
CMSC 313
COMPUTER ORGANIZATION
&
ASSEMBLY LANGUAGE
PROGRAMMING

LECTURE 14, FALL 2012

TOPICS TODAY

•  Midterm exam topics

•  Recap arrays vs pointers
•  Characters & strings & pointers (Oh My!)

•  Structs & pointers

MIDTERM EXAM TOPICS

MIDTERM EXAM

•  Tuesday, October 23

•  In Class
•  No Calculators, cell phones, electronics, ...

MIDTERM FORMAT

•  Multiple Choice

•  Short responses (e.g., base conversion)

•  Trace assembly language program

•  Write assembly language program

•  Full text of toupper.asm available

MIDTERM TOPICS

•  Base Conversion

•  Data Representation

•  negative numbers: 2's complement, 1's complement,
signed magnitude

•  ASCII
•  little endian vs big endian

•  Intel CPU

•  Registers
•  Addressing modes
•  Flags
•  Common instructions

Common Instructions

• Basic Instructions
ADD, SUB, INC, DEC, MOV, NOP

• Branching Instructions
JMP, CMP, Jcc

• More Arithmetic Instructions
NEG, MUL, IMUL, DIV, IDIV

• Logical (bit manipulation) Instructions
AND, OR, NOT, SHL, SHR, SAL, SAR, ROL, ROR, RCL, RCR

• Subroutine Instructions
PUSH, POP, CALL, RET

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

MIDTERM TOPICS (CONT'D)

•  Comparison & conditional jump instructions

•  signed vs unsigned conditional jumps (e.g. ja vs jg)
•  NASM

•  How to assemble
•  .data, .bss, .text sections
•  dd, dw, db, resd, resw, resb directives
•  %define!

•  System calls for read & write

•  Separate compilation, linking & loading

•  Interrupts (general principles)

RECAP
ARRAYS VS. POINTERS

C Parameter Passing Notes

•  We'll say formal parameter vs actual parameter.

•  Formal parameters are place holders in function definition.

•  Actual parameters (aka arguments) actually have a value.

•  In C, all parameters are passed by value.

•  Parameter passing by reference is simulated by passing the
address of the variable.

 scanf("%d", &n) ;!

•  Array names represent the address of the array. In effect, arrays
are passed by reference.

int UpdateArray (int A[], int n) {!
 A[0] += 5 ; !

 ...!

Adapted from Dennis Frey CMSC 313 Spring 2011

Printing an Array

•  The code below shows how to use a parameter array name
as a pointer.

void printGrades(int grades[], int size)
{
 int i;
 for (i = 0; i < size; i++)
 printf(“%d\n”, *grades);
 ++grades;
}

•  What about this prototype?

 void printGrades(int *grades, int size);

Adapted from Dennis Frey CMSC 313 Spring 2011

Passing Arrays

•  Arrays are passed “by reference” (its address is passed by
value):

!int sumArray(int A[], int size) ;!

!
 is equivalent to
!

!int sumArray(int *A, int size) ;!

•  Use A as an array name or as a pointer.

•  The compiler always sees A as a pointer. In fact, any error
messages produced will refer to A as an int *

Adapted from Dennis Frey CMSC 313 Spring 2011

sumArray

int sumArray(int A[], int size)
{
 int k, sum = 0;
 for (k = 0; k < size; k++)
 sum += A[k];
 return sum;

}

Adapted from Dennis Frey CMSC 313 Spring 2011

sumArray (2)
int sumArray(int A[], int size)
{
 int k, sum = 0;
 for (k = 0; k < size; k++)
 sum += *(A + k);
 return sum;

}

int sumArray(int A[], int size)
{
 int k, sum = 0;
 for (k = 0; k < size; k++)
 }
 sum += *A;
 ++A;
 }
 return sum;

}

Adapted from Dennis Frey CMSC 313 Spring 2011

CHARACTERS
& STRINGS
& POINTERS

Strings revisited

Recall that a string is represented as an array of characters
terminated with a null (\0) character.

As we’ve seen, arrays and pointers are closely related. A
string constant may be declared as either

 char[] or char *

as in
 char hello[] = “Hello Bobby”;

or (almost) equivalently
 char *hi = “Hello Bob”;

A typedef could also be used to simplify coding
 typedef char* STRING;

 STRING hi = “Hello Bob”;

Adapted from Dennis Frey CMSC 313 Spring 2011

Arrays of Pointers

Since a pointer is a variable type, we can create an array of pointers
just like we can create any array of any other type.

Although the pointers may point to any type, the most common use

of an array of pointers is an array of char* to create an array of
strings.

Adapted from Dennis Frey CMSC 313 Spring 2011

Boy’s Names

A common use of an array of pointers is to create an array of strings.
The declaration below creates an initialized array of strings (char
*) for some boys names. The diagram below illustrates the
memory configuration.

 char *name[] = { �Bobby�, �Jim�, �Harold� };

Adapted from Dennis Frey CMSC 313 Spring 2011

B o b b y \0
J i m \0

H a r o l d \0

name:

0

1

2

Command Line Arguments

Command line arguments:

 ./a.out breakfast lunch dinner!

