CMSC 313 COMPUTER ORGANIZATION \& ASSEMBLY LANGUAGE PROGRAMMING

LECTURE 02, FALL 2012

ANNOUNCEMENTS

TA Office Hours (ITE 334):

Genaro Hernandez, Jr
Roshan Ghumare

Mon 10am - 12noon
Wed 10am - 12noon

Prof. Chang Office Hours (ITE 326):
Tue 10am - 11am
Thu 10:00am-11:00am 10:30am - 11:30am

TOPICS TODAY

- Bits of Memory
- Data formats for negative numbers
- Modulo arithmetic \& two's complement
- Floating point formats (briefly)
- Characters \& strings

BITS OF MEMORY

Random Access Memory (RAM)

- A single byte of memory holds 8 binary digits (bits).
- Each byte of memory has its own address.
- A 32-bit CPU can address 4 gigabytes of memory, but a machine may have much less (e.g., 256MB).
- For now, think of RAM as one big array of bytes.
- The data stored in a byte of memory is not typed.
- The assembly language programmer must remember whether the data stored in a byte is a character, an unsigned number, a signed number, part of a multi-byte number, ...

Common Sizes for Data Types

- A byte is composed of 8 bits. Two nibbles make up a byte.
- Halfwords, words, doublewords, and quadwords are composed of bytes as shown below:

Bit	0
Nibble	0110
Byte	10110000
16-bit word (halfword)	1100100101000110
32-bit word	10110100 001101011001100101011000
64-bit word (double)	
	11001110 11101110 0111100000110101
128-bit word (quad)	01011000 01010101 1011000011110011 1
	10100100 010001001010010101010001

5.2 Instruction Formats

- Byte ordering, or endianness, is another major architectural consideration.
- If we have a two-byte integer, the integer may be stored so that the least significant byte is followed by the most significant byte or vice versa.
- In little endian machines, the least significant byte is followed by the most significant byte.
- Big endian machines store the most significant byte first (at the lower address).

5.2 Instruction Formats

- As an example, suppose we have the hexadecimal number 12345678.
- The big endian and small endian arrangements of the bytes are shown below.

Address	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 0}$	$\mathbf{1 1}$
Big Endian	12	34	56	78
Little Endian	78	56	34	12

5.2 Instruction Formats

- Big endian:
- Is more natural.
- The sign of the number can be determined by looking at the byte at address offset 0 .
- Strings and integers are stored in the same order.
- Little endian:
- Makes it easier to place values on non-word boundaries.
- Conversion from a 16-bit integer address to a 32-bit integer address does not require any arithmetic.

NEGATIVE NUMBERS

SIGNED INTEGER FORMATS

- Signed magnitude
- One's complement
- Two's complement
- Excess (biased)

SIGNED MAGNITUDE

- Store sign in leftmost bit, 1 = negative
- Example (8-bits):

$$
\begin{aligned}
37 & =00100101 \\
-37 & =10100101
\end{aligned}
$$

ONE'S COMPLEMENT

- Negate by flipping each bit
- Example (8-bits):

$$
\begin{aligned}
37 & =00100101 \\
-37 & =11011010
\end{aligned}
$$

TWO'S COMPLEMENT

- Negate by flipping each bit and adding 1
- Example (8-bits):

$$
37=00100101
$$

$$
\begin{array}{r}
11011010 \\
+\quad 1 \\
\hline 11011011
\end{array}=-37
$$

EXCESS (BIASED)

- Add bias to two's complement
- Example (8-bit excess 128):

$$
37 \begin{array}{r}
00100101 \\
11011010 \\
+\quad 1 \\
\hline 11011011 \\
+10000000 \\
\hline 01011011
\end{array}=-37 .
$$

Example: Convert -123

- Signed Magnitude
$123_{10}=64+32+16+8+2+1=01111011_{2}$
$-123_{10}=>11111011_{2}$
- One's Complement (flip the bits)

$$
-123_{10}=>10000100_{2}
$$

- Two's Complement (add 1 to one's complement)

$$
-123_{10} \Rightarrow 10000101_{2}
$$

- Excess 128 (add 128 to two's complement)

$$
-123_{10}=>00000101_{2}
$$

PICKING A FORMAT

How do you

- check for negative numbers?
- test if a number is zero?
- add \& subtract positive \& negative numbers?
- determine if an overflow has occurred?
- check if one number is larger than another?

