REAL FUNCTION SOPLA( SUBNAM, M, N, KL, KU, NB ) * * -- LAPACK timing routine (version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * March 31, 1993 * * .. Scalar Arguments .. CHARACTER*6 SUBNAM INTEGER KL, KU, M, N, NB * .. * * Purpose * ======= * * SOPLA computes an approximation of the number of floating point * operations used by the subroutine SUBNAM with the given values * of the parameters M, N, KL, KU, and NB. * * This version counts operations for the LAPACK subroutines. * * Arguments * ========= * * SUBNAM (input) CHARACTER*6 * The name of the subroutine. * * M (input) INTEGER * The number of rows of the coefficient matrix. M >= 0. * * N (input) INTEGER * The number of columns of the coefficient matrix. * For solve routine when the matrix is square, * N is the number of right hand sides. N >= 0. * * KL (input) INTEGER * The lower band width of the coefficient matrix. * If needed, 0 <= KL <= M-1. * For xGEQRS, KL is the number of right hand sides. * * KU (input) INTEGER * The upper band width of the coefficient matrix. * If needed, 0 <= KU <= N-1. * * NB (input) INTEGER * The block size. If needed, NB >= 1. * * Notes * ===== * * In the comments below, the association is given between arguments * in the requested subroutine and local arguments. For example, * * xGETRS: N, NRHS => M, N * * means that arguments N and NRHS in SGETRS are passed to arguments * M and N in this procedure. * * ===================================================================== * * .. Local Scalars .. LOGICAL CORZ, SORD CHARACTER C1 CHARACTER*2 C2 CHARACTER*3 C3 INTEGER I REAL ADDFAC, ADDS, EK, EM, EMN, EN, MULFAC, MULTS, $ WL, WU * .. * .. External Functions .. LOGICAL LSAME, LSAMEN EXTERNAL LSAME, LSAMEN * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * -------------------------------------------------------- * Initialize SOPLA to 0 and do a quick return if possible. * -------------------------------------------------------- * SOPLA = 0 MULTS = 0 ADDS = 0 C1 = SUBNAM( 1: 1 ) C2 = SUBNAM( 2: 3 ) C3 = SUBNAM( 4: 6 ) SORD = LSAME( C1, 'S' ) .OR. LSAME( C1, 'D' ) CORZ = LSAME( C1, 'C' ) .OR. LSAME( C1, 'Z' ) IF( M.LE.0 .OR. .NOT.( SORD .OR. CORZ ) ) $ RETURN * * --------------------------------------------------------- * If the coefficient matrix is real, count each add as 1 * operation and each multiply as 1 operation. * If the coefficient matrix is complex, count each add as 2 * operations and each multiply as 6 operations. * --------------------------------------------------------- * IF( LSAME( C1, 'S' ) .OR. LSAME( C1, 'D' ) ) THEN ADDFAC = 1 MULFAC = 1 ELSE ADDFAC = 2 MULFAC = 6 END IF EM = M EN = N EK = KL * * --------------------------------- * GE: GEneral rectangular matrices * --------------------------------- * IF( LSAMEN( 2, C2, 'GE' ) ) THEN * * xGETRF: M, N => M, N * IF( LSAMEN( 3, C3, 'TRF' ) ) THEN EMN = MIN( M, N ) ADDS = EMN*( EM*EN-( EM+EN )*( EMN+1. ) / 2.