CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING

LECTURE 03, FALL 2012

TOPICS TODAY

- Moore's Law
- Evolution of Intel CPUs
- IA-32 Basic Execution Environment
- IA-32 General Purpose Registers
- "Hello World" in Linux Assembly Language
- Addressing modes
- gdb debugger demo

INTEL CPUS

1.5 Historical Development

- Moore's Law (1965)
 - Gordon Moore, Intel founder
 - "The density of transistors in an integrated circuit will double every year."
- Contemporary version:
 - "The density of silicon chips doubles every 18 months."

But this "law" cannot hold forever ...

1.5 Historical Development

- Rock's Law
 - Arthur Rock, Intel financier
 - "The cost of capital equipment to build semiconductors will double every four years."
 - In 1968, a new chip plant cost about \$12,000.

At the time, \$12,000 would buy a nice home in the suburbs.

An executive earning \$12,000 per year was "making a very comfortable living."

1.5 Historical Development

- Rock's Law
 - In 2010, a chip plants under construction cost well over \$4 billion.

\$4 billion is more than the gross domestic product of some small countries, including Barbados, Mauritania, and Rwanda.

For Moore's Law to hold, Rock's Law must fall, or vice versa. But no one can say which will give out first.

Intel Processor	Date Intro- duced	Max. Clock Frequency/ Technology at Introduction	Tran- sistors	Register Sizes ¹	Ext. Data Bus Size ²	Max. Extern. Addr. Space	Caches
8086	1978	8 MHz	29 K	16 GP	16	1 MB	None
Intel 286	1982	12.5 MHz	134 K	16 GP 16		16 MB	Note 3
Intel386 DX Processor	1985	20 MHz	275 K	32 GP	32	4 GB	Note 3
Intel486 DX Processor	1989	25 MHz	1.2 M	32 GP 80 FPU	32	4 GB	L1: 8 KB
Pentium Processor	1993	60 MHz	3.1 M	32 GP 80 FPU	64	4 GB	L1:16 KB
Pentium Pro Processor	1995	200 MHz	5.5 M	32 GP 80 FPU	64	64 GB	L1: 16 KB L2: 256 KB or 512 KB
Pentium II Processor	1997	266 MHz	7 M	32 GP 80 FPU 64 MMX	64	64 GB	L1: 32 KB L2: 256 KB or 512 KB
Pentium III Processor	1999	500 MHz	8.2 M	32 GP 80 FPU 64 MMX 128 XMM	64	64 GB	L1: 32 KB L2: 512 KB
Pentium III and Pentium III Xeon Processors	1999	700 MHz	28 M	32 GP 80 FPU 64 MMX 128 XMM	64	64 GB	L1: 32 KB L2: 256 KB
Pentium 4 Processor	2000	1.50 GHz, Intel NetBurst Microarchitecture	42 M	32 GP 80 FPU 64 MMX 128 XMM	64	64 GB	12K µop Execution Trace Cache; L1: 8KB L2: 256 KB
Intel Xeon Processor	2001	1.70 GHz, Intel NetBurst Microarchitecture	42 M	32 GP 80 FPU 64 MMX 128 XMM	64	64 GB	12K µop Execution Trace Cache; L1: 8KB L2: 512KB
Intel Xeon Processor	2002	2.20 GHz, Intel NetBurst Microarchitecture, HyperThreading Technology	55 M	32 GP 80 FPU 64 MMX 128 XMM	64	64 GB	12K µop Execution Trace Cache; L1: 8KB L2: 512KB
Pentium M Processor	2003	1.60 GHz, Intel NetBurst Microarchitecture	77 M	32 GP 80 FPU 64 MMX 128 XMM	64	4 GB	L1: 64KB L2: 1 MB
Intel Pentium 4 Processor Supporting Hyper-Threading Technology at 90 nm process	2004	3.40 GHz, Intel NetBurst Microarchitecture, HyperThreading Technology	125 M	32 GP 80 FPU 64 MMX 128 XMM	64	64 GB	12K µop Execution Trace Cache; L1: 16KB L2: 1 MB

Table 2-3. Key Features of Previous Generations of IA-32 Processors

NOTE:

- 1. The register size and external data bus size are given in bits. Note also that each 32-bit generalpurpose (GP) registers can be addressed as an 8- or a 16-bit data registers in all of the processors.
- 2. Internal data paths are 2 to 4 times wider than the external data bus for each processor.

