
CMSC 313
COMPUTER ORGANIZATION
&
ASSEMBLY LANGUAGE
PROGRAMMING

LECTURE 03, FALL 2012

TOPICS TODAY

•  Moore’s Law

•  Evolution of Intel CPUs

•  IA-32 Basic Execution Environment

•  IA-32 General Purpose Registers

•  “Hello World” in Linux Assembly Language

•  Addressing modes

•  gdb debugger demo

INTEL CPUS

35

•  Moore�s Law (1965)
–  Gordon Moore, Intel founder

–  �The density of transistors in an integrated circuit will
double every year.�

•  Contemporary version:

–  �The density of silicon chips doubles every 18 months.�

But this �law� cannot hold forever ...

1.5 Historical Development

36

•  Rock�s Law
–  Arthur Rock, Intel financier

–  �The cost of capital equipment to build semiconductors
will double every four years.�

–  In 1968, a new chip plant cost about $12,000.

At the time, $12,000 would buy a nice home in
the suburbs.
An executive earning $12,000 per year was
�making a very comfortable living.�

1.5 Historical Development

37

•  Rock�s Law
–  In 2010, a chip plants under construction cost well

over $4 billion.

–  For Moore�s Law to hold, Rock�s Law must fall, or
vice versa. But no one can say which will give out
first.

$4 billion is more than the gross domestic
product of some small countries, including
Barbados, Mauritania, and Rwanda.

1.5 Historical Development

Vol. 1 2-35

INTEL® 64 AND IA-32 ARCHITECTURES

NOTE:
1. The register size and external data bus size are given in bits. Note also that each 32-bit general-

purpose (GP) registers can be addressed as an 8- or a 16-bit data registers in all of the processors.
2. Internal data paths are 2 to 4 times wider than the external data bus for each processor.

Table 2-3. Key Features of Previous Generations of IA-32 Processors

Intel
Processor

Date
Intro-
duced

Max. Clock
Frequency/
Technology at
Introduction

Tran-
sistors

Register
Sizes1

Ext. Data
Bus
Size2

Max.
Extern.
Addr.
Space

Caches

8086 1978 8 MHz 29 K 16 GP 16 1 MB None

Intel 286 1982 12.5 MHz 134 K 16 GP 16 16 MB Note 3

Intel386 DX Processor 1985 20 MHz 275 K 32 GP 32 4 GB Note 3

Intel486 DX Processor 1989 25 MHz 1.2 M 32 GP
80 FPU

32 4 GB L1: 8 KB

Pentium Processor 1993 60 MHz 3.1 M 32 GP
80 FPU

64 4 GB L1:16 KB

Pentium Pro Processor 1995 200 MHz 5.5 M 32 GP
80 FPU

64 64 GB L1: 16 KB
L2: 256 KB or
512 KB

Pentium II Processor 1997 266 MHz 7 M 32 GP
80 FPU
64 MMX

64 64 GB L1: 32 KB
L2: 256 KB or
512 KB

Pentium III Processor 1999 500 MHz 8.2 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB L1: 32 KB
L2: 512 KB

Pentium III and Pentium
III Xeon Processors

1999 700 MHz 28 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB L1: 32 KB
L2: 256 KB

Pentium 4 Processor 2000 1.50 GHz, Intel NetBurst
Microarchitecture

42 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop
Execution Trace
Cache; L1: 8KB
L2: 256 KB

Intel Xeon Processor 2001 1.70 GHz, Intel NetBurst
Microarchitecture

42 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop
Execution Trace
Cache; L1: 8KB
L2: 512KB

Intel Xeon Processor 2002 2.20 GHz, Intel NetBurst
Microarchitecture,
HyperThreading
Technology

55 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop
Execution Trace
Cache; L1: 8KB
L2: 512KB

Pentium M Processor 2003 1.60 GHz, Intel NetBurst
Microarchitecture

77 M 32 GP
80 FPU
64 MMX
128 XMM

64 4 GB L1: 64KB
L2: 1 MB

Intel Pentium 4
Processor Supporting
Hyper-Threading
Technology at 90 nm
process

2004 3.40 GHz, Intel NetBurst
Microarchitecture,
HyperThreading
Technology

125 M 32 GP
80 FPU
64 MMX
128 XMM

64 64 GB 12K µop
Execution Trace
Cache; L1: 16KB
L2: 1 MB

2-30 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES

transfer cache are shown in Table 2-1. Older generation IA-32 processors, which do
not employ on-die Level 2 cache, are shown in Table 2-2.

Table 2-1. Key Features of Most Recent IA-32 Processors

Intel
Processor

Date
Intro-
duced

Micro-
architecture

Top-Bin
Clock Fre-
quency at
Intro-
duction

Tran-
sistors

Register
Sizes1

NOTES:
1. The register size and external data bus size are given in bits.