+( EMN+1. )* $ ( 2.*EMN+1. ) / 6. ) MULTS = ADDS + EMN*( EM-( EMN+1. ) / 2. ) * * xGETRS: N, NRHS => M, N * ELSE IF( LSAMEN( 3, C3, 'TRS' ) ) THEN MULTS = EN*EM*EM ADDS = EN*( EM*( EM-1. ) ) * * xGETRI: N => M * ELSE IF( LSAMEN( 3, C3, 'TRI' ) ) THEN MULTS = EM*( 5. / 6.+EM*( 1. / 2.+EM*( 2. / 3. ) ) ) ADDS = EM*( 5. / 6.+EM*( -3. / 2.+EM*( 2. / 3. ) ) ) * * xGEQRF or xGEQLF: M, N => M, N * ELSE IF( LSAMEN( 3, C3, 'QRF' ) .OR. $ LSAMEN( 3, C3, 'QR2' ) .OR. $ LSAMEN( 3, C3, 'QLF' ) .OR. LSAMEN( 3, C3, 'QL2' ) ) $ THEN IF( M.GE.N ) THEN MULTS = EN*( ( ( 23. / 6. )+EM+EN / 2. )+EN* $ ( EM-EN / 3. ) ) ADDS = EN*( ( 5. / 6. )+EN*( 1. / 2.+( EM-EN / 3. ) ) ) ELSE MULTS = EM*( ( ( 23. / 6. )+2.*EN-EM / 2. )+EM* $ ( EN-EM / 3. ) ) ADDS = EM*( ( 5. / 6. )+EN-EM / 2.+EM*( EN-EM / 3. ) ) END IF * * xGERQF or xGELQF: M, N => M, N * ELSE IF( LSAMEN( 3, C3, 'RQF' ) .OR. $ LSAMEN( 3, C3, 'RQ2' ) .OR. $ LSAMEN( 3, C3, 'LQF' ) .OR. LSAMEN( 3, C3, 'LQ2' ) ) $ THEN IF( M.GE.N ) THEN MULTS = EN*( ( ( 29. / 6. )+EM+EN / 2. )+EN* $ ( EM-EN / 3. ) ) ADDS = EN*( ( 5. / 6. )+EM+EN* $ ( -1. / 2.+( EM-EN / 3. ) ) ) ELSE MULTS = EM*( ( ( 29. / 6. )+2.*EN-EM / 2. )+EM* $ ( EN-EM / 3. ) ) ADDS = EM*( ( 5. / 6. )+EM / 2.+EM*( EN-EM / 3. ) ) END IF * * xGEQPF: M, N => M, N * ELSE IF( LSAMEN( 3, C3, 'QPF' ) ) THEN EMN = MIN( M, N ) MULTS = 2*EN*EN + EMN*( 3*EM+5*EN+2*EM*EN-( EMN+1 )* $ ( 4+EN+EM-( 2*EMN+1 ) / 3 ) ) ADDS = EN*EN + EMN*( 2*EM+EN+2*EM*EN-( EMN+1 )* $ ( 2+EN+EM-( 2*EMN+1 ) / 3 ) ) * * xGEQRS or xGERQS: M, N, NRHS => M, N, KL * ELSE IF( LSAMEN( 3, C3, 'QRS' ) .OR. LSAMEN( 3, C3, 'RQS' ) ) $ THEN MULTS = EK*( EN*( 2.-EK )+EM*( 2.*EN+( EM+1. ) / 2. ) ) ADDS = EK*( EN*( 1.-EK )+EM*( 2.*EN+( EM-1. ) / 2. ) ) * * xGELQS or xGEQLS: M, N, NRHS => M, N, KL * ELSE IF( LSAMEN( 3, C3, 'LQS' ) .OR. LSAMEN( 3, C3, 'QLS' ) ) $ THEN MULTS = EK*( EM*( 2.-EK )+EN*( 2.*EM+( EN+1. ) / 2. ) ) ADDS = EK*( EM*( 1.-EK )+EN*( 2.*EM+( EN-1. ) / 2. ) ) * * xGEBRD: M, N => M, N * ELSE IF( LSAMEN( 3, C3, 'BRD' ) ) THEN IF( M.GE.N ) THEN MULTS = EN*( 20. / 3.+EN*( 2.+( 2.*EM-( 2. / 3. )* $ EN ) ) ) ADDS = EN*( 5. / 3.+( EN-EM )+EN* $ ( 2.*EM-( 2. / 3. )*EN ) ) ELSE MULTS = EM*( 20. / 3.+EM*( 2.+( 2.*EN-( 2. / 3. )* $ EM ) ) ) ADDS = EM*( 5. / 3.+( EM-EN )+EM* $ ( 2.*EN-( 2. / 3. )*EM ) ) END IF * * xGEHRD: N => M * ELSE IF( LSAMEN( 3, C3, 'HRD' ) ) THEN IF( M.EQ.1 ) THEN MULTS = 0. ADDS = 0. ELSE MULTS = -13. + EM*( -7. / 6.+EM*( 0.5+EM*( 5. / 3. ) ) ) ADDS = -8. + EM*( -2. / 3.+EM*( -1.+EM*( 5. / 3. ) ) ) END IF * END IF * * ---------------------------- * GB: General Banded matrices * ---------------------------- * Note: The operation count is overestimated because * it is assumed that the factor U fills in to the maximum * extent, i.e., that its bandwidth goes from KU to KL + KU. * ELSE IF( LSAMEN( 2, C2, 'GB' ) ) THEN * * xGBTRF: M, N, KL, KU => M, N, KL, KU * IF( LSAMEN( 3, C3, 'TRF' ) ) THEN DO 10 I = MIN( M, N ), 1, -1 WL = MAX( 0, MIN( KL, M-I ) ) WU = MAX( 0, MIN( KL+KU, N-I ) ) MULTS = MULTS + WL*( 1.