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an 
About this Manual 1

The IA-64 architecture is a unique combination of innovative features such as explicit parallelism, 
predication, speculation and more. The architecture is designed to be highly scalable to fill the ever 
increasing performance requirements of various server and workstation market segments. The 
IA-64 architecture features a revolutionary 64-bit instruction set architecture (ISA) which applies a 
new processor architecture technology called EPIC, or Explicitly Parallel Instruction Computing. A 
key feature of the IA-64 architecture is IA-32 instruction set compatibility.

The Intel IA-64 Architecture Software Developer’s Manual provides a comprehensive description 
of the programming environment, resources, and instruction set visible to both the application and 
system programmer. In addition, it also describes how programmers can take advantage of IA-64 
features to help them optimize code. This manual replaces the IA-64 Application Developer’s 
Architecture Guide (Order Number 245188) which contains a subset of the information presented 
in this four-volume set.

1.1 Overview of Volume 1: IA-64 Application 
Architecture

This volume defines the IA-64 application architecture, including application level resources, 
programming environment, and the IA-32 application interface. This volume also describes 
optimization techniques used to generate high performance software.

1.1.1 Part 1: IA-64 Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel IA-64 Architecture 
Software Developer’s Manual.

Chapter 2, “Introduction to the IA-64 Processor Architecture” provides an overview of the IA-64 
architecture system environments.

Chapter 3, “IA-64 Execution Environment” describes the IA-64 register set used by applications
and the memory organization models.

Chapter 4, “IA-64 Application Programming Model” gives an overview of the behavior of IA-64 
application instructions (grouped into related functions).

Chapter 5, “IA-64 Floating-point Programming Model” describes the IA-64 floating-point 
architecture (including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an IA-64 System Environment” describes the 
operation of IA-32 instructions within the IA-64 System Environment from the perspective of 
application programmer.
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1.1.2 Part 2: IA-64 Optimization Guide

Chapter 7, “About the IA-64 Optimization Guide” gives an overview of the IA-64 optimization 
guide.

Chapter 8, “Introduction to IA-64 Programming” provides an overview of the IA-64 application 
programming environment.

Chapter 9, “Memory Reference” discusses features and optimizations related to control and da
speculation.

Chapter 10, “Predication, Control Flow, and Instruction Stream” describes optimization features 
related to predication, control flow, and branch hints.

Chapter 11, “Software Pipelining and Loop Support” provides a detailed discussion on optimizing
loops through use of software pipelining.

Chapter 12, “Floating-point Applications” discusses current performance limitations in 
floating-point applications and IA-64 features that address these limitations.

1.2 Overview of Volume 2: IA-64 System Architecture

This volume defines the IA-64 system architecture, including system level resources and 
programming state, interrupt model, and processor firmware interface. This volume also prov
useful system programmer's guide for writing high performance system software.

1.2.1 Part 1: IA-64 System Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel IA-64 Architecture 
Software Developer’s Manual.

Chapter 2, “IA-64 System Environment” introduces the environment designed to support execut
of IA-64 operating systems running IA-32 or IA-64 applications.

Chapter 3, “IA-64 System State and Programming Model” describes the IA-64 architectural state
which is visible only to an operating system.

Chapter 4, “IA-64 Addressing and Protection” defines the resources available to the operating 
system for virtual to physical address translation, virtual aliasing, physical addressing, and me
ordering.

Chapter 5, “IA-64 Interruptions” describes all interruptions that can be generated by an IA-64 
processor.

Chapter 6, “IA-64 Register Stack Engine” describes the IA-64 architectural mechanism which 
automatically saves and restores the stacked subset (GR32 – GR 127) of the general register file.

Chapter 7, “IA-64 Debugging and Performance Monitoring” is an overview of the performance 
monitoring and debugging resources that are available in the IA-64 architecture.
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Chapter 8, “IA-64 Interruption Vector Descriptions” lists all IA-64 interruption vectors.

Chapter 9, “IA-32 Interruption Vector Descriptions” lists IA-32 exceptions, interrupts and 
intercepts that can occur during IA-32 instruction set execution in the IA-64 System Environm

Chapter 10, “IA-64 Operating System Interaction Model with IA-32 Applications” defines the 
operation of IA-32 instructions within the IA-64 System Environment from the perspective of 
IA-64 operating system.

Chapter 11, “IA-64 Processor Abstraction Layer” describes the firmware layer which abstracts 
IA-64 processor implementation-dependent features.

1.2.2 Part 2: IA-64 System Programmer’s Guide

Chapter 12, “About the IA-64 System Programmer’s Guide” gives an introduction to the second 
section of the system architecture guide.

Chapter 13, “MP Coherence and Synchronization” describes IA-64 multi-processing 
synchronization primitives and the IA-64 memory ordering model.

Chapter 14, “Interruptions and Serialization” describes how the processor serializes execution 
around interruptions and what state is preserved and made available to low-level system cod
interruptions are taken.

Chapter 15, “Context Management” describes how operating systems need to preserve IA-64 
register contents and state. This chapter also describes IA-64 system architecture mechanis
allow an operating system to reduce the number of registers that need to be spilled/filled on 
interruptions, system calls, and context switches.

Chapter 16, “Memory Management” introduces various IA-64 memory management strategies.

Chapter 17, “Runtime Support for Control and Data Speculation” describes the operating system 
support that is required for control and data speculation.

Chapter 18, “Instruction Emulation and Other Fault Handlers” describes a variety of instruction 
emulation handlers that IA-64 operating system are expected to support.

Chapter 19, “Floating-point System Software” discusses how IA-64 processors handle 
floating-point numeric exceptions and how the IA-64 software stack provides complete IEEE
compliance.