Syste
m Bus
Band-
width

Max.
Extern.
Addr.
Space

On-Die
Caches2

2. First level cache is denoted using the abbreviation L1, 2nd level cache is denoted as L2. The size
of L1 includes the first-level data cache and the instruction cache where applicable, but
does not include the trace cache.

Intel Pentium M
Processor 7553

3. Intel processor numbers are not a measure of performance. Processor numbers differentiate
features within each processor family, not across different processor families.
See http://www.intel.com/products/processor_number for details.

2004 Intel Pentium M
Processor

2.00 GHz 140 M GP: 32
FPU: 80
MMX: 64
XMM: 128

3.2 GB/s 4 GB L1: 64 KB
L2: 2 MB

Intel Core Duo
Processor
T26003

2006 Improved Intel Pentium
M Processor
Microarchitecture; Dual
Core;
Intel Smart Cache,
Advanced Thermal
Manager

2.16 GHz 152M GP: 32
FPU: 80
MMX: 64
XMM: 128

5.3 GB/s 4 GB L1: 64 KB
L2: 2 MB (2MB
Total)

Intel Atom
Processor Z5xx
series

2008 Intel Atom
Microarchitecture;
Intel Virtualization
Technology.

1.86 GHz - 800
MHz

 47M GP: 32
FPU: 80
MMX: 64
XMM: 128

Up to 4.2
GB/s

4 GB L1: 56 KB4

L2: 512KB

4. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.

Table 2-2. Key Features of Most Recent Intel 64 Processors

Intel
Processor

Date
Intro-
duced

Micro-
architec-ture

Top-Bin
Fre-
quency
at Intro-
duction

Tran-
sistor
s

Register
Sizes

System
Bus/QP
I Link
Speed

Max.
Extern
. Addr.
Space

On-Die
Caches

64-bit Intel Xeon
Processor with
800 MHz
System Bus

2004 Intel NetBurst
Microarchitecture;
Intel Hyper-Threading
Technology; Intel 64
Architecture

3.60 GHz 125 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

6.4 GB/s 64 GB 12K µop
Execution
Trace Cache;
16 KB L1;
1 MB L2

64-bit Intel Xeon
Processor MP
with 8MB L3

2005 Intel NetBurst
Microarchitecture;
Intel Hyper-Threading
Technology; Intel 64
Architecture

3.33 GHz 675M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

5.3 GB/s 1 1024 GB
(1 TB)

12K µop
Execution
Trace Cache;
16 KB L1;
1 MB L2,
8 MB L3

Vol. 1 2-33

INTEL® 64 AND IA-32 ARCHITECTURES

Intel Core i7-
620M
Processor

2010 Intel Turbo Boost
Technology, Intel
microarchitecture
code name Westmere;
Dualcore;
HyperThreading
Technology; Intel 64
Architecture;
Intel Virtualization
Technology.,
Integrated graphics

2.66 GHz 383 M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

64 GB L1: 64 KB
L2: 256KB
L3: 4MB

Intel Xeon-
Processor 5680

2010 Intel Turbo Boost
Technology, Intel
microarchitecture
code name Westmere;
Six core;
HyperThreading
Technology; Intel 64
Architecture;
Intel Virtualization
Technology.

3.33 GHz 1.1B GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

QPI: 6.4
GT/s; 32
GB/s

1 TB L1: 64 KB
L2: 256KB
L3: 12MB

Intel Xeon-
Processor 7560

2010 Intel Turbo Boost
Technology, Intel
microarchitecture
code name Nehalem;
Eight core;
HyperThreading
Technology; Intel 64
Architecture;
Intel Virtualization
Technology.

2.26 GHz 2.3B GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

QPI: 6.4
GT/s;
Memory: 76
GB/s

16 TB L1: 64 KB
L2: 256KB
L3: 24MB

Intel Core i7-
2600K
Processor

2011 Intel Turbo Boost
Technology, Intel
microarchitecture
code name Sandy
Bridge; Four core;
HyperThreading
Technology; Intel 64
Architecture;
Intel Virtualization
Technology.,
Processor graphics,
Quicksync Video

3.40 GHz 995M GP: 32, 64
FPU: 80
MMX: 64
XMM: 128
YMM: 256

DMI: 5 GT/s;
Memory: 21
GB/s

64 GB L1: 64 KB
L2: 256KB
L3: 8MB

Intel Xeon-
Processor E3-
1280

2011 Intel Turbo Boost
Technology, Intel
microarchitecture
code name Sandy
Bridge; Four core;
HyperThreading
Technology; Intel 64
Architecture;
Intel Virtualization
Technology.

