CMSC 313 COMPUTER ORGANIZATION

 \& ASSEMBLY LANGUAGE PROGRAMMINGLECTURE 20, FALL 2012

TOPICS TODAY

- Project 8
- Introduction to Digital Logic
- Semiconductors, Transistors \& Gates

INTRODUCTION
 TO DIGITAL LOGIC

Chapter 3 Objectives

- Understand the relationship between Boolean logic and digital computer circuits.
- Learn how to design simple logic circuits.
- Understand how digital circuits work together to form complex computer systems.

Some Definitions

- Combinational logic: a digital logic circuit in which logical decisions are made based only on combinations of the inputs. e.g. an adder.
- Sequential logic: a circuit in which decisions are made based on combinations of the current inputs as well as the past history of inputs. e.g. a memory unit.
- Finite state machine: a circuit which has an internal state, and whose outputs are functions of both current inputs and its internal state. e.g. a vending machine controller.

The Combinational Logic Unit

- Translates a set of inputs into a set of outputs according to one or more mapping functions.
- Inputs and outputs for a CLU normally have two distinct (binary) values: high and low, 1 and 0,0 and 1, or 5 V and 0 V for example.
- The outputs of a CLU are strictly functions of the inputs, and the outputs are updated immediately after the inputs change. A set of inputs $i_{0}-i_{n}$ are presented to the CLU, which produces a set of outputs according to mapping functions $f_{0}-f_{m}$.

Ripple Carry Adder

- Two binary numbers A and B are added from right to left, creating a sum and a carry at the outputs of each full adder for each bit position.

Classical Model of a Finite State Machine

- An FSM is composed of a combinational logic unit and delay elements (called flip-flops) in a feedback path, which maintains state information.

Vending Machine State Transition Diagram

$1 / 0=$ Dispense/Do not dispense merchandise

3.2 Boolean Algebra

- Boolean algebra is a mathematical system for the manipulation of variables that can have one of two values.
- In formal logic, these values are "true" and "false."
- In digital systems, these values are "on" and "off," 1 and 0 , or "high" and "low."
- Boolean expressions are created by performing operations on Boolean variables.
- Common Boolean operators include AND, OR, and NOT.

3.2 Boolean Algebra

- A Boolean operator can be completely described using a truth table.
- The truth table for the Boolean operators AND and OR are shown at the right.
- The AND operator is also known as a Boolean product. The OR operator is the Boolean sum.

X		AND Y
X	Y	XY
0	0	0
0	1	0
1	0	0
1	1	1

c	X OR Y	
X	Y	$\mathrm{X}+\mathrm{Y}$
0	0	0
0	1	1
1	0	1
1	1	1

3.2 Boolean Algebra

- The truth table for the Boolean NOT operator is
shown at the right.
- The NOT operation is most often designated by an overbar. It is sometimes indicated by a prime mark

NOT X

X	$\overline{\mathrm{X}}$
0	1
1	0

3.2 Boolean Algebra

- A Boolean function has:
- At least one Boolean variable,
- At least one Boolean operator, and
- At least one input from the set $\{0,1\}$.
- It produces an output that is also a member of the set $\{0,1\}$.

> Now you know why the binary numbering system is so handy in digital systems.

3.2 Boolean Algebra

- The truth table for the Boolean function:

$$
F(x, y, z)=x \bar{z}+y
$$

is shown at the right.

- To make evaluation of the Boolean function easier, the truth table contains extra (shaded) columns to hold evaluations of subparts of the function.

3.2 Boolean Algebra

- As with common arithmetic, Boolean operations have rules of precedence.
- The NOT operator has highest priority, followed by AND and then OR.
- This is how we chose the (shaded) function subparts in our table.

3.2 Boolean Algebra

- Digital computers contain circuits that implement Boolean functions.
- The simpler that we can make a Boolean function, the smaller the circuit that will result.
- Simpler circuits are cheaper to build, consume less power, and run faster than complex circuits.
- With this in mind, we always want to reduce our Boolean functions to their simplest form.
- There are a number of Boolean identities that help us to do this.

