows the set-
tings that must
be applied at the
inputs at time t
in order to
change the out-
puts at time t+1.

0
0
1
1

0
1
0
1

Qt Qt+1 S

0
1
0
0

R

0
0
1
0

S-R
flip-flop

0
0
1
1

0
1
0
1

Qt Qt+1 D

0
1
0
1

D
flip-flop

0
0
1
1

0
1
0
1

Qt Qt+1 J

0
1
d
d

K

d
d
1
0

J-K
flip-flop

0
0
1
1

0
1
0
1

Qt Qt+1 T

0
1
1
0

T
flip-flop



6-State Sequence Detector

Q Q' J K

0 0 0 d

0 1 1 d

1 0 d 1

1 1 d 0

s2 s1 s0 x s2' s1' s0' z j2 k2 j1 k1 j0 k0

0 0 0 0 0 0 0 1 0 0 d 0 d 1 d

1 0 0 0 1 0 1 0 0 0 d 1 d 0 d

2 0 0 1 0 0 0 1 0 0 d 0 d d 0

3 0 0 1 1 1 0 0 0 1 d 0 d d 1

4 0 1 0 0 1 0 1 0 1 d d 1 1 d

5 0 1 0 1 1 1 0 0 1 d d 0 0 d

6 0 1 1 0 d d d d d d d d d d

7 0 1 1 1 d d d d d d d d d d

8 1 0 0 0 1 0 1 0 d 0 0 d 1 d

9 1 0 0 1 1 1 0 1 d 0 1 d 0 d

10 1 0 1 0 0 0 1 0 d 1 0 d d 0

11 1 0 1 1 1 0 0 1 d 0 0 d d 1

12 1 1 0 0 1 0 1 1 d 0 d 1 1 d

13 1 1 0 1 1 1 0 0 d 0 d 0 0 d

14 1 1 1 0 d d d d d d d d d d

15 1 1 1 1 d d d d d d d d d d
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Improved Sequence Detector

• Formulas for the 6-state FSM with D Flip-flops:
      __ 
s2’= (s0 + x)(s2 + s1 + s0)
      __
s1’=  s0 x
     _ 
s0’= x

• Formulas for the 6-state FSM with J-K Flip-flops: 
                          _
J2 = s1 + s0 x    K2 = s0 x
     __                _
J1 = s0 x         K1 = x
     _
J0 = x            K0 = x

UMBC, CMSC313, Richard Chang <chang@umbc.edu>





A 2-BIT "CPU" 



2-BIT CPU: VERSION 1 

•  2-bit ALU in sub-circuit 
•  Connect two 2-bit registers to 2-bit ALU 

•  Output of ALU stored in Register 1 







2-BIT CPU: VERSION 2 

•  Use DEMUX to select destination register 

•  Use Logisim wire bundles 





2-BIT CPU: VERSION 3 

Use MUX to select input to each ALU "port". 





2-BIT CPU: VERSION 4 

•  Simplify "data bus" using wire bundles 

•  Add immediate operand to data bus 

•  Use result MUX to select input to DEMUX for 
destination register. Input may be: 

•  Register 0 
•  Register 1 
•  Immediate Operand 
•  ALU output 





2-BIT CPU: VERSION 5 

Consolidate controls to a "control bus" 





2-BIT CPU: VERSION 6 

Use 8-bit "instruction code" 

 

i7:  0 if ALU instruction, 1 otherwise 

i6 i5:  ALU instruction 

i4:  operand 1 register (Reg 0 or Reg 1) 

i3 i2 i1:  0rx = operand 2 is Reg r 
  1xy = immediate operand xy 

i0:  destination register 

i7! i6! i5! i4! i3! i2! i1! i0!
0!



2-BIT CPU: VERSION 6 

Use 8-bit "instruction code" 

i7:  0 if ALU instruction, 1 otherwise 
i6 i5 i4:  000 = move, others not implemented 
i3 i2 i1:  0rx = source operand is Reg r  

 1xy = immediate operand xy 
i0:  destination register 

i7 i6 i5 i4 i3 i2 i1 i0 
1 0 0 0 



INSTRUCTION DECODER 

MUX for ALU port B 

  B1 = i3!
      __    __    __!
 B0 = i3 i2 i1  + i3 i2 i1!
      __!
!  = i3 i2!

i3! i2! i1! B1! B0!

0! 0! 0! 0! 0!

0! 0! 1! 0! 0!

0! 1! 0! 0! 1!

0! 1! 1! 0! 1!

1! 0! 0! 1! 0!

1! 0! 1! 1! 0!

1! 1! 0! 1! 0!

1! 1! 1! 1! 0!

Reg 0 

Reg 1 

Imm 



INSTRUCTION DECODER 

Result MUX control 
!!
      __ !
 M1 = i7 + i3!
!
      __   __ !
 M0 =!i7 + i3 i2!

i7! i3! i2! i1! M1! M0!
0! 0! 0! 0! 1! 1!

0! 0! 0! 1! 1! 1!

0! 0! 1! 0! 1! 1!

0! 0! 1! 1! 1! 1!

0! 1! 0! 0! 1! 1!

0! 1! 0! 1! 1! 1!

0! 1! 1! 0! 1! 1!

0! 1! 1! 1! 1! 1!

1! 0! 0! 0! 0! 0!

1! 0! 0! 1! 0! 0!

1! 0! 1! 0! 0! 1!

1! 0! 1! 1! 0! 1!

1! 1! 0! 0! 1! 0!

1! 1! 0! 1! 1! 0!

1! 1! 1! 0! 1! 0!

1! 1! 1! 1! 1! 0!

Imm 

Reg1 

Reg0 

ALU 







2-BIT CPU: VERSION 7 

Added Program ROM which can store up to 16 
instructions. 







2-BIT CPU: VERSION 8 

Added 4-bit counter which automatically advances 
Program ROM to next instruction. 





2-BIT CPU: VERSION 9 

Implement 4-bit counter from scratch. 





2-BIT CPU: VERSION 10 

Implement Program ROM from scratch. 







NEXT TIME 

•  Memory Hierarchy 

•  Virtual Memory 


