CMSC 313 COMPUTER ORGANIZATION

 \& ASSEMBLY LANGUAGE PROGRAMMINGLECTURE 22, FALL 2012

TOPICS TODAY

- Circuits for Addition
- Standard Logic Components
- Logisim Demo

CIRCUITS
 FOR ADDITION

3.5 Combinational Circuits

- Combinational logic circuits give us many useful devices.
- One of the simplest is the half adder, which finds the sum of two bits.
- We can gain some insight as to the construction of a half adder by looking at its truth

Inputs	Outputs		
X	Y	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Half Adder

- Inputs: A and B
- Outputs: $S=$ lower bit of $A+B, c_{\text {out }}=$ carry bit

A	B	S	$c_{\text {out }}$
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- Using Sum-of-Products: $S=\bar{A} B+A \bar{B}, c_{\text {out }}=A B$.
- Alternatively, we could use XOR: $S=A \oplus B$.

3.5 Combinational Circuits

- As we see, the sum can be found using the XOR operation and the carry using the AND operation.

Inputs Outputs

X	Y	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

3.5 Combinational Circuits

- We can change our half adder into to a full adder by including gates for processing the carry bit.
- The truth table for a full adder is shown at the right.

Inputs				Outputs	
\mathbf{X}	Y	Carry	Carry In		
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

Full Adder

- Inputs: A, B and $c_{\text {in }}$
- Outputs: $S=$ lower bit of $A+B, c_{\text {out }}=$ carry bit

A	B	$c_{\text {in }}$	S	$c_{\text {out }}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- $S=\bar{A} \bar{B} C+\bar{A} B \bar{C}+A \bar{B} \bar{C}+A B C=A \oplus B \oplus C$.
- $c_{\text {out }}=\mathrm{MAJ} 3=A B+B C+A C$.

3.5 Combinational Circuits

- Here' s our completed full adder.

3.5 Combinational Circuits

- Just as we combined half adders to make a full adder, full adders can connected in series.
- The carry bit "ripples" from one adder to the next; hence, this configuration is called a ripple-carry adder.

Today's systems employ more efficient adders.

Constructing Larger Adders

- A 16-bit adder can be made up of a cascade of four 4-bit ripplecarry adders.

Full Subtractor

- Truth table and schematic symbol for a ripple-borrow subtractor:

a_{i}	b_{i}	bor $_{i}$	diff $_{i}$	bor $_{i+1}$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Combined Adder/Subtractor

- A single ripple-carry adder can perform both addition and subtraction, by forming the two's complement negative for B when subtracting. (Note that $\boldsymbol{+ 1}$ is added at $\boldsymbol{c}_{\mathbf{0}}$ for two's complement.)

Carry-Lookahead Addition

$$
\begin{array}{ll}
s_{i}=\bar{a}_{i} \bar{b}_{i} c_{i}+\bar{a}_{i} b_{i} \bar{c}_{i}+a_{i} \bar{b}_{i} \bar{c}_{i}+a_{i} b_{i} c_{i} \\
c_{i+1}=b_{i} c_{i}+a_{i} c_{i}+a_{i} b_{i} & \\
c_{i+1}=a_{i} b_{i}+\left(a_{i}+b_{i}\right) c_{i} & \text { Carries are represented in terms } \\
c_{i+1}=G_{i}+P_{i} c_{i} & \text { of } G_{i} \text { (generate) and } P_{i} \text { (propagate) } \\
& \text { expressions. }
\end{array}
$$

$$
\begin{aligned}
& G_{i}=a_{i} b_{i} \text { and } P_{i}=a_{i}+b_{i} \\
& c_{0}=0 \\
& c_{1}=G_{0} \\
& c_{2}=G_{1}+P_{1} G_{0} \\
& c_{3}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0} \\
& c_{4}=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}
\end{aligned}
$$

Carry Lookahead Adder

STANDARD
 LOGIC COMPONENTS

3.5 Combinational Circuits

- Decoders are another important type of combinational circuit.
- Among other things, they are useful in selecting a memory location according a binary value placed on the address lines of a memory bus.
- Address decoders with n inputs can select any of 2^{n} locations.

This is a block diagram for a decoder.

3.5 Combinational Circuits

- This is what a 2-to-4 decoder looks like on the inside.

If $\mathbf{x}=\mathbf{0}$ and $\mathbf{y}=\mathbf{1}$, which output line is enabled?

3.5 Combinational Circuits

- A multiplexer does just the opposite of a decoder.
- It selects a single output from several inputs.
- The particular input chosen for output is determined by the value of the multiplexer's control lines.
- To be able to select among n inputs, $\log _{2} n$ control lines are needed.

This is a block diagram for a multiplexer.

3.5 Combinational Circuits

- This is what a 4-to-1 multiplexer looks like on the inside.

Demultiplexer

D	A	B	F_{0}	F_{1}	F_{2}	F_{3}
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

Gate-Level Implementation of DEMUX

3.5 Combinational Circuits

- This shifter moves the bits of a nibble one position to the left or right.

If $S=0$, in which direction do the input bits shift?

Input

FIGURE 3.17 A Simple Two-Bit ALU

NEXT TIME

- 2-bit ALU
- Flip-flops