3.2 Boolean Algebra

- Most Boolean identities have an AND (product) form as well as an OR (sum) form. We give our identities using both forms. Our first group is rather intuitive:

Identity Name	AND Form	OR Form
Identity Law	$1 \mathbf{x}=\mathbf{x}$	$0+\mathbf{x}=\mathbf{x}$
Null Law	$0 \mathbf{x}=0$	$1+\mathbf{x}=1$
Idempotent Law	$\mathbf{x x}=\mathbf{x}$	$\mathbf{x}+\mathbf{x}=\mathbf{x}$
Inverse Law	$\mathbf{x} \overline{\mathbf{x}}=0$	$\mathbf{x}+\overline{\mathbf{x}}=1$

3.2 Boolean Algebra

- Our second group of Boolean identities should be familiar to you from your study of algebra:

Identity Name	AND	OR
Form	Form	
Commutative Law	$x y=y x$	$x+y=y+x$
Associative Law	$(x y) z=x(y z)$	$(x+y)+z=x+(y+z)$
Distributive Law	$x+y z=(x+y)(x+z)$	$x(y+z)=x y+x z$

3.2 Boolean Algebra

- Our last group of Boolean identities are perhaps the most useful.
- If you have studied set theory or formal logic, these laws are also familiar to you.

Identity Name	AND Form	$\begin{aligned} & \text { OR } \\ & \text { Form } \end{aligned}$
Absorption Law DeMorgan's Law	$\begin{aligned} x(x+y) & =x \\ (\overline{x y}) & =\bar{x}+\bar{y} \end{aligned}$	$\begin{aligned} x+x y & =x \\ \overline{(x+y)} & =\bar{x} \bar{y} \end{aligned}$
Double Complement Law	$\overline{(\bar{x})}=\mathbf{x}$	

3.2 Boolean Algebra

- We can use Boolean identities to simplify:

$$
F(X, Y, Z)=(X+Y)(X+\bar{Y})(\overline{X \bar{Z}})
$$

as follows:

```
(X+Y)(X+\overline{Y})(\overline{X\overline{Z}})
(X +Y)(X + \overline{Y})(\overline{X}+Z)
(XX +X\overline{Y}+YX +Y\overline{Y})(\overline{X}+Z)
((X+Y}\overline{Y})+X(Y+\overline{Y}))(\overline{X}+Z
((X+0)+X(1))(\overline{X}+z)
    x(\overline{x}+z)
    x\overline{x}+xz
    0+XZ
    XZ
```

```
DeMorgan's Law
```

DeMorgan's Law
Double complement Law
Double complement Law
Distributive Law
Distributive Law
Commutative and Distributive Laws
Commutative and Distributive Laws
Inverse Law
Inverse Law
Idempotent and Identity Laws
Idempotent and Identity Laws
Distributive Law
Distributive Law
Inverse Law
Inverse Law
Identity Law

```
    Identity Law
```


3.2 Boolean Algebra

- Sometimes it is more economical to build a circuit using the complement of a function (and complementing its result) than it is to implement the function directly.
- DeMorgan' s law provides an easy way of finding the complement of a Boolean function.
- Recall DeMorgan' s law states:

$$
\overline{(x y)}=\bar{x}+\bar{y} \text { and } \overline{(x+y)}=\bar{x} \bar{y}
$$

3.2 Boolean Algebra

- DeMorgan's law can be extended to any number of variables.
- Replace each variable by its complement and change all ANDs to ORs and all ORs to ANDs.
- Thus, we find the the complement of:

$$
F(X, Y, Z)=(X Y)+(\bar{X} Y)+(X \bar{Z})
$$

is:

$$
\begin{aligned}
\bar{F}(X, Y, Z) & =\overline{(X Y)+(\bar{X} Z)+(Y \bar{Z})} \\
& =\overline{(X Y)}(\overline{\mathrm{X}} \mathrm{Z})(\bar{Y} \bar{Z}) \\
& =(\bar{X}+\bar{Y})(X+\bar{Z})(\bar{Y}+Z)
\end{aligned}
$$

3.2 Boolean Algebra

- Through our exercises in simplifying Boolean expressions, we see that there are numerous ways of stating the same Boolean expression.
- These "synonymous" forms are logically equivalent.
- Logically equivalent expressions have identical truth tables.
- In order to eliminate as much confusion as possible, designers express Boolean functions in standardized or canonical form.