These arguments are passed to your program as parameters to main.

 int main(int argc, char *argv[])!

argc is the number of command line arguments

argv is an array of argc strings

argv[0]is always the name of your executable program.

The rest of argv[] are the remaining strings on the command line.

Adapted from Dennis Frey CMSC 313 Spring 2011

Command Line Arguments (2)

Example, with this command at the Linux prompt:

 myprog hello world 42 !

we get

argc = 4!
argv[0] = "myprog"!
argv[1] = "hello"!
argv[2] = "world"!
argv[3] = "42"!

Note: argv[3] is a string NOT an integer. Convert using atoi():

 int answer = atoi(argv[3]);!

Adapted from Dennis Frey CMSC 313 Spring 2011

STRUCTS & POINTERS

Reminder

You can�t use a pointer until it points to something
Just declaring a variable to be a pointer is not enough

int *name; /* pointer declaration */
 int age = 42;

 *name += 12;
 printf(�My age is %d\n�, *name);

Adapted from Dennis Frey CMSC 313 Spring 2011

Pointers to Pointers

A pointer may point to another pointer.

Consider the following declarations

int age = 42;! ! /* an int */!
int *pAge = &age; !/* a pointer to an int */!
int **ppAge = &pAge;/* pointer to pointer to int */!

Draw a memory picture of these variable and their relationships

What type and what value do each of the following represent?

!
age, pAge, ppAge, *pAge, *ppAge, **ppAge!

Adapted from Dennis Frey CMSC 313 Spring 2011

pointers2pointer.c
int main ()!
{!
!/* a double, a pointer to double, !
!** and a pointer to a pointer to a double */!
!double gpa = 3.25, *pGpa, **ppGpa;!
!!
!/* make pgpa point to the gpa */!
!pGpa = &gpa;!
!!
!/* make ppGpa point to pGpa (which points to gpa) */!
!ppGpa = &pGpa;!
!!
!// what is the output from this printf statement?!
!printf("%0.2f, %0.2f, %0.2f", gpa, *pGpa, **ppGpa);!
!!
!return 0;!

}!

 Adapted from Dennis Frey CMSC 313 Spring 2011

Pointers to struct
typedef struct student {

 char name[50];
 char major [20];
 double gpa;

} STUDENT;

STUDENT bob = {"Bob Smith", "Math", 3.77};
STUDENT sally = {"Sally", "CSEE", 4.0};
STUDENT *pStudent; /* pStudent is a "pointer to struct student" */

pStudent = &bob; /* make pStudent point to bob */

/* use -> to access the members */
printf ("Bob's name: %s\n", pStudent->name);
printf ("Bob's gpa : %f\n", pStudent->gpa);

/* make pStudent point to sally */
pStudent = &sally;
printf ("Sally's name: %s\n", pStudent->name);
printf ("Sally's gpa: %f\n", pStudent->gpa);

Adapted from Dennis Frey CMSC 313 Spring 2011

Pointer in a struct
The data member of a struct can be a pointer

#define FNSIZE 50!
#define LNSIZE 40!
typedef struct name!
{!
!char first[FNSIZE + 1];!
!char last [LNSIZE + 1];!

} NAME;!
!
typedef struct person!
{ !
!NAME *pName; !// pointer to NAME struct!
!int age;!
!double gpa;!

} PERSON;!

Adapted from Dennis Frey CMSC 313 Spring 2011

Pointer in a struct (2)

Given the declarations below, how do we access bob�s name, last name,
and first name?

Draw a picture of memory represented by these declarations

NAME bobsName = {�Bob�, �Smith�};!
PERSON bob;!
bob.age = 42;!
bob.gpa = 3.4;!
bob.pName = &bobsName;!
!

Adapted from Dennis Frey CMSC 313 Spring 2011

Self-referencing structs

Powerful data structures can be created when a data member of a
struct is a pointer to a struct of the same kind.

The simple example on the next slide illustrates the technique.

Adapted from Dennis Frey CMSC 313 Spring 2011

teammates.c
typedef struct player
{
 char name[20];
 struct player *teammate; /* can�t use TEAMMATE yet */

} TEAMMATE;

TEAMMATE *team, bob, harry, john;
team = &bob; /* first player */

strncpy(bob.name, �bob�, 20);
bob.teammate = &harry; /* next teammate */

strncpy(harry.name, �harry�, 20);
harry.teammate = &john; /* next teammate */

strncpy(john.name, �bill�, 20);
john.teammate = NULL: /* last teammate */

Adapted from Dennis Frey CMSC 313 Spring 2011

teammates.c (cont�d)

/* typical code to print a (linked) list */

/* follow the teammate pointers until
** NULL is encountered */

// start with first player
TEAMMATE *t = team;

// while there are more players...
while (t != NULL)
{
 printf(�%s\n�, t->name);

 // next player
 t = t->teammate;

}

Adapted from Dennis Frey CMSC 313 Spring 2011

NEXT TIME

•  Dynamic memory allocation