3.50 GHz GP: 32, 64
FPU: 80
MMX: 64
XMM: 128
YMM: 256

DMI: 5 GT/s;
Memory: 21
GB/s

1 TB L1: 64 KB
L2: 256KB
L3: 8MB

Intel Xeon-
Processor E7-
8870

2011 Intel Turbo Boost
Technology, Intel
microarchitecture
code name Westmere;
Ten core;
HyperThreading
Technology; Intel 64
Architecture;
Intel Virtualization
Technology.

2.40 GHz 2.2B GP: 32, 64
FPU: 80
MMX: 64
XMM: 128

QPI: 6.4
GT/s;
Memory:
102 GB/s

16 TB L1: 64 KB
L2: 256KB
L3: 30MB

Table 2-2. Key Features of Most Recent Intel 64 Processors (Contd.)

Intel
Processor

Date
Intro-
duced

Micro-
architec-ture

Top-Bin
Fre-
quency
at Intro-
duction

Tran-
sistor
s

Register
Sizes

System
Bus/QP
I Link
Speed

Max.
Extern
. Addr.
Space

On-Die
Caches

48

•  This is a general
depiction of a von
Neumann system:

•  These computers
employ a fetch-
decode-execute
cycle to run
programs as
follows . . .

1.7 The von Neumann Model

3-3

BASIC EXECUTION ENVIRONMENT

Figure 3-1. IA-32 Basic Execution Environment

0

232 -1

Eight 32-bit

32-bits

32-bits

General-Purpose Registers

Segment Registers

EFLAGS Register

EIP (Instruction Pointer Register)

Address Space*

*The address space can be

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

flat or segmented. Using

XMM RegistersEight 128-bit
Registers

16-bits Control Register

16-bits Status Register

48-bits FPU Instruction Pointer Register

48-bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

SSE and SSE2 Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16-bits Tag Register

the physical address
extension mechanism, a
physical address space of
236 -1 can be addressed.

3-10

BASIC EXECUTION ENVIRONMENT

3.4.2. Segment Registers

The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors. A segment
selector is a special pointer that identifies a segment in memory. To access a particular segment
in memory, the segment selector for that segment must be present in the appropriate segment
register.

When writing application code, programmers generally create segment selectors with assembler
directives and symbols. The assembler and other tools then create the actual segment selector
values associated with these directives and symbols. If writing system code, programmers may
need to create segment selectors directly. (A detailed description of the segment-selector data
structure is given in Chapter 3, Protected-Mode Memory Management, of the Intel Architecture
Software Developer’s Manual, Volume 3.)

How segment registers are used depends on the type of memory management model that the
operating system or executive is using. When using the flat (unsegmented) memory model, the
segment registers are loaded with segment selectors that point to overlapping segments, each of
which begins at address 0 of the linear address space (as shown in Figure 3-5). These overlap-
ping segments then comprise the linear address space for the program. (Typically, two overlap-
ping segments are defined: one for code and another for data and stacks. The CS segment
register points to the code segment and all the other segment registers point to the data and stack
segment.)

When using the segmented memory model, each segment register is ordinarily loaded with a
different segment selector so that each segment register points to a different segment within the
linear address space (as shown in Figure 3-6). At any time, a program can thus access up to six
segments in the linear address space. To access a segment not pointed to by one of the segment
registers, a program must first load the segment selector for the segment to be accessed into a
segment register.

Figure 3-4. Alternate General-Purpose Register Names

071531 16 8

AH AL

BH BL

CH CL

DH DL

BP

SI

DI

SP

16-bit

AX

DX

CX

BX

32-bit

EAX

EBX

ECX

EDX

EBP

ESI

ESP

General-Purpose Registers

EDI

3-9

BASIC EXECUTION ENVIRONMENT

• EIP (instruction pointer) register. The EIP register contains a 32-bit pointer to the next
instruction to be executed.

3.4.1. General-Purpose Registers

The 32-bit general-purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are
provided for holding the following items:

• Operands for logical and arithmetic operations

• Operands for address calculations

• Memory pointers.

Although all of these registers are available for general storage of operands, results, and
pointers, caution should be used when referencing the ESP register. The ESP register holds the
stack pointer and as a general rule should not be used for any other purpose.

Many instructions assign specific registers to hold operands. For example, string instructions
use the contents of the ECX, ESI, and EDI registers as operands. When using a segmented
memory model, some instructions assume that pointers in certain registers are relative to
specific segments. For instance, some instructions assume that a pointer in the EBX register
points to a memory location in the DS segment.

The special uses of general-purpose registers by instructions are described in Chapter 5, Instruc-
tion Set Summary, in this volume and Chapter 3, Instruction Set Reference, in the Intel Architec-
ture Software Developer’s Manual, Volume 2. The following is a summary of these special uses:

• EAX—Accumulator for operands and results data.