Chapter 20, “IA-32 Application Support” describes the support an IA-64 operating system need
provide to host IA-32 applications.

Chapter 21, “External Interrupt Architecture” describes the IA-64 external interrupt architecture 
with a focus on how external asynchronous interrupt handling can be controlled by software.

Chapter 22, “I/O Architecture” describes the IA-64 I/O architecture with a focus on platform issu
and support for the existing IA-32 I/O port space.

Chapter 23, “Performance Monitoring Support” describes the IA-64 performance monitor 
architecture with a focus on what kind of support is needed from IA-64 operating systems. 
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Chapter 24, “Firmware Overview” introduces the IA-64 firmware model, and how various 
firmware layers (PAL, SAL, EFI) work together to enable processor and system initialization,
operating system boot.

1.2.3 Appendices

Appendix A, “IA-64 Resource and Dependency Semantics” summarizes the dependency rules th
are applicable when generating code for IA-64 processors.

Appendix B, “Code Examples” provides OS boot flow sample code.

1.3 Overview of Volume 3: Instruction Set Reference

This volume is a comprehensive reference to the IA-64 and IA-32 instruction sets, including 
instruction format/encoding. 

1.3.1 Part 1: IA-64 Instruction Set Descriptions

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel IA-64 Architecture 
Software Developer’s Manual.

Chapter 2, “IA-64 Instruction Reference” provides a detailed description of all IA-64 instructions
organized in alphabetical order by assembly language mnemonic.

Chapter 3, “IA-64 Pseudo-Code Functions” provides a table of pseudo-code functions which are
used to define the behavior of the IA-64 instructions.

Chapter 4, “IA-64 Instruction Formats” describes the encoding and instruction format instructio

1.3.2 Part 2: IA-32 Instruction Set Descriptions

Chapter 5, “Base IA-32 Instruction Reference” provides a detailed description of all base IA-32 
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 6, “IA-32 MMX™ Technology Instruction Reference” provides a detailed description of 
all IA-32 MMX™ technology instructions designed to increase performance of multimedia 
intensive applications. Organized in alphabetical order by assembly language mnemonic.

Chapter 7, “IA-32 Streaming SIMD Extension Instruction Reference” provides a detailed 
description of all IA-32 Streaming SIMD Extension instructions designed to increase perform
of multimedia intensive applications, and is organized in alphabetical order by assembly lang
mnemonic.
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1.4 Overview of Volume 4: Itanium™ Processor 
Programmer’s Guide

This volume describes model-specific architectural features incorporated into the Intel® Itaniu
processor, the first IA-64 processor.

Chapter 1, “About this Manual” provides an overview of four volumes in the Intel IA-64 
Architecture Software Developer’s Manual.

Chapter 2, “Register Stack Engine Support” summarizes Register Stack Engine (RSE) support 
provided by the Itanium processor.

Chapter 3, “Virtual Memory Management Support” details size of physical and virtual address, 
region register ID, and protection key register implemented on the Itanium processor.

Chapter 4, “Processor Specific Write Coalescing (WC) Behavior” describes the behavior of write 
coalesce (also known as Write Combine) on the Itanium processor.

Chapter 5, “Model Specific Instruction Implementation” describes model specific behavior of 
IA-64 instructions on the Itanium processor.

Chapter 6, “Processor Performance Monitoring” defines the performance monitoring features 
which are specific to the Itanium processor. This chapter outlines the targeted performance m
usage models and describes the Itanium processor specific performance monitoring state.

Chapter 7, “Performance Monitor Events” summarizes the Itanium processor events and descri
how to compute commonly used performance metrics for Itanium processor events.

Chapter 8, “Model Specific Behavior for IA-32 Instruction Execution” describes some of the key 
differences between an Itanium processor executing IA-32 instructions and the PentiumIII 
processor.

1.5 Terminology

The following definitions are for terms related to the IA-64 architecture and will be used 
throughout this document:

Instruction Set Architecture (ISA) – Defines application and system level resources. These 
resources include instructions and registers.

IA-64 Architecture  – The new ISA with 64-bit instruction capabilities, new performance- 
enhancing features, and support for the IA-32 instruction set.

IA-32 Architecture – The 32-bit and 16-bit Intel Architecture as described in the Intel Architecture 
Software Developer’s Manual.

IA-64 Processor – An Intel 64-bit processor that implements both the IA-64 and the IA-32 
instruction sets.
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IA-64 System Environment – The IA-64 operating system privileged environment that supports 
the execution of both IA-64 and IA-32 code.

IA-32 System Environment – The operating system privileged environment and resources as 
defined by the Intel Architecture Software Developer’s Manual. Resources include virtual paging, 
control registers, debugging, performance monitoring, machine checks, and the set of privileged 
instructions.

IA-64 Firmware – The Processor Abstraction Layer (PAL) and System Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) – The IA-64 firmware layer which abstracts IA-64 processor 
features that are implementation dependent.

System Abstraction Layer (SAL) – The IA-64 firmware layer which abstracts IA-64 system 
features that are implementation dependent.

1.6 Related Documents

The following documents contain additional material related to the Intel® IA-64 Architecture 
Software Developer’s Manual:

• Intel Architecture Software Developer’s Manual – This set of manuals describes the Intel 
32-bit architecture. They are readily available from the Intel Literature Department by cal
1-800-548-4725 and requesting Order Numbers 243190, 243191and 243192, or can be 
downloaded at http://developer.intel.com/design/litcentr.

• IA-64 Software Conventions and Runtime Architecture Guide – This document defines 
general information necessary to compile, link, and execute a program on an IA-64 operating 
system. It can be downloaded at http://developer.intel.com/design/ia64.

• IA-64 System Abstraction Layer Specification – This document specifies requirements to 
develop platform firmware for IA-64 processor systems.