Implemented in hardware: simpler = better

3-bit Signed Integer Representations

Decimal	Unsigned	Sign Mag	1's Comp	2’s Comp	Excess 4
7	111				
6	110				
5	101			011	011
4	100	011	011	010	010
2	010	001	001	001	001
2	000	$000 / 100$	$000 / 111$	000	100
1	101	110	111	011	
0		110	101	110	010
-1		111	100	101	001
-2				100	000
-3					
-4					

2.4 Signed Integer Representation

- Binary addition is as easy as it gets. You need to know only four rules:

$$
\begin{array}{ll}
0+0=0 & 0+1=1 \\
1+0=1 & 1+1=10
\end{array}
$$

- The simplicity of this system makes it possible for digital circuits to carry out arithmetic operations.
- We will describe these circuits in Chapter 3.

Let's see how the addition rules work with signed magnitude numbers...

2.4 Signed Integer Representation

- Example:
- Using signed magnitude binary arithmetic, find the sum of 75 and 46 .

```
0 1001011
0 + 0101110
```

- First, convert 75 and 46 to binary, and arrange as a sum, but separate the (positive) sign bits from the magnitude bits.

2.4 Signed Integer Representation

- Example:
- Using signed magnitude binary

1
0
01011
0
$0 \quad 0101110$
1111001

- Once we have worked our way through all eight bits, we are done.

In this example, we were careful to pick two values whose sum would fit into seven bits. If that is not the case, we have a problem.

2.4 Signed Integer Representation

- Example:
- Using signed magnitude binary arithmetic, find the sum of 107 and 46.
- We see that the carry from the seventh bit overflows and is
 discarded, giving us the erroneous result: $107+46=25$.

2.4 Signed Integer Representation

- The signs in signed magnitude representation work just like the signs in pencil and paper arithmetic.
- Example: Using signed 11000111 magnitude binary arithmetic, find the sum of - 46 and -25 .
- Because the signs are the same, all we do is add the numbers and supply the negative sign when we are done.

2.4 Signed Integer Representation

- Mixed sign addition (or subtraction) is done the same way.
- Example: Using signed magnitude binary arithmetic, find the sum of 46 and -25 .
- The sign of the result gets the sign of the number that is larger.
- Note the "borrows" from the second and sixth bits.

2.4 Signed Integer Representation

- Signed magnitude representation is easy for people to understand, but it requires complicated computer hardware.
- Another disadvantage of signed magnitude is that it allows two different representations for zero: positive zero and negative zero.
- For these reasons (among others) computers systems employ complement systems for numeric value representation.

2.4 Signed Integer Representation

- For example, using 8-bit one' s complement representation:
+3 is: 00000011
- 3 is: 11111100
- In one' s complement representation, as with signed magnitude, negative values are indicated by a 1 in the high order bit.
- Complement systems are useful because they eliminate the need for subtraction. The difference of two values is found by adding the minuend to the complement of the subtrahend.

2.4 Signed Integer Representation

- With one' s complement addition, the carry bit is "carried around" and added to the sum.
- Example: Using one’s complement binary arithmetic, find the sum of 48 and - 19

$\begin{array}{ll}\text { We note that } 19 \text { in binary is } & 00010011, \\ \text { so }-19 \text { in one's scomplement is: } & 11101100 .\end{array}$

2.4 Signed Integer Representation

- Although the "end carry around" adds some complexity, one's complement is simpler to implement than signed magnitude.
- But it still has the disadvantage of having two different representations for zero: positive zero and negative zero.
- Two' s complement solves this problem.
- Two' s complement is the radix complement of the binary numbering system; the radix complement of a non-zero number N in base r with d digits is $r^{d}-N$.