Table 2-1. Key Features of Most Recent IA-32 Processors

Intel Processor	Date Intro- duced	Micro- architecture	Top-Bin Clock Fre- quency at Intro- duction	Tran- sistors	Register Sizes ¹	Syste m Bus Band- width	Max. Extern. Addr. Space	On-Die Caches ²
Intel Pentium M Processor 755 ³	2004	Intel Pentium M Processor	2.00 GHz	140 M	GP: 32 FPU: 80 MMX: 64 XMM: 128	3.2 GB/s	4 GB	L1: 64 KB L2: 2 MB
Intel Core Duo Processor T2600 ³	2006	Improved Intel Pentium M Processor Microarchitecture; Dual Core; Intel Smart Cache, Advanced Thermal Manager	2.16 GHz	152M	GP: 32 FPU: 80 MMX: 64 XMM: 128	5.3 GB/s	4 GB	L1: 64 KB L2: 2 MB (2MB Total)
Intel Atom Processor Z5xx series	2008	Intel Atom Microarchitecture; Intel Virtualization Technology.	1.86 GHz - 800 MHz	47M	GP: 32 FPU: 80 MMX: 64 XMM: 128	Up to 4.2 GB/s	4 GB	L1: 56 KB ⁴ L2: 512KB

Top-Bin Intel Date Місго-Tran-Register System Max. On-Die architec-ture Sizes Bus/OP Caches Processor Intro-Fresistor Extern I Link . Addr. duced quency S at Intro-Speed Space duction Intel Core i7-2010 Intel Turbo Boost 2.66 GHz 383 M GP: 32.64 64 GB L1: 64 KB L2: 256KB 620M Technology, Intel FPU: 80 L3: 4MB Processor microarchitecture MMX: 64 code name Westmere: XMM: 128 Dualcore: HyperThreading Technology; Intel 64 Architecture; Intel Virtualization Technology., Integrated graphics GP: 32, 64 FPU: 80 L1: 64 KB L2: 256KB Intel Xeon-2010 Intel Turbo Boost 3.33 GHz 1.1B QPI: 6.4 1 TB Processor 5680 Technology, Intel GT/s: 32 microarchitecture MMX: 64 GB/s 13.12MB code name Westmere; XMM: 128 Six core: HyperThreading Technology; Intel 64 Architecture: Intel Virtualization Technology. Intel Xeon-2010 Intel Turbo Boost 2.26 GHz 2.3B GP: 32, 64 QPI: 6.4 16 TB L1: 64 KB FPU: 80 Processor 7560 Technology, Intel GT/s; L2: 256KB microarchitecture MMX: 64 13.24MB Memory: 76 GB/s code name Nehalem; XMM: 128 Eight core; HyperThreading Technology; Intel 64 Architecture; Intel Virtualization Technology. 2011 995M Intel Core i7-Intel Turbo Boost 3.40 GHz GP: 32, 64 DMI: 5 GT/s: 64 GB L1: 64 KB 2600K Technology, Intel FPU: 80 Memory: 21 L2: 256KB Processor microarchitecture MMX: 64 GB/s L3: 8MB code name Sandy XMM: 128 Bridge; Four core; YMM: 256 HyperThreading Technology; Intel 64 Architecture: Intel Virtualization Technology., Processor graphics, Quicksync Video Intel Xeon-2011 Intel Turbo Boost 3 50 GHz GP: 32.64 DMI: 5 GT/s: 1 TB L1: 64 KB Processor E3-FPU: 80 Memory: 21 L2: 256KB Technology, Intel 1280 microarchitecture MMX: 64 GB/s L3: 8MB XMM: 128 code name Sandy Bridge; Four core; YMM: 256 HyperThreading Technology; Intel 64 Architecture: Intel Virtualization Technology. 2011 2 2 B Intel Xeon-Intel Turbo Boost 2.40 GHz GP: 32.64 QPI: 6.4 16 TB L1: 64 KB L2: 256KB FPU: 80 Processor E7-Technology, Intel GT/s; 8870 microarchitecture MMX: 64 Memory L3: 30MB code name Westmere: XMM: 128 102 GB/s Ten core; HyperThreading Technology; Intel 64 Architecture; Intel Virtualization Technology.

