CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING

LECTURE 22, FALL 2012

TOPICS TODAY

- Circuits for Addition
- Standard Logic Components
- Logisim Demo

CIRCUITS FOR ADDITION

- Combinational logic circuits give us many useful devices.
- One of the simplest is the half adder, which finds the sum of two bits.
- We can gain some insight as to the construction of a half adder by looking at its truth table, shown at the right.

	Inputs		Outputs	
	x	Y	Sum	Carry
Γ	0	0	0	0
	0	1	1	0
	1	0	1	0
	1	1	0	1
Ŀ				

- Inputs: A and B
- Outputs: S = lower bit of A + B, $c_{out} =$ carry bit

A	B	S	$c_{\rm out}$
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- Using Sum-of-Products: $S = \overline{A}B + A\overline{B}$, $c_{out} = AB$.
- Alternatively, we could use XOR: $S = A \oplus B$.

 As we see, the sum can be found using the XOR operation and the carry using the AND operation.

Inputs		Outputs		
	X	Y	Sum	Carry
Г	0	0	0	0
	0	1	1	0
	1	0	1	0
	1	1	0	1

- We can change our half adder into to a full adder by including gates for processing the carry bit.
- The truth table for a full adder is shown at the right.

Inputs			Outputs		
x	Y	Carry In	Sum	Carry Out	
	-	±	0 um	out	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

Full Adder

- Inputs: A, B and c_{in}
- Outputs: S = lower bit of A + B, $c_{out} =$ carry bit

A	В	$c_{\rm in}$	S	$c_{\rm out}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

• $S = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC = A \oplus B \oplus C.$

• $c_{\text{out}} = \text{MAJ3} = AB + BC + AC$.

• Here's our completed full adder.

- Just as we combined half adders to make a full adder, full adders can connected in series.
- The carry bit "ripples" from one adder to the next; hence, this configuration is called a *ripple-carry adder*.

Today's systems employ more efficient adders.

Constructing Larger Adders

 A 16-bit adder can be made up of a cascade of four 4-bit ripplecarry adders.

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

Full Subtractor

• Truth table and schematic symbol for a ripple-borrow subtractor:

a_i	b _i	<i>bor_i</i>	<i>diff_i</i>	bor_{i+1}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Principles of Computer Architecture by M. Murdocca and V. Heuring

Chapter 3: Arithmetic

Combined Adder/Subtractor

• A single ripple-carry adder can perform both addition and subtraction, by forming the two's complement negative for B when subtracting. (Note that +1 is added at c_0 for two's complement.)

Chapter 3: Arithmetic

Carry-Lookahead Addition

$$s_{i} = \overline{a_{i}b_{i}c_{i}} + \overline{a_{i}b_{i}c_{i}} + a_{i}\overline{b_{i}c_{i}} + a_{i}b_{i}c_{i}$$

$$c_{i+1} = b_{i}c_{i} + a_{i}c_{i} + a_{i}b_{i}$$

$$c_{i+1} = a_{i}b_{i} + (a_{i} + b_{i})c_{i}$$

$$c_{i+1} = G_{i} + P_{i}c_{i}$$

 Carries are represented in terms of G_i (generate) and P_i (propagate) expressions.

$$\begin{aligned} G_i &= a_i b_i \text{ and } P_i = a_i + b_i \\ c_0 &= 0 \\ c_1 &= G_0 \\ c_2 &= G_1 + P_1 G_0 \\ c_3 &= G_2 + P_2 G_1 + P_2 P_1 G_0 \\ c_4 &= G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 \end{aligned}$$

© 1999 M. Murdocca and V. Heuring

Chapter 3: Arithmetic

Carry Lookahead Adder

 Maximum gate delay for the carry generation is only 3. The full adders introduce two more gate delays. Worst case path is 5 gate delays.

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

STANDARD LOGIC COMPONENTS

- Decoders are another important type of combinational circuit.
- Among other things, they are useful in selecting a memory location according a binary value placed on the address lines of a memory bus.
- Address decoders with *n* inputs can select any of 2ⁿ locations.

This is what a 2-to-4 decoder looks like on the inside.

- A multiplexer does just the opposite of a decoder.
- It selects a single output from several inputs.
- The particular input chosen for output is determined by the value of the multiplexer's control lines.
- To be able to select among n inputs, log₂n control lines are needed.

diagram for a multiplexer.

• This is what a 4-to-1 multiplexer looks like on the inside.

 F_0 F_1 F_2 F_3

0 0

1 0

0 1

0 0

Demultiplexer

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

Gate-Level Implementation of DEMUX

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

A-32

 This shifter moves the bits of a nibble one position to the left or right.

If S = 0, in which direction do the input bits shift?

FIGURE 3.17 A Simple Two-Bit ALU

NEXT TIME

- 2-bit ALU
- Flip-flops