8-bit Two's Complement Addition

$$
\begin{aligned}
54_{10} & =00110110 \\
+\quad-48_{10} & =11010000 \\
\hline 6_{10} & =00000110
\end{aligned}
$$

$$
\begin{aligned}
44_{10} & =00101100 \\
+\quad-48_{10} & =11010000 \\
\hline-4_{10} & =11111100
\end{aligned}
$$

$$
\begin{aligned}
-44_{10} & =11010100 \\
+\quad-48_{10} & =11010000 \\
\hline-92_{10} & =10100100
\end{aligned}
$$

Two's Complement Overflow

- An overflow occurs if adding two positive numbers yields a negative result or if adding two negative numbers yields a positive result.
- Adding a positive and a negative number never causes an overflow.
- Carry out of the most significant bit does not indicate an overflow.
- An overflow occurs when the carry into the most significant bit differs from the carry out of the most significant bit.

Two's Complement Overflow Examples

$$
\begin{aligned}
& 54_{10}=00110110 \\
&+\quad 108_{10}=01101100 \\
& \hline 162_{10} \neq 10100010
\end{aligned} \quad \begin{aligned}
-103_{10} & =10011001 \\
+-48_{10} & =11010000 \\
\hline-151_{10} & \neq 01101001
\end{aligned}
$$

Two's Complement Sign Extension

Decimal					8 -bit	
+5	0000	0101	0000	0000	0000	0101
-5	1111	1011		1111	1111	1111

- Why does sign extension work?
$-x$ is represented as 2^{8-x} in 8 -bit
$-x$ is represented as $216-x$ in 16-bit
$28-x+? ? ?=216-x$
??? = $216-2^{8}$

| 10000000000000000 | $=65536$ |
| ---: | ---: | :--- |
| -100000000 | $=256$ |
| 1111111100000000 | $=65280$ |

MODULO ARITHMETIC

Is Two's Complement "Magic"?

- Why does adding positive and negative numbers work?
- Why do we add 1 to the one's complement to negate?
- Answer: Because modulo arithmetic works.

Modulo Arithmetic

- Definition: Let a and b be integers and let m be a positive integer. We say that $a \equiv b(\bmod m)$ if the remainder of a divided by m is equal to the remanider of b divided by m.
- In the C programming language, $a \equiv b(\bmod m)$ would be written

$$
\text { a } \% \mathrm{~m}=\mathrm{b} \% \mathrm{~m}
$$

- We use the theorem:

$$
\begin{aligned}
& \text { If } a \equiv b(\bmod m) \text { and } c \equiv d(\bmod m) \\
& \text { then } a+c \equiv b+d(\bmod m) .
\end{aligned}
$$

A Theorem of Modulo Arithmetic
Thm: If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ then $a+c \equiv b+d(\bmod m)$.
Example: Let $m=8, a=3, b=27, c=2$ and $d=18$.

$$
\begin{aligned}
& 3 \equiv 27(\bmod 8) \text { and } 2 \equiv 18(\bmod 8) \\
& 5 \equiv 45(\bmod 8)
\end{aligned}
$$

Proof: Write $a=q_{a} m+r_{a}, b=q_{b} m+r_{b}, c=q_{c} m+r_{c}$ and $d=q_{d} m+r_{d}$, where r_{a}, r_{b}, r_{c} and r_{d} are between 0 and $m-1$. Then,

$$
\begin{aligned}
a+c & =\left(q_{a}+q_{c}\right) m+r_{a}+r_{c} \\
b+d & =\left(q_{b}+q_{d}\right) m+r_{b}+r_{d}=\left(q_{b}+q_{d}\right) m+r_{a}+r_{c} .
\end{aligned}
$$

Thus, $a+c \equiv r_{a}+r_{c} \equiv b+d(\bmod m)$.