• EBX—Pointer to data in the DS segment.

• ECX—Counter for string and loop operations.

• EDX—I/O pointer.

• ESI—Pointer to data in the segment pointed to by the DS register; source pointer for string
operations.9

• EDI—Pointer to data (or destination) in the segment pointed to by the ES register;
destination pointer for string operations.

• ESP—Stack pointer (in the SS segment).

• EBP—Pointer to data on the stack (in the SS segment).

As shown in Figure 3-4, the lower 16 bits of the general-purpose registers map directly to the
register set found in the 8086 and Intel 286 processors and can be referenced with the names
AX, BX, CX, DX, BP, SP, SI, and DI. Each of the lower two bytes of the EAX, EBX, ECX, and
EDX registers can be referenced by the names AH, BH, CH, and DH (high bytes) and AL, BL,
CL, and DL (low bytes).

“Hello World” in Linux Assembly

• Use your favorite UNIX editor (vi, emacs, pico, ...)

• Assemble using NASM on gl.umbc.edu
nasm -f elf hello.asm

• NASM documentation is on-line.

• Need to “load” the object file
ld hello.o

• Execute
a.out

• CMSC 121 Introduction to UNIX
UMBC, CMSC313, Richard Chang <chang@umbc.edu>

ADDRESSING MODES

80x86 Addressing Modes
• We want to store the value 1734h.
• The value 1734h may be located in a register

or in memory.
• The location in memory might be specified

by the code, by a register, …
• Assembly language syntax for MOV

MOV DEST, SOURCE

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register from Register

MOV EAX, ECX

Data

Code

.

.

.

MOV…

1734

Addressing Modes

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register from Register Indirect

MOV EAX, [ECX]

Data

Code

.

.

.

MOV…

08A94068

1734

Addressing Modes

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register from Memory

MOV EAX, [08A94068]

MOV EAX, [x]

Data

Code

.

.

.

08A94068
MOV…

1734

Addressing Modes

x

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register from Immediate

MOV EAX, 1734

Data

Code

.

.

.

1734
MOV…

Addressing Modes

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register Indirect from Immediate

MOV [EAX], DWORD 1734

Data

Code

.

.

.

1734
MOV…08A94068

Addressing Modes

EAX!
EBX!
ECX!
EDX!
EBP!
ESI!
EDI!
ESP!

EIP!

Memory from Immediate!

MOV ![08A94068], DWORD 1734!

MOV [x], DWORD 1734!

Data!

Code!

.!

.!

.!

1734!

MOV…!
08A94068!

Addressing Modes!

x!

Notes on Addressing Modes
• More complicated addressing modes later:

MOV EAX, [ESI+4*ECX+12]

• Figures not drawn to scale. Constants 1734h
and 08A94068h take 4 bytes (little endian).

• Some addressing modes are not supported
by some operations.

• Labels represent addresses not contents of
memory.

toupper.asm

• Prompt for user input.

• Use Linux system call to get user input.

• Scan each character of user input and convert all
lower case characters to upper case.

• How to:
work with 8-bit data

specify ASCII constant

compare values

loop control

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

THE GDB DEBUGGER

Debugging Assembly Language Programs

• Cannot just put print statements everywhere.

• Use gdb to:
examine contents of registers

exmaine contents of memory

set breakpoints

single-step through program

• READ THE GDB SUMMARY ONLINE!

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Summary of gdb commands

Command Example Description

run start program

quit quit out of gdb

cont continue execution after a break

break [addr] break *_start+5 sets a breakpoint

delete [n] delete 4 removes nth breakpoint

delete removes all breakpoints

info break lists all breakpoints

list _start list a few lines of the source code around _start

list 7 list 10 lines of the source code starting on line 7

list 7, 20 list lines 7 thru 20 of the source code

stepi execute next instruction

stepi [n] stepi 4 execute next n instructions

nexti execute next instruction, stepping over function calls

nexti [n] nexti 4 execute next n instructions, stepping over function calls

where show where execution halted

disas [addr] disas _start disassemble instructions at given address

info registers dump contents of all registers

print/d [expr] print/d $ecx print expression in decimal

print/x [expr] print/x $ecx print expression in hex

print/t [expr] print/t $ecx print expression in binary

x/NFU [addr] x/12xw &msg Examine contents of memory in given format

display [expr] display $eax automatically print the expression each time the program is halted

info display show list of automatically displays

undisplay [n] undisplay 1 remove an automatic display

Next Time

• Overview of i386 instruction set.

• Arithmetic instructions, logical instructions.

• EFLAGS register

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