• Extensible Firmware Interface Specification – This document defines a new model for the 
interface between operating systems and platform firmware. It can be downloaded at 
http://developer.intel.com/technology/efi.
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Introduction to the IA-64 Processor 
Architecture 2

The IA-64 architecture was designed to overcome the performance limitations of traditional 
architectures and provide maximum headroom for the future. To achieve this, IA-64 was designed 
with an array of innovative features to extract greater instruction level parallelism including 
speculation, predication, large register files, a register stack, advanced branch architecture, and 
many others. 64-bit memory addressability was added to meet the increasing large memory 
footprint requirements of data warehousing, e-business, and other high performance server 
applications. The IA-64 architecture has an innovative floating-point architecture and other 
enhancements that support the high performance requirements of workstation applications such as 
digital content creation, design engineering, and scientific analysis.

The IA-64 architecture also provides binary compatibility with the IA-32 instruction set. IA-64 
processors can run IA-32 applications on an IA-64 operating system that supports execution of 
IA-32 applications. IA-64 processors can run IA-32 application binaries on IA-32 legacy operating 
systems assuming the platform and firmware support exists in the system. The IA-64 architecture 
also provides the capability to support mixed IA-32 and IA-64 code execution.

2.1 IA-64 Operating Environments

The IA-64 architecture supports two operating system environments: 

• IA-32 System Environment: supports IA-32 32-bit operating systems.

• IA-64 System Environment: supports IA-64 operating systems. 

The architectural model also supports a mixture of IA-32 and IA-64 applications within a sing
IA-64 operating system. Table 2-1 defines the major operating environments supported on IA-6
processors.

Figure 2-1. System Environments

000717

IA-32 Instructions

Segmentation

IA-32 Paging &
Interruption
Handling

IA-32 System Environment

Application
Environment

Operating
System

Environment

IA-64 Paging &
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IA-32 Instructions

Segmentation

IA-64
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2.2 Instruction Set Transition Model Overview

Within the IA-64 System Environment, the processor can execute either IA-32 or IA-64 
instructions at any time. Three special instructions and interruptions are defined to transition the 
processor between the IA-32 and the IA-64 instruction set.

• JMPE (IA-32 instruction) Jump to an IA-64 target instruction, and change the instruction s
IA-64.

• br.ia (IA-64 instruction) IA-64 branch to an IA-32 target instruction, and change the 
instruction set to IA-32.

• Interruptions transition the processor to the IA-64 instruction set for handling all interruptio
conditions.

• rfi (IA-64 instruction) “return from interruption”, is defined to return to an IA-32 or IA-64 
instruction.

The JMPE and br.ia instructions provide a low overhead mechanism to transfer control between 
the instruction sets. These instructions are typically incorporated into “thunks” or “stubs” that
implement the required call linkage and calling conventions to call dynamic or statically linke
libraries. Please refer to Chapter 6, “IA-32 Application Execution Model in an IA-64 System 
Environment” for additional details.

2.3 IA-64 Instruction Set Features

IA-64 incorporates architecture features which enable high sustained performance and remo
barriers to further performance increases. The IA-64 architecture is based on the following 
principles: 

• Explicit parallelism

• Mechanisms for synergy between the compiler and the processor

• Massive resources to take advantage of instruction level parallelism

Table 2-1. Major Operating Environments for IA-64 Processors

System 
Environment

Application 
Environment

Usage

IA-32 System 
Environment

IA-32 Instruction 
Set

IA-32 PM, RM and VM86 application and operating system 
environment. Compatible with IA-32 Pentium®, Pentium Pro, 
Pentium II and Pentium III processors.

IA-64 Instruction 
Set

Not supported, IA-64 applications cannot execute in the IA-32 
system environment.

IA-64 System 
Environment

IA-32 Protected 
Mode

IA-32 Protected Mode applications in the IA-64 system 
environment.

IA-32 Real Mode IA-32 Real Mode applications in the IA-64 system environment.

IA-32 Virtual 
Mode

 IA-32 Virtual 86 Mode applications in the IA-64 system 
environment.

IA-64 Instruction 
Set

IA-64 Applications on IA-64 operating systems.
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• 128 integer and floating-point registers, 64 1-bit predicate registers, 8 branch registers

• Support for many execution units and memory ports

• Features that enhance instruction level parallelism

• Speculation (which minimizes memory latency impact)

• Predication (which removes branches)

• Software pipelining of loops with low overhead

• Branch prediction to minimize the cost of branches

• Focussed enhancements for improved software performance

• Special support for software modularity

• High performance floating-point architecture

• Specific multimedia instructions

The following sections highlight these important features of IA-64.

2.4 Instruction Level Parallelism

Instruction Level Parallelism (ILP) is the ability to execute multiple instructions at the same ti
The IA-64 architecture allows issuing of independent instructions in bundles (three instruction
bundle) for parallel execution and can issue multiple bundles per clock. Supported by a large
number of parallel resources such as large register files and multiple execution units, the IA-
architecture enables the compiler to manage work in progress and schedule simultaneous thr
computation. 

The IA-64 architecture incorporates mechanisms to take advantage of ILP. Compilers for 
traditional architectures are often limited in their ability to utilize speculative information beca
it cannot always be guaranteed to be correct. The IA-64 architecture enables the compiler to 
speculative information without sacrificing the correct execution of an application (see 
Section 2.6). In traditional architectures, procedure calls limit performance since registers nee
be spilled and filled. IA-64 enables procedures to communicate register usage to the processo
allows the processor to schedule procedure register operations even when there is a low deg
ILP. See Section 2.7, “Register Stack” on page 2-6.