3.2 Boolean Algebra

- There are two canonical forms for Boolean expressions: sum-of-products and product-of-sums.
- Recall the Boolean product is the AND operation and the Boolean sum is the OR operation.
- In the sum-of-products form, ANDed variables are ORed together.
- For example: $F(x, y, z)=x y+x z+y z$
- In the product-of-sums form, ORed variables are ANDed together:
- For example: $F(x, y, z)=(x+y)(x+z)(y+z)$

3.2 Boolean Algebra

- It is easy to convert a function to sum-of-products form using its truth table.
- We are interested in the values of the variables that make the function true (=1).
- Using the truth table, we list the values of the variables that result in a true function value.
- Each group of variables is then ORed together.
$F(x, y, z)=x \bar{z}+y$

x	y	z	$x \bar{z}+y$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

3.2 Boolean Algebra

- The sum-of-products form for our function is:

$$
\begin{aligned}
F(x, y, z)=(\bar{x} y \bar{z})+ & (\bar{x} y z)+(x \bar{y} \bar{z}) \\
& +(x y \bar{z})+(x y z)
\end{aligned}
$$

We note that this function is not in simplest terms. Our aim is only to rewrite our function in canonical sum-of-products form.
$F(x, y, z)$

x	y	z	$x \bar{z}+y$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

3.3 Logic Gates

- We have looked at Boolean functions in abstract terms.
- In this section, we see that Boolean functions are implemented in digital computer circuits called gates.
- A gate is an electronic device that produces a result based on two or more input values.
- In reality, gates consist of one to six transistors, but digital designers think of them as a single unit.
- Integrated circuits contain collections of gates suited to a particular purpose.

3.3 Logic Gates

- The three simplest gates are the AND, OR, and NOT gates.

- They correspond directly to their respective Boolean operations, as you can see by their truth tables.

3.3 Logic Gates

- Another very useful gate is the exclusive OR (XOR) gate.
- The output of the XOR operation is true only when the values of the inputs differ.

> Note the special symbol \oplus for the XOR operation.

3.3 Logic Gates

- NAND and NOR are two very important gates. Their symbols and truth tables are

X NAND Y

\mathbf{X}	Y	X NAND Y
0	0	1
0	1	1
1	0	1
1	1	0

 shown at the right.

3.3 Logic Gates

- NAND and NOR are known as universal gates because they are inexpensive to manufacture and any Boolean function can be constructed using only NAND or only NOR gates.

3.3 Logic Gates

- Gates can have multiple inputs and more than one output.
- A second output can be provided for the complement of the operation.
- We' 11 see more of this later.

3.3 Logic Gates

- The main thing to remember is that combinations of gates implement Boolean functions.
- The circuit below implements the Boolean function: $\mathbf{F}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\mathbf{X}+\mathbf{Y} \mathbf{Z}$

We simplify our Boolean expressions so
that we can create simpler circuits.

Sum-of-Products Form: The Majority Function

- The SOP form for the 3-input majority function is:

$$
M=\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C=m 3+m 5+m 6+m 7=\Sigma(3,5,6,7) .
$$

- Each of the 2^{n} terms are called minterms, ranging from 0 to $2^{n}-1$.
- Note relationship between minterm number and boolean value.

Minterm	$A \quad B \quad C$	F
0	$\begin{array}{llll}0 & 0 & 0\end{array}$	0
1	0	0
2	0	0
3	$\begin{array}{lll}0 & 1 & 1\end{array}$	1
4	100	0
5	$\begin{array}{lll}1 & 0 & 1\end{array}$	1
6	110	1
7	$1 \begin{array}{lll}1 & 1\end{array}$	1

A balance tips to the left or right depending on whether there are more 0's or 1's.

AND-OR Implementation of Majority

- Gate count is 8, gate input count is 19.

Sum of Products (a.k.a. disjunctive normal form)

- OR (i.e., sum) together rows with output 1
- AND (i.e., product) of variables represents each row
e.g., in row 3 when $x_{1}=0$ AND $x_{2}=1$ AND $x_{3}=1$ or when $\overline{x_{1}} \cdot x_{2} \cdot x_{3}=1$
- $\operatorname{MAJ3}\left(x_{1}, x_{2}, x_{3}\right)=\overline{x_{1}} x_{2} x_{3}+x_{1} \overline{x_{2}} x_{3}+x_{1} x_{2} \overline{x_{3}}+x_{1} x_{2} x_{3}=\sum m(3,5,6,7)$

	x_{1}	x_{2}	x_{3}	MAJ3
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

Product of Sums (a.k.a. conjunctive normal form)

