Due: Thursday, November 13, 2003

1. (10 points) Question A.12, page 494, Murdocca \& Heuring
2. (10 points) Question A.16, page 495, Murdocca \& Heuring
3. (10 points) Question A.17, page 495, Murdocca \& Heuring
4. (50 points) In the following, the notation $\sum m\left(x_{1}, \ldots, x_{j}\right)$ indicates a Boolean function that is the sum of the minterms x_{1}, \ldots, x_{j}, where x_{i} is the i th minterm in canonical ordering - i.e., the i th row of the truth table where the input values are ordered as binary numbers. Similarly,

$$
\sum m\left(x_{1}, \ldots, x_{j}\right)+d\left(y_{1}, \ldots, y_{k}\right)
$$

indicates a Boolean function that is the sum of the minterms x_{1}, \ldots, x_{j} and whose values for rows y_{1}, \ldots, y_{k} of the truth table are don't cares.

Minimize the following functions using Karnaugh maps. Then, write down a Boolean formula in sum-of-products or product-of-sums form for each function. Show your work (including the Karnaugh maps).
(a) $f(A, B, C)=\sum m(2,3,4,5)$
(b) $f(A, B, C, D)=\sum m(0,1,4,6,9,13,14,15)$
(c) $f(A, B, C, D)=\sum m(0,1,2,8,9,10,11,12,13,14,15)$
(d) $f(A, B, C, D)=\sum m(2,9,10,12,13)+d(1,5,14)$
(e) $f(A, B, C, D)=\sum m(1,3,6,7)+d(4,9,11)$