2.5 Compiler to Processor Communication

IA-64 architecture provides mechanisms, such as instruction templates, branch hints, and ca
hints to enable the compiler to communicate compile-time information to the processor. In 
addition, IA-64 allows compiled code to manage the processor hardware using run-time 
information. These communication mechanisms are vital in minimizing the performance pen
associated with branches and cache misses.

Every memory load and store in IA-64 has a 2-bit cache hint field in which the compiler encod
prediction of the spatial and/or temporal locality of the memory area being accessed. An IA-6
processor can use this information to determine the placement of cache lines in the cache hie
This leads to better utilization of the hierarchy since the relative cost of cache misses continu
grow.
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2.6 Speculation

There are two types of speculation: control and data. In both control and data speculation, the 
compiler exposes ILP by issuing an operation early and removing the latency of this operation from 
critical path. The compiler will issue an operation speculatively if it is reasonably sure that the 
speculation will be beneficial. To be beneficial two conditions should hold: it must be statistically 
frequent enough that the probability it will require recovery is small, and issuing the operation early 
should expose further ILP-enhancing optimization. Speculation is one of the primary mechanisms 
for the compiler to exploit statistical ILP by overlapping, and therefore tolerating, the latencies of 
operations.

2.6.1 Control Speculation

Control speculation is the execution of an operation before the branch which guards it. Consider the 
code sequence below:

if (a>b) load(ld_addr1,target1)
else load(ld_addr2, target2)

If the operation load(ld_addr1,target1)were to be performed prior to the determination of 
(a>b), then the operation would be control speculative with respect to the controlling condition 
(a>b). Under normal execution, the operation load(ld_addr1,target1) may or may not 
execute. If the new control speculative load causes an exception, then the exception should only be 
serviced if (a>b) is true. When the compiler uses control speculation, it leaves a check operation at 
the original location. The check verifies whether an exception has occurred and if so it branches to 
recovery code. The code sequence above now translates into:

/* off critical path */
sload(ld_addr1,target1)
sload(ld_addr2,target2)

/* other operations including uses of target1/target2 */
if (a>b) scheck(target1,recovery_addr1)
else scheck(target2, recovery_addr2)

2.6.2 Data Speculation

Data speculation is the execution of a memory load prior to a store that preceded it and that may 
potentially alias with it. Data speculative loads are also referred to as “advanced loads”. Con
the code sequence below:

store(st_addr,data)
load(ld_addr,target)
use(target)

The process of determining at compile time the relationship between memory addresses is c
disambiguation. In the example above, if ld_addr and st_addr cannot be disambiguated, and if 
the load were to be performed prior to the store, then the load would be data speculative wit
respect to the store. If memory addresses overlap during execution, a data-speculative load
before the store might return a different value than a regular load issued after the store. The
2-4 Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0



analogous to control speculation, when the compiler data speculates a load, it leaves a check 
instruction at the original location of the load. The check verifies whether an overlap has occurred 
and if so it branches to recovery code. The code sequence above now translates into:

/* off critical path */
aload(ld_addr,target)

/* other operations including uses of target */
store(st_addr,data)
acheck(target,recovery_addr)
use(target)

2.6.3 Predication

Predication is the conditional execution of instructions. Conditional execution is implemented 
through branches in traditional architectures. IA-64 implements this function through the use of 
predicated instructions. Predication removes branches used for conditional execution resulting in 
larger basic blocks and the elimination of associated mispredict penalties.

To illustrate, an unpredicated instruction

r1 = r2 + r3

when predicated, would be of the form

if (p5) r1 = r2 + r3

In this example p5 is the controlling predicate that decides whether or not the instruction executes 
and updates state. If the predicate value is true, then the instruction updates state. Otherwise it 
generally behaves like a nop. Predicates are assigned values by compare instructions.

Predicated execution avoids branches, and simplifies compiler optimizations by converting a 
control dependency to a data dependency. Consider the original code:

if (a>b) c = c + 1
else d = d * e + f

The branch at (a>b) can be avoided by converting the code above to the predicated code:

pT, pF = compare(a>b)
if (pT) c = c + 1
if (pF) d = d * e + f

The predicate pT is set to 1 if the condition evaluates to true, and to 0 if the condition evaluates to 
false. The predicate pF is the complement of pT. The control dependency of the instructions c = c 
+ 1 and d = d * e + f on the branch with the condition (a>b) is now converted into a data 
dependency on compare(a>b) through predicates pT and pF (the branch is eliminated). An added 
benefit is that the compiler can schedule the instructions under pT and pF to execute in parallel. It is 
also worth noting that there are several different types of compare instructions that write predicates 
in different manners including unconditional compares and parallel compares. 
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2.7 Register Stack

IA-64 avoids the unnecessary spilling and filling of registers at procedure call and return interfaces 
through compiler-controlled renaming. At a call site, a new frame of registers is available to the 
called procedure without the need for register spill and fill (either by the caller or by the callee). 
Register access occurs by renaming the virtual register identifiers in the instructions through a base 
register into the physical registers. The callee can freely use available registers without having to 
spill and eventually restore the caller’s registers. The callee executes an alloc instruction 
specifying the number of registers it expects to use in order to ensure that enough registers 
available. If sufficient registers are not available (stack overflow), the alloc stalls the processor 
and spills the caller’s registers until the requested number of registers are available. 

At the return site, the base register is restored to the value that the caller was using to acces
registers prior to the call. Some of the caller’s registers may have been spilled by the hardwa
not yet restored. In this case (stack underflow), the return stalls the processor until the proces
restored an appropriate number of the caller’s registers. The hardware can exploit the explic
register stack frame information to spill and fill registers from the register stack to memory at
best opportunity (independent of the calling and called procedures).