- AND (i.e., product) of rows with output 0
- OR (i.e., sum) of variables represents negation of each row e.g., NOT in row 2 when $x_{1}=1$ OR $x_{2}=0$ OR $x_{3}=1$ or when $x_{1}+\overline{x_{2}}+x_{3}=1$
- $\operatorname{MAJ3}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1}+x_{2}+\overline{x_{3}}\right)\left(x_{1}+\overline{x_{2}}+x_{3}\right)\left(\overline{x_{1}}+x_{2}+x_{3}\right)$
$=\prod M(0,1,2,4)$

	x_{1}	x_{2}	x_{3}	MAJ3
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

OR-AND Implementation of Majority

Equivalences

- Every Boolean function can be written as a truth table
- Every truth table can be written as a Boolean formula (SOP or POS)
- Every Boolean formula can be converted into a combinational circuit
- Every combinational circuit is a Boolean function
- Later you might learn other equivalencies: finite automata \equiv regular expressions
computable functions \equiv programs

Universality

- Every Boolean function can be written as a Boolean formula using AND, OR and NOT operators.
- Every Boolean function can be implemented as a combinational circuit using AND, OR and NOT gates.
- Since AND, OR and NOT gates can be constructed from NAND gates, NAND gates are universal.

All-NAND Implementation of OR

- NAND alone implements all other Boolean logic gates.

DeMorgan's Theorem

A	B	$\overline{A B}=\bar{A}+\bar{B}$	$\overline{A+B}=\bar{A} \bar{B}$	
0	0	1	1	1
0	1	1	1	0
1	0	1	1	0
1	1	0	0	0

DeMorgan's theorem: $\quad A+B=\overline{\overline{A+B}}=\overline{\bar{A} \bar{B}}$

SEMICONDUCTORS, TRANSISTORS
\&
GATES

How do we make gates???

A Truth Table

- Developed in 1854 by George Boole.
- Further developed by Claude Shannon (Bell Labs).
- Outputs are computed for all possible input combinations (how many input combinations are there?)
- Consider a room with two light switches. How must they work?

Inputs	Output	
A	B	Z
0	0	0
0	1	1
1	0	1
1	1	0

Electrically Operated Switch

- Example: a relay

source: http://www.howstuffworks.com/relay.htm

Semiconductors

- Electrical properties of silicon
- Doping: adding impurities to silicon
- Diodes and the P-N junction
- Field-effect transistors

Los Alamos National Laboratory's Chemistry Division Presents

Periodic Table of the Elements

Group

Period 1															18
															vIIIA
	1A														8A
	2									13	14		16		
1	H IIA									IIIA	IVA		VIA		He
	2A									3A	4A				
2										$\left.\frac{B}{10.8} \right\rvert\,$	$\frac{\mathrm{C}}{12.01}$	$\left\|\frac{\mathrm{N}}{140}\right\|$	O	F	Ne
	12														
	NaMg	34		${ }^{6}$			$\begin{gathered} 9 \\ -\mathrm{V} I \mathrm{III} \end{gathered}$	$10 .-1$	1112		$\stackrel{14}{\text { S }}$				
3		$\begin{aligned} & \text { IIIB IV } \\ & 3 \mathrm{~B} \end{aligned}$						$1-\mathrm{IF}_{11}$	$\begin{aligned} & \text { IB } \\ & 1 \mathrm{IB} \end{aligned}{ }_{2 \mathrm{~B}}$		$\frac{\mathrm{Si}}{28.09}$	${ }_{30}{ }^{\text {P }}$	$\underline{\text { S }}$	Cl	$\underline{\text { Ar }}$
	24.31							-----							
	20	2122		24		26						33			
4	K Ca	Sc	i V	Cr	r Mn	Fe	Co	Ni	Cu Zn	Ga	Ge	As	Se	Br	$\underline{\mathrm{Kr}}$
							88.47				72.59				
	38	3940	$0{ }^{41}$	42	43	44	45	$4^{46} 4$	47	49	50				
5	Rb Sr	$\underline{\mathrm{Y}}$	Zr Nb	bMo	Tc	Ru	Rh	Pd A	AgCd	In	Sn	Sb	Te	I	Xe
	${ }_{85477} 87.62$	$\frac{88.91}{7012}$	22029,9		94,	$\frac{\mathrm{Ru}}{101.1}$	$\frac{1029}{}$	106410	107, 912,4	114.8	$\frac{118.7}{18}$				
6	56	57.72		${ }^{74}$	75	76	77	7^{78}			82	83	${ }^{84}$		
	Cs Ba	La*	If Ta	a W	$\underline{\mathrm{Re}}$	Os	Ir	Pt A	AuHg	Tl	Pb	Bi	Po	At	$\underline{\mathrm{Rn}}$
	132., 1137.3	${ }^{138,9} 178$	8, ${ }^{2} 180.5$		91862	1002	$\frac{1002}{19}$	195,19	197, 2200:	2044	$\frac{\mathrm{Pb}}{2072}$				
	88	89104	04105	5106	${ }^{107}$	108	109	110	111.112		114		16		${ }^{118}$
7	Fr Ra	Ac \sim	f D	b Sg	Bh	Hs	Mt	---	---		---		---		-
	(223)	(227)					(260)	-	$\frac{\square}{0}$						