+WU ) ADDS = ADDS + WL*WU 10 CONTINUE * * xGBTRS: N, NRHS, KL, KU => M, N, KL, KU * ELSE IF( LSAMEN( 3, C3, 'TRS' ) ) THEN WL = MAX( 0, MIN( KL, M-1 ) ) WU = MAX( 0, MIN( KL+KU, M-1 ) ) MULTS = EN*( EM*( WL+1.+WU )-0.5* $ ( WL*( WL+1. )+WU*( WU+1. ) ) ) ADDS = EN*( EM*( WL+WU )-0.5*( WL*( WL+1. )+WU*( WU+1. ) ) ) * END IF * * -------------------------------------- * PO: POsitive definite matrices * PP: Positive definite Packed matrices * -------------------------------------- * ELSE IF( LSAMEN( 2, C2, 'PO' ) .OR. LSAMEN( 2, C2, 'PP' ) ) THEN * * xPOTRF: N => M * IF( LSAMEN( 3, C3, 'TRF' ) ) THEN MULTS = EM*( 1. / 3.+EM*( 1. / 2.+EM*( 1. / 6. ) ) ) ADDS = ( 1. / 6. )*EM*( -1.+EM*EM ) * * xPOTRS: N, NRHS => M, N * ELSE IF( LSAMEN( 3, C3, 'TRS' ) ) THEN MULTS = EN*( EM*( EM+1. ) ) ADDS = EN*( EM*( EM-1. ) ) * * xPOTRI: N => M * ELSE IF( LSAMEN( 3, C3, 'TRI' ) ) THEN MULTS = EM*( 2. / 3.+EM*( 1.+EM*( 1. / 3. ) ) ) ADDS = EM*( 1. / 6.+EM*( -1. / 2.+EM*( 1. / 3. ) ) ) * END IF * * ------------------------------------ * PB: Positive definite Band matrices * ------------------------------------ * ELSE IF( LSAMEN( 2, C2, 'PB' ) ) THEN * * xPBTRF: N, K => M, KL * IF( LSAMEN( 3, C3, 'TRF' ) ) THEN MULTS = EK*( -2. / 3.+EK*( -1.+EK*( -1. / 3. ) ) ) + $ EM*( 1.+EK*( 3. / 2.+EK*( 1. / 2. ) ) ) ADDS = EK*( -1. / 6.+EK*( -1. / 2.+EK*( -1. / 3. ) ) ) + $ EM*( EK / 2.*( 1.+EK ) ) * * xPBTRS: N, NRHS, K => M, N, KL * ELSE IF( LSAMEN( 3, C3, 'TRS' ) ) THEN MULTS = EN*( ( 2*EM-EK )*( EK+1. ) ) ADDS = EN*( EK*( 2*EM-( EK+1. ) ) ) * END IF * * ---------------------------------- * PT: Positive definite Tridiagonal * ---------------------------------- * ELSE IF( LSAMEN( 2, C2, 'PT' ) ) THEN * * xPTTRF: N => M * IF( LSAMEN( 3, C3, 'TRF' ) ) THEN MULTS = 2*( EM-1 ) ADDS = EM - 1 * * xPTTRS: N, NRHS => M, N * ELSE IF( LSAMEN( 3, C3, 'TRS' ) ) THEN MULTS = EN*( 3*EM-2 ) ADDS = EN*( 2*( EM-1 ) ) * * xPTSV: N, NRHS => M, N * ELSE IF( LSAMEN( 3, C3, 'SV ' ) ) THEN MULTS = 2*( EM-1 ) + EN*( 3*EM-2 ) ADDS = EM - 1 + EN*( 2*( EM-1 ) ) END IF * * -------------------------------------------------------- * SY: SYmmetric indefinite matrices * SP: Symmetric indefinite Packed matrices * HE: HErmitian indefinite matrices (complex only) * HP: Hermitian indefinite Packed matrices (complex only) * -------------------------------------------------------- * ELSE IF( LSAMEN( 2, C2, 'SY' ) .OR. LSAMEN( 2, C2, 'SP' ) .OR. $ LSAMEN( 3, SUBNAM, 'CHE' ) .OR. $ LSAMEN( 3, SUBNAM, 'ZHE' ) .OR. $ LSAMEN( 3, SUBNAM, 'CHP' ) .OR. $ LSAMEN( 3, SUBNAM, 'ZHP' ) ) THEN * * xSYTRF: N => M * IF( LSAMEN( 3, C3, 'TRF' ) ) THEN MULTS = EM*( 10. / 3.