2.8 Branching

In addition to removing branches through the use of predication, several mechanisms are pr
to decrease the branch misprediction rate and the cost of the remaining mispredicted branch
These mechanisms provide ways for the compiler to communicate information about branch
conditions to the processor. 

Branch predict instructions are provided which can be used to communicate an early indicati
the target address and the location of the branch. The compiler will try to indicate whether a b
should be predicted dynamically or statically. The processor can use this information to initia
branch prediction structures, enabling good prediction even the first time a branch is encoun
This is beneficial for unconditional branches or in situations where the compiler has informat
about likely branch behavior.

For indirect branches, a branch register is used to hold the target address. Branch predict 
instructions provide an indication of which register will be used in situations when the target 
address can be computed early. A branch predict instruction can also signal that an indirect 
is a procedure return, enabling the efficient use of call/return stack prediction structures.

Special loop-closing branches are provided to accelerate counted loops and modulo-schedu
loops. These branches and their associated branch predict instructions provide information t
allows for perfect prediction of loop termination, thereby eliminating costly mispredict penalti
and a reduction of the loop overhead.
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2.9 Register Rotation

Modulo scheduling of a loop is analogous to hardware pipelining of a functional unit since the next 
iteration of the loop starts before the previous iteration has finished. The iteration is split into stages 
similar to the stages of an execution pipeline. Modulo scheduling allows the compiler to execute 
loop iterations in parallel rather than sequentially. The concurrent execution of multiple iterations 
traditionally requires unrolling of the loop and software renaming of registers. IA-64 allows the 
renaming of registers which provide every iteration with its own set of registers, avoiding the need 
for unrolling. This kind of register renaming is called register rotation. The result is that software 
pipelining can be applied to a much wider variety of loops - both small as well as large with 
significantly reduced overhead.

2.10 Floating-point Architecture

IA-64 defines a floating-point architecture with full IEEE support for the single, double, and 
double-extended (80-bit) data types. Some extensions, such as a fused multiply and add operation, 
minimum and maximum functions, and a register file format with a larger range than the 
double-extended memory format, are also included. 128 floating-point registers are defined. Of 
these, 96 registers are rotating (not stacked) and can be used to modulo schedule loops compactly. 
Multiple floating-point status registers are provided for speculation.

IA-64 has parallel FP instructions which operate on two 32-bit single precision numbers, resident in 
a single floating-point register, in parallel and independently. These instructions significantly 
increase the single precision floating-point computation throughput and enhance the performance 
of 3D intensive applications and games.

2.11 Multimedia Support

IA-64 has multimedia instructions which treat the general registers as concatenations of eight 8-bit, 
four 16-bit, or two 32-bit elements. These instructions operate on each element in parallel, 
independent of the others. IA-64 multimedia instructions are semantically compatible with In
MMX technology instructions and Streaming SIMD Extension instructions.

2.12 IA-64 System Architecture Features

2.12.1 Support for Multiple Address Space Operating Systems

Most contemporary commercial operating systems utilize a Multiple Address Space (MAS) m
with the following characteristics:

Protection is enforced among processes by placing each process within a unique address sp
Translation Lookaside Buffers (TLBs), which hold virtual to physical mappings, often need to
flushed on a process context switch.
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Some memory areas may be shared among processes, e.g. kernel areas and shared libraries. Most 
operating systems assume at least one local and one global space.

To promote sharing of data between processes, MAS operating systems aggressively use virtual 
aliases to map physical memory locations into the address spaces of multiple processes. Virtual 
aliases create multiple TLB entries for the same physical data leading to reduced TLB efficiency.

The MAS model is supported by dividing the virtual address space into several regions. Region 
identifiers associated with each region are used to tag translations to a given address space. On a 
process switch, region identifiers uniquely identify the set of translations belonging to a process, 
thereby avoiding TLB flushes. Region identifiers also provide a unique intermediate virtual address 
that help avoid thrashing problems in virtual-indexed caches and TLBs. Regions provide efficient 
global/shared areas between processes, while reducing the occurrences of virtual aliasing.

2.12.2 Support for Single Address Space Operating Systems

A single address space (SAS) operating system style architecture is the basis for much of the 
current design work on future 64-bit operating systems. As operating systems (and other large, 
complex programs like databases) migrate from monolithic programs into cooperating subsystems, 
an SAS architecture becomes an important performance differentiation in future systems. The SAS 
or hybrid environments enable a more efficient use of hardware resources. 

Common mechanisms are used in both SAS and MAS models such as page level access rights to 
enforce protection, although the reliance on the feature set will differ under each model. While 
most of the architected features are utilized in each model, protection keys exist to enable a single 
global address space operating environment.

2.12.3 System Performance and Scalability

Performance and scalability are achieved through a variety of features. Memory attributes, locking 
primitives, cache coherency, and memory ordering model work together to allow the efficient 
sharing of data in a multiprocessor environment. In addition, IA-64 enables low latency fault, trap, 
and interrupt handlers along with light-weight domain crossings. Performance analysis is aided by 
the inclusion of several performance monitors, and mechanisms to support software profiling.

2.12.4 System Security and Supportability

Security and supportability result from a number of primitives which provide a very powerful 
run-time and debug environment. The protection model includes four protection rings and enables 
increased system integrity by offering a more sophisticated protection scheme than has generally 
been available. The machine check model allows detailed information to be provided describing the 
type of error involved and supports recovery for many types of errors. Several mechanisms are 
provided for debugging both system and application software. 
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IA-64 Execution Environment 3

The architectural state consists of registers and memory. The results of instruction execution 
become architecturally visible according to a set of execution sequencing rules. This chapter 
describes the IA-64 application architectural state and the rules for execution sequencing. See 
Chapter 6 for details on IA-32 instruction set execution.