Lanthanide Series*

Actinide Series~

Intrinsic Semiconductor

A silicon crystal is different from an insulator because at any temperature above absolute zero temperature, there is a finite probability that an electron in the lattice will be knocked loose from its position, leaving behind an electron deficiency called a "hole".
If a voltage is applied, then both the electron and the hole can contribute to a small current flow.

The conductivity of a semiconductor can be modeled in terms of the band theory of solids. The band model of a semiconductor suggests that at ordinary temperatures there is a finite possibility that electrons can reach the conduction band and contribute to electrical conduction.

The term intrinsic here
 distinguishes between the properties of pure "intrinsic" silicon and the dramatically different properties of doped n-type or p-type semiconductors.

Index
Semiconductor concepts

Go Back

Semiconductor Current

Both electrons and holes contribute to current flow in an intrinsic semiconductor.

R	Go Back
Nave	

The Doping of Semiconductors

The addition of a small percentage of foreign atoms in the regular crystal lattice of silicon or germanium produces dramatic changes in their electrical properties, producing n-type and p-type semiconductors.

Pentavalent
impurities

(5 valence	
electrons) produce	
n-type	
semiconductors	Antimony
by contributing	Arsenic
extra electrons.	Phosphorous
Trivalent	
\quad impurities	Boron
(3 valence	Aluminum
electrons) produce	Gallium
p-type	
semiconductors by	
producing a "hole	

Index
Semiconductor concepts

P- and N- Type Semiconductors

N-Type Semiconductor

HyperPhysics***** Condensed Matter

The addition of pentavalent impurities such as antimony, arsenic or phosphorous contributes free electrons, greatly increasing the conductivity of the intrinsic semiconductor. Phosphorous may be added by diffusion of phosphine gas (PH3).

Index
Semiconductor
concepts

Semiconductor
Index
concepts
Go Back

P-Type Semiconductor

The addition of trivalent impurities such as boron, aluminum or gallium to an intrinsic semiconductor creates deficiencies of valence electrons, called "holes". It is typical to use $\mathrm{B}_{2} \mathrm{H}_{6}$ diborane gas to diffuse boron into the silicon material.

P-N Junction

One of the crucial keys to solid state electronics is the nature of the P-N junction. When p-type and n-type materials are placed in contact with each other, the junction behaves very differently than either type of material alone. Specifically, current will flow readily in one direction (forward biased) but not in the other (reverse biased), creating the basic diode. This non-reversing behavior arises from the nature of the charge transport process in the two types of materials.

Energy bands at equilibrium

The open circles on the left side of the junction above represent "holes" or deficiencies of electrons in the lattice which can act like positive charge carriers. The solid circles on the right of the junction represent the available electrons from the n-type dopant. Near the junction, electrons diffuse across to combine with holes, creating a "depetion region". The energy level sketch above right is a way to visualize the equilibrium condition of the P-N junction. The upward direction in the diagram represents increasing electron energy.

Electron and hole conduction

HyperPhysics***** Condensed Matter
R
R
Go Back

Index
Semiconductor concepts

Semiconductors
for electronics

Depletion Region

When a p-n junction is formed, some of the free electrons in the n-region diffuse across the junction and combine with holes to form negative ions. In so doing they leave behind positive ions at the donor impurity sites.

Depletion Region Details

Filling a hole makes a negative ion and leaves behind a positive ion on the n-side. A space charge builds up, creating a depletion region which inhibits any further electron transfer unless it is helped by putting a forward bias on the junction.