Table 2-2. Key Features of Most Recent Intel 64 Processors (Contd.)

1.7 The von Neumann Model

- This is a general depiction of a von Neumann system:
- These computers employ a fetchdecode-execute cycle to run programs as follows

Figure 3-1. IA-32 Basic Execution Environment

31	16	15 8	7	0 16-bit	32-bit
		AH	AL	AX	EAX
		BH	BL	BX	EBX
		СН	CL	СХ	ECX
		DH	DL	DX	EDX
		В	Р		EBP
		S	51		ESI
		C			EDI
		SP			ESP

Figure 3-4. Alternate General-Purpose Register Names

- EAX—Accumulator for operands and results data.
- EBX—Pointer to data in the DS segment.
- ECX—Counter for string and loop operations.
- EDX—I/O pointer.
- ESI—Pointer to data in the segment pointed to by the DS register; source pointer for string operations.9
- EDI—Pointer to data (or destination) in the segment pointed to by the ES register; destination pointer for string operations.
- ESP—Stack pointer (in the SS segment).
- EBP—Pointer to data on the stack (in the SS segment).

"Hello World" in Linux Assembly

- Use your favorite UNIX editor (vi, emacs, pico, ...)
- Assemble using NASM on gl.umbc.edu nasm -f elf hello.asm
- NASM documentation is on-line.
- Need to "load" the object file Id hello.o
- Execute

a.out

• CMSC 121 Introduction to UNIX

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

ADDRESSING MODES

80x86 Addressing Modes

- We want to store the value 1734h.
- The value 1734h may be located in a register or in memory.
- The location in memory might be specified by the code, by a register, ...
- Assembly language syntax for MOV

MOV DEST, SOURCE

Notes on Addressing Modes

• More complicated addressing modes later:

MOV EAX, [ESI+4*ECX+12]

- Figures not drawn to scale. Constants 1734h and 08A94068h take 4 bytes (little endian).
- Some addressing modes are not supported by some operations.
- Labels represent addresses not contents of memory.

toupper.asm

- Prompt for user input.
- Use Linux system call to get user input.
- Scan each character of user input and convert all lower case characters to upper case.

• How to:

- \diamond work with 8-bit data
- o specify ASCII constant
- \diamond compare values
- \diamond loop control

THE GDB DEBUGGER

Debugging Assembly Language Programs

- Cannot just put print statements everywhere.
- Use gdb to:
 - \diamond examine contents of registers
 - \diamond exmaine contents of memory
 - \diamond set breakpoints
 - o single-step through program

• READ THE GDB SUMMARY ONLINE!

Command	Example	Description				
run		start program				
quit		quit out of gdb				
cont		continue execution after a break				
break [addr]	break *_start+5	sets a breakpoint				
delete [n]	delete 4	removes nth breakpoint				
delete		removes all breakpoints				
info break		lists all breakpoints				
list _start		list a few lines of the source code around _start				
list 7		list 10 lines of the source code starting on line 7				
list 7, 20		list lines 7 thru 20 of the source code				
stepi		execute next instruction				
stepi [n]	stepi 4	execute next n instructions				
nexti		execute next instruction, stepping over function calls				
nexti [n]	nexti 4	execute next n instructions, stepping over function calls				
where		show where execution halted				
disas [addr]	disas _start	disassemble instructions at given address				
info registers		dump contents of all registers				
print/d [expr]	print/d \$ecx	print expression in decimal				
print/x [expr]	print/x \$ecx	print expression in hex				
print/t [expr]	print/t \$ecx	print expression in binary				
x/NFU [addr]	x/12xw &msg	Examine contents of memory in given format				
display [expr]	display \$eax	automatically print the expression each time the program is halted				
info display		show list of automatically displays				
undisplay [n]	undisplay 1	remove an automatic display				

Next Time

- Overview of i386 instruction set.
- Arithmetic instructions, logical instructions.
- EFLAGS register