3.1 Application Register State

The following is a list of the registers available to application programs (see Figure 3-1): 

• General Registers (GRs) – General purpose 64-bit register file, GR0 – GR127. IA-32 integ
and segment registers are contained in GR8 - GR31 when executing IA-32 instructions.

• Floating-point Registers (FRs) – Floating-point register file, FR0 – FR127. IA-32 floating-
point and multi-media registers are contained in FR8 - FR31 when executing IA-32 
instructions.

• Predicate Registers (PRs) – Single-bit registers, used in IA-64 predication and branching,
PR0 – PR63.

• Branch Registers (BRs) – Registers used in IA-64 branching, BR0 – BR7.

• Instruction Pointer (IP) – Register which holds the bundle address of the currently execu
IA-64 instruction, or byte address of the currently executing IA-32 instruction.

• Current Frame Marker (CFM) – State that describes the current general register stack 
frame, and FR/PR rotation.

• Application Registers (ARs) – A collection of special-purpose IA-64 and IA-32 application
registers.

• Performance Monitor Data Registers (PMD) – Data registers for performance monitor 
hardware.

• User Mask (UM) – A set of single-bit values used for alignment traps, performance monit
and to monitor floating-point register usage.

• Processor Identifiers (CPUID) – Registers that describe processor implementation-
dependent IA-64 features.

IA-32 application register state is entirely contained within the larger IA-64 application registe
and is accessible by IA-64 instructions. IA-32 instructions cannot access the IA-64 specific re
set. See “IA-32 Application Register State Model” on page 6-4 for details on IA-32 register 
assignments.
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3.1.1 Reserved and Ignored Registers and Fields

Registers which are not defined are either reserved or ignored. An access to a reserved register 
raises an Illegal Operation fault. A read of an ignored register returns zero. Software may write 
any value to an ignored register and the hardware will ignore the value written. In variable-sized 
register sets, registers which are unimplemented in a particular processor are also reserved 
registers. An access to one of these unimplemented registers causes a Reserved Register/Field fault.

Within defined registers, fields which are not defined are either reserved or ignored. For reserved 
fields, hardware will always return a zero on a read. Software must always write zeros to these 
fields. Any attempt to write a non-zero value into a reserved field will raise a Reserved Register/
Field fault. Reserved fields may have a possible future use.

For ignored fields, hardware will return a 0 on a read, unless noted otherwise. Software may write 
any value to these fields since the hardware will ignore any value written. Except where noted 
otherwise some IA-32 ignored fields may have a possible future use.

Table 3-1 summarizes how the processor treats reserved and ignored registers and fields.

For defined fields in registers, values which are not defined are reserved. Software must always 
write defined values to these fields. Any attempt to write a reserved value will raise a Reserved 
Register/Field fault. Certain registers are read-only registers. A write to a read-only register raises 
an Illegal Operation fault.

When fields are marked as reserved, it is essential for compatibility with future processors that 
software treat these fields as having a future, though unknown effect. Software should follow these 
guidelines when dealing with reserved fields:

• Do not depend on the state of any reserved fields. Mask all reserved fields before testing

• Do not depend on the state of any reserved fields when storing to memory or a register.

• Do not depend on the ability to retain information written into reserved or ignored fields.

• Where possible reload reserved or ignored fields with values previously returned from th
same register, otherwise load zeros.

Table 3-1. Reserved and Ignored Registers and Fields

Type Read Write

Reserved register Illegal Operation fault Illegal Operation fault

Ignored register 0 Value written is discarded

Reserved field 0 Write of non-zero causes Reserved Reg/
Field fault

Ignored field 0 (unless noted otherwise) Value written is discarded
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3.1.2 General Registers

A set of 128 (64-bit) general registers provide the central resource for all integer and integer 
multimedia computation. They are numbered GR0 through GR127, and are available to all 
programs at all privilege levels. Each general register has 64 bits of normal data storage plus an 
additional bit, the NaT bit (Not a Thing), which is used to track deferred speculative exceptions.

The general registers are partitioned into two subsets. General registers 0 through 31 are termed the 
static general registers. Of these, GR0 is special in that it always reads as zero when sourced as an 
operand, and attempting to write to GR 0 causes an Illegal Operation fault. General registers 32 
through 127 are termed the stacked general registers. The stacked registers are made available to 
a program by allocating a register stack frame consisting of a programmable number of local and 
output registers. See “Register Stack” on page 4-1 for a description. A portion of the stacked 
registers can be programmatically renamed to accelerate loops. See “Modulo-scheduled Loop 
Support” on page 4-28.

Figure 3-1. Application Register Model
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General registers 8 through 31 contain the IA-32 integer, segment selector and segment descriptor 
registers. See “IA-32 General Purpose Registers” on page 6-8 for details on IA-32 register 
assignments.

3.1.3 Floating-point Registers

A set of 128 (82-bit) floating-point registers are used for all floating-point computation. They ar
numbered FR0 through FR127, and are available to all programs at all privilege levels. The 
floating-point registers are partitioned into two subsets. Floating-point registers 0 through 31
termed the static floating-point registers. Of these, FR0 and FR1 are special. FR0 always read
+0.0 when sourced as an operand, and FR 1 always reads as +1.0. When either of these is u
destination, a fault is raised. Deferred speculative exceptions are recorded with a special reg
value called NaTVal (Not a Thing Value).

Floating-point registers 32 through 127 are termed the rotating floating-point registers. These 
registers can be programmatically renamed to accelerate loops. See “Modulo-scheduled Loop 
Support” on page 4-28.

Floating-point registers 8 through 31 contain the IA-32 floating-point and multi-media registe
when executing IA-32 instructions.

3.1.4 Predicate Registers

A set of 64 (1-bit) predicate registers are used to hold the results of IA-64 compare instructions
These registers are numbered PR0 through PR63, and are available to all programs at all pr
levels. These registers are used for conditional execution of instructions. 