- Electron ○ Hole

Positive ion from
removal of electron
from n-type impurity.
Show effects of biasing.

HyperPhysics***** Condensed Matter
R
Nave

Index
Semiconductor concepts

Semiconductors for electronics

Forward Biased P-N Junction

Forward biasing the p-n junction drives holes to the junction from the p-type material and electrons to the junction from the n-type material. At the junction the electrons and holes combine so that a continuous current can be maintained.

Index
Semiconductor concepts

Semiconductors for electronics

Reverse Biased P-N Junction

The P-N Junction Diode

The nature of the p-n junction is that it will conduct current in the forward direction but not in the reverse direction. It is therefore a basic tool for rectification in the building of DC power supplies.

| The reverse current
 is on the order of 10^{-8}
 amperes and is
 almost independent
 of voltage until the
 breakdown point is
 reached. |
| :--- | :--- | :--- |

Diode varieties PIN diode Step-recovery diode Diode applications

HyperPhysics***** Condensed Matter
R
Nave

Index

Semiconductor concepts

Semiconductors for electronics
HyperPhysics***** Condensed Matter
Nave

Go Back

The Junction Transistor

A bipolar junction transistor consists of three regions of doped semiconductors. A small current in the center or base region can be used to control a larger current flowing between the end regions (emitter and collector). The device can be characterized as a current amplifier, having many applications for amplification and switching.

Constraints on operation Transistor operating conditions
Varieties of Transistors Details about conduction in transistors
Determining collector current Details about base-emitter junction
Index
Semiconductor concepts

Semiconductors for electronics

Electronics concepts

Go Back

Transistor as Current Amplifier

The larger collector current $\mathbf{I}_{\mathbf{c}}$ is proportional to the base current $\mathbf{I}_{\mathbf{B}}$ according to the relationship $\mathbf{I}_{\mathbf{c}}=\boldsymbol{\beta} \mathbf{I}_{\mathbf{B}}$, or more precisely it is proportional to the base-emitter voltage $\mathrm{V}_{\mathbf{B E}}$. The smaller base current controls the larger collector current, achieving current amplification.

Transistor Switch Example

Transistor Switch Example

The switch is closed.

Open the switch

The base resistor is chosen small enough so that the base current drives the transistor into saturation.

In this example the mechanical switch is used to produce the base current to close the transistor switch to show the principles. In practice, any voltage on the base sufficient to drive the transistor to saturation will close the switch and light the bulb.

Almost 10 V drop across bulb. Its resistance determines the collector current.
Index Electronics
econcepts
Digital
Electronics

from: http://ece-www.colorado.edu/~bart/book/mosintro.htm

(a) http://jas.eng.buffalo.edu/...mosfet/mosfet.html

Enhancement-mode (Normally-off) MOSFET
N -channel
$\mathrm{Vg}<\mathrm{Vt}$: gate bias is less positive than the threshold voltage.
Not enough electrons and no inversion channel is formed.

$$
\mathrm{Vg} \underset{\mathrm{v}}{\mathrm{~V}=1.0 \mathrm{~V}} \quad \stackrel{\mathrm{~N}}{\mathrm{~V}} \text {-channel }
$$

(a) http://jas.eng.buffalo.edu/...mosfet/mosfet.html

Enhancement-mode (Normally-off) MOSFET
N -channel
$\mathrm{Vg}>\mathrm{Vt}$: gate bias is more positive than the threshold voltage. Sufficient electrons accumulate and forms the inversion channel.

$$
\operatorname{Vg} \underset{\mathrm{V}}{\mathrm{~V}} \quad \mathrm{VT}=1.0 \mathrm{~V} \quad \vdots \quad \mathrm{~N} \text {-channel } \quad \vdots
$$

An Inverter using MOSFET

- CMOS = complementary metal oxide semiconductor
- P-type transistor conducts when gate is low
- N -type transistor conducts when gate is high

GND

GND

GND

NOR GATE

\mathbf{A}	\mathbf{B}	\mathbf{z}
$\mathbf{0}$	0	1
0	1	0
1	0	0
1	1	0

CMOS Logic vs Bipolar Logic

- MOSFET transistors are easier to miniaturize
- CMOS logic has lower current drain
- CMOS logic is easier to manufacture

NEXT TIME

- Midterm exams returned
- Finish semiconductors, transistors \& gates

References

- Materials on semiconductors, PN junction and transistors taken from the HyperPhysics web site:
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html