Consider Numbers Modulo 256

$$
\begin{aligned}
00000000_{2} & =0 \equiv-256 \equiv 256 \equiv 512 \\
0000001_{2} & =1 \equiv-255 \equiv 257 \equiv 513 \\
00000010_{2} & =2 \equiv-254 \equiv 258 \equiv 514 \\
\vdots & \\
00001111_{2} & =15 \equiv-241 \equiv 271 \equiv 527 \\
\vdots & \\
01111111_{2} & =127 \equiv-129 \equiv 383 \equiv 639 \\
10000000_{2} & =128 \equiv-128 \equiv 384 \equiv 640 \\
\vdots & \\
10001111_{2} & =143 \equiv-113 \equiv 399 \equiv 655 \\
\vdots & \\
11110011_{2} & =243 \equiv-13 \equiv 499 \equiv 755 \\
\vdots & \\
11111111_{2} & =255 \equiv-1 \equiv 511 \equiv 767
\end{aligned}
$$

If $0000 \mathbf{0 0 0 0}_{2}$ thru 01111111_{2} represents 0 thru 127 and 10000000_{2} thru 11111111_{2} represents -128 thru -1 , then the most significant bit can be used to determine the sign.

Some Answers

- In 8 -bit two's complement, we use addition modulo $2^{8}=256$, so adding 256 or subtracting 256 is equivalent to adding 0 or subtracting 0 .
- To negate a number $x, 0 \leq x \leq 128$:

$$
-x=0-x \equiv 256-x=(255-x)+1=\left(11111111_{2}-x\right)+1
$$

Note that $11111111_{2}-x$ is the one's complement of x.

- Now we can just add positive and negative numbers. For example:

$$
3+(-5) \equiv 3+(256-5)=3+251=254 \equiv 254-256=-2
$$

or two negative numbers (as long as there's no overflow):

$$
(-3)+(-5) \equiv(256-3)+(256-5)=504 \equiv 504-512=-8 .
$$

FLOATING POINT NUMBERS

2.5 Floating-Point Representation

- Floating-point numbers allow an arbitrary number of decimal places to the right of the decimal point.
- For example: $0.5 \times 0.25=0.125$
- They are often expressed in scientific notation.
- For example:

$$
\begin{aligned}
& 0.125=1.25 \times 10^{-1} \\
& 5,000,000=5.0 \times 10^{6}
\end{aligned}
$$

2.5 Floating-Point Representation

- Computers use a form of scientific notation for floating-point representation
- Numbers written in scientific notation have three components:

```
Sign Mantissa Exponent
    +1.25\times10-1
```


2.5 Floating-Point Representation

- Computer representation of a floating-point number consists of three fixed-size fields:

- This is the standard arrangement of these fields.

```
Note: Although "significand" and "mantissa" do not technically mean the same
thing, many people use these terms interchangeably. We use the term "significand" to
refer to the fractional part of a floating point number.
```


2.5 Floating-Point Representation

- The one-bit sign field is the sign of the stored value.
- The size of the exponent field determines the range of values that can be represented.
- The size of the significand determines the precision of the representation.

IEEE-754 32-bit Floating Point Format

- sign bit, 8-bit exponent, 23-bit mantissa
- normalized as 1.xxxxx
- leading 1 is hidden
- 8-bit exponent in excess 127 format

NOT excess 128
00000000 and 11111111 are reserved

- +0 and -0 is zero exponent and zero mantissa
- 11111111 exponent and zero mantissa is infinity

2.5 Floating-Point Representation

- Example: Express -3.75 as a floating point number using IEEE single precision.
- First, let's normalize according to IEEE rules:
$-3.75=-11.11_{2}=-1.111 \times 2^{1}$
- The bias is 127 , so we add $127+1=128$ (this is our exponent)

| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :--- | (implied)