The predicate registers are partitioned into two subsets. Predicate registers 0 through 15 are
the static predicate registers. Of these, PR0 always reads as ‘1’ when sourced as an operand
when used as a destination, the result is discarded. The static predicate registers are also u
conditional branching. See “Predication” on page 4-7.

Predicate registers 16 through 63 are termed the rotating predicate registers. These registers can 
be programmatically renamed to accelerate loops. See “Modulo-scheduled Loop Support” on 
page 4-28

3.1.5 Branch Registers

A set of 8 (64-bit) branch registers are used to hold IA-64 branching information. They are 
numbered BR 0 through BR 7, and are available to all programs at all privilege levels. The br
registers are used to specify the branch target addresses for indirect branches. For more info
see “Branch Instructions” on page 4-26.
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3.1.6 Instruction Pointer

The Instruction Pointer (IP) holds the address of the bundle which contains the current executing 
IA-64 instruction. The IP can be read directly with a mov ip instruction. The IP cannot be directly 
written, but is incremented as instructions are executed, and can be set to a new value with a 
branch. Because IA-64 instruction bundles are 16 bytes, and are 16-byte aligned, the least 
significant 4 bits of IP are always zero. See “Instruction Encoding Overview” on page 3-15 For IA-
32 instruction set execution, IP holds the zero extended 32-bit virtual linear address of the cur
executing IA-32 instruction. IA-32 instructions are byte-aligned, therefore the least significan
bits of IP are preserved for IA-32 instruction set execution. See “IA-32 Instruction Pointer” on 
page 6-9 for IA-32 instruction set execution details.

3.1.7 Current Frame Marker

Each general register stack frame is associated with a frame marker. The frame marker des
the state of the IA-64 general register stack. The Current Frame Marker (CFM) holds the sta
the current stack frame. The CFM cannot be directly read or written (see “Register Stack” on 
page 4-1). 

The frame markers contain the sizes of the various portions of the stack frame, plus three Re
Rename Base values (used in register rotation). The layout of the frame markers is shown in
Figure 3-2 and the fields are described in Table 3-2.

On a call, the CFM is copied to the Previous Frame Marker field in the Previous Function Sta
register (see Section 3.1.8.10). A new value is written to the CFM, creating a new stack frame w
no locals or rotating registers, but with a set of output registers which are the caller’s output 
registers. Additionally, all Register Rename Base registers (RRBs) are set to 0. See “Modulo-
scheduled Loop Support” on page 4-28.

Figure 3-2. Frame Marker Format
37 32 31 25 24 18 17 14 13 7 6 0

rrb.pr rrb.fr rrb.gr sor sol sof
6 7 7 4 7 7

Table 3-2. Frame Marker Field Description

Field Bit Range Description

sof 6:0 Size of stack frame

sol 13:7 Size of locals portion of stack frame

sor 17:14 Size of rotating portion of stack frame
(the number of rotating registers is 8 * sor)

rrb.gr 24:18 Register Rename Base for general registers

rrb.fr 31:25 Register Rename Base for floating-point registers

rrb.pr 37:32 Register Rename Base for predicate registers
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3.1.8 Application Registers

The application register file includes special-purpose data registers and control registers for 
application-visible processor functions for both the IA-32 and IA-64 instruction sets. These 
registers can be accessed by IA-64 application software (except where noted). Table 3-3 contains a 
list of the application registers.

Table 3-3. Application Registers

Register Name Description
Execution Unit 

Type

AR 0-7 KR 0-7a Kernel Registers 0-7 M

AR 8-15 Reserved

AR 16 RSC Register Stack Configuration Register

AR 17 BSP Backing Store Pointer (read-only)

AR 18 BSPSTORE Backing Store Pointer for Memory Stores

AR 19 RNAT RSE NaT Collection Register

AR 20 Reserved

AR 21 FCR IA-32 Floating-point Control Register

AR 22 – AR 23 Reserved

AR 24 EFLAGb IA-32 EFLAG register

AR 25 CSD IA-32 Code Segment Descriptor

AR 26 SSD IA-32 Stack Segment Descriptor

AR 27 CFLGa IA-32 Combined CR0 and CR4 register

AR 28 FSR IA-32 Floating-point Status Register

AR 29 FIR IA-32 Floating-point Instruction Register

AR 30 FDR IA-32 Floating-point Data Register

AR 31 Reserved

AR 32 CCV Compare and Exchange Compare Value 
Register

AR 33 – AR 35 Reserved

AR 36 UNAT User NaT Collection Register

AR 37 – AR 39 Reserved

AR 40 FPSR Floating-point Status Register

AR 41 – AR 43 Reserved

AR 44 ITC Interval Time Counter

AR 45 – AR 47 Reserved

AR 48 – AR 63 Ignored M or I
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Application registers can only be accessed by either a M or I execution unit. This is specified in the 
last column of the table. The ignored registers are for future backward-compatible extensions.

3.1.8.1 Kernel Registers (KR 0-7 – AR 0-7)

Eight user-visible IA-64 64-bit data kernel registers are provided to convey information from the 
operating system to the application. These registers can be read at any privilege level but are 
writable only at the most privileged level. KR0 - KR2 are also used to hold additional IA-32 
register state when the IA-32 instruction set is executing. See “Instruction Set Transitions” on 
page 10-1 for register details when calling IA-32 code.

3.1.8.2 Register Stack Configuration Register (RSC – AR 16)

The Register Stack Configuration (RSC) Register is a 64-bit register used to control the operation 
of the IA-64 Register Stack Engine (RSE). The RSC format is shown in Figure 3-3 and the field 
description is contained in Table 3-4. Instructions that modify the RSC can never set the privilege 
level field to a more privileged level than the currently executing process.

