
CMSC 313
COMPUTER ORGANIZATION
&
ASSEMBLY LANGUAGE
PROGRAMMING

LECTURE 12, FALL 2012

TOPICS TODAY

•  Assembling & Linking Assembly Language

•  Separate Compilation in C

•  Scope and Lifetime

LINKING IN ASSEMBLY

FUNCTIONS &
SEPARATE COMPILATION
IN C

C Parameter Passing Notes

•  We'll say formal parameter vs actual parameter.
•  Formal parameters are place holders in function definition.
•  Actual parameters (aka arguments) actually have a value.

•  In C, all parameters are passed by value.

•  Parameter passing by reference is simulated by passing the
address of the variable.
 scanf("%d", &n) ;!

•  Array names represent the address of the array. In effect, arrays
are passed by reference.

int UpdateArray (int A[], int n) {!
 A[0] += 5 ; !

 ...!

Adapted from Dennis Frey CMSC 313 Spring 2011

A Simple C Program
#include <stdio.h>
typedef double Radius;
#define PI 3.1415

double circleArea(Radius radius) {
 return PI * radius * radius ;

}

double calcCircumference(Radius radius) {
 return 2 * PI * radius ;

}

int main() {
 Radius radius = 4.5;
 double area = circleArea(radius);
 double circumference = calcCircumference(radius);

 printf (“Area = %10.2f, Circumference = %10.2f\n”,

 area, circumference);

 return 0;

}

Adapted from Dennis Frey CMSC 313 Spring 2011

Separate Compilation: Why?

•  Keeps files small.
•  Different people can work on different parts of the program.

•  Easier to find functions.

•  Keeps large program logically organized.

•  Do not have to re-compile entire program when changes are made
to a small portion.

•  Parts of the program (e.g., code for a data structure) may be
reusable in other programs.

Problem: need a mechanism for external references.

Adapted from Dennis Frey CMSC 313 Spring 2011

circleUtils.h

/* circleUtils.h*/

/* #includes required by the prototypes, if any */

/* typedefs and #defines */

typedef double Radius;

/* function prototypes */

double circleArea(Radius radius);

double calcCircumference(Radius radius);

Adapted from Dennis Frey CMSC 313 Spring 2011

circleUtils.c

/* circleUtils.c */

#include "circleUtils.h"
#define PI 3.1415

/* Function implementations */

double circleArea(Radius radius) {

 return (PI * radius * radius);

}

double calcCircumference(Radius radius) {

 return (2 * PI * radius);

}

Adapted from Dennis Frey CMSC 313 Spring 2011

main program

/* sample.c */
#include <stdio.h>
#include "circleUtils.h"

int main() {
 Radius radius = 4.5;
 double area, circumference ;

 area = circleArea(radius);
 circumference = calcCircumference(radius);

 printf (“Area = %lf, Circumference = %lf\n”,
 area, circumference);

 return 0;

}

Adapted from Dennis Frey CMSC 313 Spring 2011

Header Files
•  Header files should contain

•  function prototypes
•  type definitions
•  #define constants
•  extern declarations for global variables
•  other #includes

•  Header files should end with .h
•  System header files #included with < >

#include <stdio.h>!
•  Your own header files #included with " "

#include "circleUtils.h"!
•  Header files are expected to include all other header files

needed to work with implemented functions.

Adapted from Dennis Frey CMSC 313 Spring 2011

Guarding Header Files

•  Header files should not be included multiple times.
•  multiple declaration of function prototypes: OK
•  multiple type definition: BAD
•  multiple #include can lead to loops where a .h file includes itself.

•  Solution:

#ifndef _UNIQUE_VAR_NAME_
#define _UNIQUE_VAR_NAME_

...
#endif

Adapted from Dennis Frey CMSC 313 Spring 2011

Guarded circleUtils.h
#ifndef CIRCLEUTIL_H
#define CIRCLEUTIL_H

/* circleUtils.h*/

/* #includes required by the prototypes, if any */

/* typedefs and #defines */

typedef double Radius;

/* function prototypes */

double circleArea(Radius radius);

double calcCircumference(Radius radius);

#endif

Adapted from Dennis Frey CMSC 313 Spring 2011

Compiling and linking

•  How to compile:

gcc -c -Wall circleUtils.c!
gcc -c -Wall sample.c!
gcc -Wall -o sample sample.o circleutils.o!

•  Or
!gcc -Wall -o sample sample.c circleUtils.c!

Adapted from Dennis Frey CMSC 313 Spring 2011

Compiler vs linker

•  Compiler: translates one .c file into a .o file
•  Verifies that all functions are being called correctly
•  Verifies that all variables exist
•  Verifies language syntax

•  Linker: combines .o files and C libraries into executable file
•  “Finds” functions called by one .c/.o file, but defined in

another E.g. printf(), scanf().
•  “Finds” global variables used by one .c/.o file, but defined in

another (more on this soon)

•  gcc uses ld to link & load!
•  Easier to invoke ld through gcc!

Adapted from Dennis Frey CMSC 313 Spring 2011

Linking with C libraries

•  By default, the standard C library which includes printf, scanf and
char and string functions is always linked with your program.

•  Other libraries must be explicitly linked with your code.

•  Typical C libraries have the form libxxx.a.
•  Standard C library: libc.a.
•  Math library:libm.a.

•  Use the -l flag and the xxx part of the library name to link.
!gcc -Wall -o sample sample.c circleUtils.c -lm!

Adapted from Dennis Frey CMSC 313 Spring 2011

Project Organization

•  main() is generally defined in its own .c file and generally
just calls helper functions
–  E.g. project1.c

•  Project-specific helper functions may be in the same .c file
as main()
•  main() comes first
•  Helper function order that makes sense to you

•  Reusable functions in their own .c file
–  Group related functions in the same file
–  E.g. circleUtils.c

•  Prototypes, typedefs, #defines, etc. for reusable function in
a .h file
–  Same file root name as the .c file. E.g. circleUtils.h

Adapted from Dennis Frey CMSC 313 Spring 2011

SCOPE & LIFETIME

Variable Scope and Lifetime

•  The scope of a variable refers to that part of a program that may
refer to the variable.

•  The lifetime of a variable refers to the time in which a variable
occupies a place in memory.

•  The scope and lifetime of a variable are determined by how and
where the variable is defined.

Adapted from Dennis Frey CMSC 313 Spring 2011

static and extern

•  In C/C++, the keyword static is overloaded.

•  A static local variable has lifetime = duration of program.
•  A static global variable has file scope
•  A static function has file scope

•  extern is means that the variable is defined in another file.
extern int other_variable ;!
!

•  an extern declaration is an example of a declaration that is not a
definition. (Another example is a function prototype.)

Adapted from Dennis Frey CMSC 313 Spring 2011

NEXT TIME

•  Pointers