- Since we have an implied 1 in the significand, this equates to

$$
-(1) .111_{2} \times 2{ }^{(128-127)}=-1.111_{2} \times 2^{1}=-11.11_{2}=-3.75
$$

2.5 Floating-Point Representation

- Using the IEEE-754 single precision floating point standard:
- An exponent of 255 indicates a special value.
- If the significand is zero, the value is \pm infinity.
- If the significand is nonzero, the value is NaN, "not a number," often used to flag an error condition.
- Using the double precision standard:
- The "special" exponent value for a double precision number is 2047, instead of the 255 used by the single precision standard.

CHARACTERS \& STRINGS

2.6 Character Codes

- Calculations aren' t useful until their results can be displayed in a manner that is meaningful to people.
- We also need to store the results of calculations, and provide a means for data input.
- Thus, human-understandable characters must be converted to computer-understandable bit patterns using some sort of character encoding scheme.

2.6 Character Codes

- As computers have evolved, character codes have evolved.
- Larger computer memories and storage devices permit richer character codes.
- The earliest computer coding systems used six bits.
- Binary-coded decimal (BCD) was one of these early codes. It was used by IBM mainframes in the 1950s and 1960s.

2.6 Character Codes

- In 1964, BCD was extended to an 8-bit code, Extended Binary-Coded Decimal Interchange Code (EBCDIC).
- EBCDIC was one of the first widely-used computer codes that supported upper and lowercase alphabetic characters, in addition to special characters, such as punctuation and control characters.
- EBCDIC and BCD are still in use by IBM mainframes today.

EBCDIC Character Code

- EBCDIC is an 8-bit code.

STX	Start of text	RS	Reader Stop
DLE	Data Link Escape	PF	Punch Off
BS	Backspace	DS	Digit Select
ACK	Acknowledge	PN	Punch On
SOH	Start of Heading	SM	Set Mode
ENQ	Enquiry	LC	Lower Case
ESC	Escape	CC	Cursor Control
BYP	Bypass	CR Carriage Return	
CAN	Cancel	EM End of Medium	
RES	Restore	FF	Form Feed
SI	Sift In	TM Tape Mark	
SO	Shift Out	UC Upper Case	
DEL	Delete	FS Field Separator	
SUB	Substitute	HT Horizontal Tab	
NL	New Line	VT Vertical Tab	
LF	Line Feed	UC Upper Case	

2.6 Character Codes

- Other computer manufacturers chose the 7-bit ASCII (American Standard Code for Information Interchange) as a replacement for 6-bit codes.
- While BCD and EBCDIC were based upon punched card codes, ASCII was based upon telecommunications (Telex) codes.
- Until recently, ASCII was the dominant character code outside the IBM mainframe world.

ASCII Character Code

- ASCII is a 7-bit code, commonly stored in 8-bit bytes.
- " A " is at 41_{16}. To convert upper case letters to lower case letters, add 20_{16}. Thus "a" is at $41_{16}+$ $20_{16}=61_{16}$.
- The character " 5 " at position 35_{16} is different than the number 5. To convert character-numbers into number-numbers, subtract $30_{16}: 35_{16}-30_{16}=5$.

00 NUL	10 DLE	20	SP	30	0	40	@	50	P	60		70
01 SOH	11 DC1	21	!	31	1	41	A	51	Q	61	a	71
02 STX	12 DC 2	22	"	32	2	42	B	52	R	62	b	72
03 ETX	13 DC3	23	\#	33	3	43	C	53	S	63	c	73
04 EOT	14 DC4	24	\$	34	4	44	D	54	T	64	d	74
05 ENQ	15 NAK	25	\%	35	5	45	E	55	U	65	e	75
06 ACK	16 SYN	26	\&	36	6	46	F	56	V	66	f	76
07 BEL	17 ETB	27		37	7	47	G	57	W	67	g	77
08 BS	18 CAN	28	(38	8	48	H	58	X	68	h	78
09 HT	19 EM	29)	39	9	49	I	59	Y	69	i	79
0A LF	1A SUB	2A	*	3A	:	4A	J	5A	Z	6A	j	7A
0B VT	1B ESC	2B	+	3B	;	4B	K	5B		6B	k	7B
0 CFF	1C FS	2 C		3C	<	4C	L	5C	\}	6 C	1	7 C
0D CR	1D GS	2D	-	3D	$=$	4D	M	5D]	6D	m	7D
0E SO	1E RS	2E		3E	>	4E	N	5E	-	6 E	n	7E
0F SI	1 F US	2F	1	3F	?	4F	O	5F	-	6F	o	7F DEL