+EM*( 1. / 2.+EM*( 1. / 6. ) ) ) ADDS = EM / 6.*( -1.+EM*EM ) * * xSYTRS: N, NRHS => M, N * ELSE IF( LSAMEN( 3, C3, 'TRS' ) ) THEN MULTS = EN*EM*EM ADDS = EN*( EM*( EM-1. ) ) * * xSYTRI: N => M * ELSE IF( LSAMEN( 3, C3, 'TRI' ) ) THEN MULTS = EM*( 2. / 3.+EM*EM*( 1. / 3. ) ) ADDS = EM*( -1. / 3.+EM*EM*( 1. / 3. ) ) * * xSYTRD, xSYTD2: N => M * ELSE IF( LSAMEN( 3, C3, 'TRD' ) .OR. LSAMEN( 3, C3, 'TD2' ) ) $ THEN IF( M.EQ.1 ) THEN MULTS = 0. ADDS = 0. ELSE MULTS = -15. + EM*( -1. / 6.+EM* $ ( 5. / 2.+EM*( 2. / 3. ) ) ) ADDS = -4. + EM*( -8. / 3.+EM*( 1.+EM*( 2. / 3. ) ) ) END IF END IF * * ------------------- * Triangular matrices * ------------------- * ELSE IF( LSAMEN( 2, C2, 'TR' ) .OR. LSAMEN( 2, C2, 'TP' ) ) THEN * * xTRTRS: N, NRHS => M, N * IF( LSAMEN( 3, C3, 'TRS' ) ) THEN MULTS = EN*EM*( EM+1. ) / 2. ADDS = EN*EM*( EM-1. ) / 2. * * xTRTRI: N => M * ELSE IF( LSAMEN( 3, C3, 'TRI' ) ) THEN MULTS = EM*( 1. / 3.+EM*( 1. / 2.+EM*( 1. / 6. ) ) ) ADDS = EM*( 1. / 3.+EM*( -1. / 2.+EM*( 1. / 6. ) ) ) * END IF * ELSE IF( LSAMEN( 2, C2, 'TB' ) ) THEN * * xTBTRS: N, NRHS, K => M, N, KL * IF( LSAMEN( 3, C3, 'TRS' ) ) THEN MULTS = EN*( EM*( EM+1. ) / 2.-( EM-EK-1. )*( EM-EK ) / 2. ) ADDS = EN*( EM*( EM-1. ) / 2.-( EM-EK-1. )*( EM-EK ) / 2. ) END IF * * -------------------- * Trapezoidal matrices * -------------------- * ELSE IF( LSAMEN( 2, C2, 'TZ' ) ) THEN * * xTZRQF: M, N => M, N * IF( LSAMEN( 3, C3, 'RQF' ) ) THEN EMN = MIN( M, N ) MULTS = 3*EM*( EN-EM+1 ) + ( 2*EN-2*EM+3 )* $ ( EM*EM-EMN*( EMN+1 ) / 2 ) ADDS = ( EN-EM+1 )*( EM+2*EM*EM-EMN*( EMN+1 ) ) END IF * * ------------------- * Orthogonal matrices * ------------------- * ELSE IF( ( SORD .AND. LSAMEN( 2, C2, 'OR' ) ) .OR. $ ( CORZ .AND. LSAMEN( 2, C2, 'UN' ) ) ) THEN * * -MQR, -MLQ, -MQL, or -MRQ: M, N, K, SIDE => M, N, KL, KU * where KU<= 0 indicates SIDE = 'L' * and KU> 0 indicates SIDE = 'R' * IF( LSAMEN( 3, C3, 'MQR' ) .OR. LSAMEN( 3, C3, 'MLQ' ) .OR. $ LSAMEN( 3, C3, 'MQL' ) .OR. LSAMEN( 3, C3, 'MRQ' ) ) THEN IF( KU.LE.0 ) THEN MULTS = EK*EN*( 2.*EM+2.-EK ) ADDS = EK*EN*( 2.*EM+1.-EK ) ELSE MULTS = EK*( EM*( 2.*EN-EK )+( EM+EN+( 1.-EK ) / 2. ) ) ADDS = EK*EM*( 2.*EN+1.-EK ) END IF * * -GQR or -GQL: M, N, K => M, N, KL * ELSE IF( LSAMEN( 3, C3, 'GQR' ) .OR. LSAMEN( 3, C3, 'GQL' ) ) $ THEN MULTS = EK*( -5. / 3.+( 2.*EN-EK )+ $ ( 2.*EM*EN+EK*( ( 2. / 3. )*EK-EM-EN ) ) ) ADDS = EK*( 1. / 3.+( EN-EM )+ $ ( 2.*EM*EN+EK*( ( 2. / 3. )*EK-EM-EN ) ) ) * * -GLQ or -GRQ: M, N, K => M, N, KL * ELSE IF( LSAMEN( 3, C3, 'GLQ' ) .OR. LSAMEN( 3, C3, 'GRQ' ) ) $ THEN MULTS = EK*( -2. / 3.+( EM+EN-EK )+ $ ( 2.*EM*EN+EK*( ( 2. / 3. )*EK-EM-EN ) ) ) ADDS = EK*( 1. / 3.+( EM-EN )+ $ ( 2.*EM*EN+EK*( ( 2. / 3. )*EK-EM-EN ) ) ) * END IF * END IF * SOPLA = MULFAC*MULTS + ADDFAC*ADDS * RETURN * * End of SOPLA * END