NUL	Null	FF	Form feed	CAN	Cancel
SOH	Start of heading	CR	Carriage return	EM	End of medium
STX	Start of text	SO	Shift out	SUB	Substitute
ETX	End of text	SI	Shift in	ESC	Escape
EOT	End of transmission	DLE	Data link escape	FS	File separator
ENQ	Enquiry	DC1	Device control 1	GS	Group separator
ACK	Acknowledge	DC2	Device control 2	RS	Record separator
BEL	Bell	DC3	Device control 3	US	Unit separator
BS	Backspace	DC4	Device control 4	SP	Space
HT	Horizontal tab	NAK	Negative acknowledge	DEL	Delete
LF	Line feed	SYN	Synchronous idle		
VT	Vertical tab	ETB	End of transmission block		

2.6 Character Codes

- Many of today’s systems embrace Unicode, a 16bit system that can encode the characters of every language in the world.
- The Java programming language, and some operating systems now use Unicode as their default character code.
- The Unicode codespace is divided into six parts. The first part is for Western alphabet codes, including English, Greek, and Russian.

2.6 Character Codes

- The Unicode codespace allocation is shown at the right.
- The lowest-numbered Unicode characters comprise the ASCII code.
- The highest provide for user-defined codes.

Character Types	Language	Number of Characters	Hexadecimal Values
Alphabets	Latin, Greek, Cyrillic, etc.	8192	0000 to 1FFF
Symbols	Dingbats, Mathematical, etc.	4096	2000 to 2FFF
CJK	Chinese, Japanese, and Korean phonetic symbols and punctuation.	4096	3000 to
Han	Unified Chinese, Japanese, and Korean	40,960	4000 to DFFF
	Han Expansion		
User Defined	4096	E000 to EFFF	

Chapter 2: Data Representation

Unicode Character Code

- Unicode is a 16bit code.

0000 NUL	0020	SP	0040 @	0060	0080 Ctrl	00A0 NBS	00C0 A	00E0 à
0001 SOH	0021	$!$	0041 A	0061 a	0081 Ctrl	00A1	00 C 1 Á	00E1 á
0002 STX	0022	"	0042 B	0062 b	0082 Ctrl	00A2 ¢	00 C 2 A	O0E2 â
0003 ETX	0023	\#	0043 C	0063 c	0083 Ctrl	00A3 £	00C3 Ã	00E3 ã
0004 EOT	0024	\$	0044 D	0064 d	0084 Ctrl	00A4 ¢	00 C 4 Ä	00E4 ä
0005 ENQ	0025	\%	0045 E	0065 e	0085 Ctrl	00A5 $¥$	00C5 \AA	00E5 å
0006 ACK	0026	\&	0046 F	0066 f	0086 Ctrl	00A6	00C6 Æ	00E6 æ
0007 BEL	0027		0047 G	0067 g	0087 Ctrl	00A7 §	00C7 Ç	00E7 ç
0008 BS	0028	(0048 H	0068 h	0088 Ctrl	00A8	00 C 8 E	00E8 è
0009 HT	0029)	0049 I	0069	0089 Ctrl	00A9 ©	00C9 É	00E9 é
000A LF	002A	*	004A J	006A j	008A Ctrl	00AA ${ }^{\text {a }}$	00CA E	00EA ê
000B VT	002B	+	004B K	006B k	008B Ctrl	00 AB «	00 CB Ë	00EB ë
000C FF	002C		004C L	006C 1	008C Ctrl	00 AC ᄀ	00 CC Ì	00EC ì
000D CR	002D	-	004D M	006D m	008D Ctrl	00AD -	00CD	00ED
000E SO	002E		004E N	006E n	008E Ctrl	00AE ®	00CE Î	00EE
000F SI	002F	1	004F O	006F o	008F Ctrl	00AF	00CF Ï	00EF ï
0010 DLE	0030	0	0050 P	0070 p	0090 Ctrl	00B0	00D0 Đ	00F0 ¢
0011 DC1	0031	1	0051 Q	0071 q	0091 Ctrl	$00 \mathrm{B1} \pm$	00D1 Ñ	00F1
0012 DC2	0032	2	0052 R	0072	0092 Ctrl	00B2	00D2 Ò	00F2 ò
0013 DC3	0033	3	0053 S	0073	0093 Ctrl	00B3	00D3 Ó	00F3 ó
0014 DC4	0034	4	0054 T	0074	0094 Ctrl	00B4	00D4 Ô	00F4 ô
0015 NAK	0035	5	0055 U	0075 u	0095 Ctrl	00B5 μ	00D5 Õ	00F5 ${ }^{\text {on }}$
0016 SYN	0036	6	0056 V	0076 v	0096 Ctrl	00B6 J	00D6 Ö	00F6 ö
0017 ETB	0037	7	0057 W	0077 w	0097 Ctrl	00B7	00D7 \times	00F7 \div
0018 CAN	0038	8	0058 X	0078 x	0098 Ctrl	00B8	00D8 Ø	00F8 ø
0019 EM	0039	9	0059 Y	0079 y	0099 Ctrl	00B9	00D9 Ù	00F9 ù
001A SUB	003A	:	005A Z	007A z	009A Ctrl	00BA	00DA Ú	00FA ú
001B ESC	003B	;	005B [007B \{	009B Ctrl	00BB	00DB Û	00 FB û
001C FS	003C	$<$	005C \}	007C	009C Ctrl	00BC 1/4	00DC Ü	00 FC ü
001D GS	003D	$=$	005D]	007D \}	009D Ctrl	00BD 1/2	00DD Ý	00FD Р
001E RS	003E	>	005E ^	007E	009E Ctrl	00BE 3/4	00DE y	00FE p
001F US	003F	?	005F	007F DEL	009F Ctrl	00BF i	00DF §	00FF ${ }^{\text {y }}$
NUL Null		SOH Start of heading			CAN Cancel		SP Space	
STX Start of	Start of text	EOT	End of transmission		EM E	End of medium	DEL	Delete
End of text		DC1	Device control 1		SUB S	Substitute	Ctrl	Control
ENQ Enquir	Enquiry	DC2 Device control 2			ESC E	Escape	FF	Form feed
Acknowledge			DC3 Device control		FS	File separator	CR	Carriage return
Bell		DC4 Device control			GS	Group separator	- SO	Shift out
Backspace		NAK Negative acknowledge			RS R	Record separator	or SI	Shift in
Horizontal tab		NBS Non-br		king space	US U	Unit separator	DLE	Data link escape
Line feed		ETB End of		ansmission block	ock SYN S	Synchronous idl	dle VT	Vertical tab

Principles of Computer Architecture by M. Murdocca and V. Heuring
© 1999 M. Murdocca and V. Heuring

NEXT TIME

- Basic Intel i-386 architecture
- "Hello World" in Linux assembly
- Addressing modes

CMSC 441 ALGORITHMS WITH PROF. KALPAKIS

MEETS IN ITE 233
(THIS ROOM IS ITE 229)

$$
\rightarrow \rightarrow
$$