AR 64 PFS Previous Function State I

AR 65 LC Loop Count Register

AR 66 EC Epilog Count Register

AR 67 –
AR 111

Reserved

AR 112 –
AR 127

Ignored M or I

a. Writes to these registers when the privilege level is not zero result in a Privileged Register fault. 
Reads are always allowed.

b. Some IA-32 EFLAG field writes are silently ignored if the privilege level is not zero. See Section 
10.3.2 for details.

Figure 3-3. RSC Format
63 30 29 16 15 5 4 3 2 1 0

rv loadrs rv be pl mode
34 14 11 1 2 2

Table 3-3. Application Registers (Continued)

Register Name Description
Execution Unit 

Type
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3.1.8.3 RSE Backing Store Pointer (BSP – AR 17)

The RSE Backing Store Pointer is a 64-bit read-only register (Figure 3-4). It holds the address of 
the location in memory which is the save location for GR 32 in the current stack frame. See “RSE 
and Backing Store Overview” on page 6-1.

3.1.8.4 RSE Backing Store Pointer for Memory Stores (BSPSTORE – AR 18)

The RSE Backing Store Pointer for memory stores is a 64-bit register (Figure 3-5). It holds the 
address of the location in memory to which the RSE will spill the next value. See “RSE and 
Backing Store Overview” on page 6-1.

Table 3-4. RSC Field Description

Field Bit Range Description

mode 1:0 RSE mode – controls how aggressively the RSE saves and 
restores register frames. Eager and intensive settings are hints 
and can be implemented as lazy.

Bit Pattern RSE Mode Bit 1:
eager loads

Bit 0:
eager stores

00 enforced lazy disabled disabled

10 load intensive enabled disabled

01 store intensive disabled enabled

11 eager enabled enabled

pl 3:2 RSE privilege level – loads and stores issued by the RSE are at 
this privilege level

be 4 RSE endian mode – loads and stores issued by the RSE use 
this byte ordering
(0: little endian; 1: big endian)

loadrs 29:16 RSE load distance to tear point – value used in the loadrs 
instruction for synchronizing the RSE to a tear point

rv 15:5, 
63:30

Reserved

Figure 3-4. BSP Register Format
63 3 2 1 0

pointer 0
61 3

Figure 3-5. BSPSTORE Register Format
63 3 2 1 0

pointer ig
61 3
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3.1.8.5 RSE NaT Collection Register (RNAT – AR 19)

The RSE NaT Collection Register is a 64-bit register (Figure 3-6) used by the RSE to temporarily 
hold NaT bits when it is spilling general registers. Bit 63 always reads as zero and ignores all 
writes. See “RSE and Backing Store Overview” on page 6-1.

3.1.8.6 Compare and Exchange Value Register (CCV – AR 32)

The Compare and Exchange Value Register is a 64-bit register that contains the compare value used 
as the third source operand in the IA-64 cmpxchg instruction.

3.1.8.7 User NaT Collection Register (UNAT – AR 36)

The User NaT Collection Register is a 64-bit register used to temporarily hold NaT bits when 
saving and restoring general registers with the IA-64 ld8.fill and st8.spill instructions.

3.1.8.8 Floating-point Status Register (FPSR – AR 40)

The floating-point status register (FPSR) controls traps, rounding mode, precision control, flags, 
and other control bits for IA-64 floating-point instructions. FPSR does not control or reflect the 
status of IA-32 floating-point instructions. For more details on the FPSR, see “Floating-point Status 
Register” on page 5-5.

3.1.8.9 Interval Time Counter (ITC – AR 44)

The Interval Time Counter (ITC) is a 64-bit register which counts up at a fixed relationship to the 
processor clock frequency. Applications can directly sample the ITC for time-based calculations 
and performance measurements. System software can secure the interval time counter from non-
privileged IA-64 access. When secured, a read of the ITC at any privilege level other than the most 
privileged causes a Privileged Register fault. The ITC can be written only at the most privileged 
level. The IA-32 Time Stamp Counter (TSC) is equivalent to ITC. ITC can directly be read by the 
IA-32 rdtsc (read time stamp counter) instruction. System software can secure the ITC from non-
privileged IA-32 access. When secured, an IA-32 read of the ITC at any privilege level other than 
the most privileged raises an IA-32_Exception(GPfault).

3.1.8.10 Previous Function State (PFS – AR 64)

The IA-64 Previous Function State register (PFS) contains multiple fields: Previous Frame Marker 
(pfm), Previous Epilog Count (pec), and Previous Privilege Level (ppl). Figure 3-7 diagrams the 
PFS format and Table 3-5 describes the PFS fields. These values are copied automatically on a call 
from the CFM register, Epilog Count Register (EC), and PSR.cpl (Current Privilege Level in the 
Processor Status Register) to accelerate procedure calling.

Figure 3-6. RNAT Register Format
63 0

ig RSE NaT Collection
1 63
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When an IA-64 br.call or brl.call is executed, the CFM, EC, and PSR.cpl are copied to the 
PFS and the old contents of the PFS are discarded. When an IA-64 br.ret is executed, the PFS is 
copied to the CFM and EC. PFS.ppl is copied to PSR.cpl, unless this action would increase the 
privilege level. For more details on the PSR see Chapter 3.

The PFS.pfm has the same layout as the CFM (see Section 3.1.7), and the PFS.pec has the same 
layout as the EC (see Section 3.1.8.12). 

3.1.8.11 Loop Count Register (LC – AR 65)

The Loop Count register (LC) is a 64-bit register used in IA-64 counted loops. LC is decremented 
by counted-loop-type branches.

3.1.8.12 Epilog Count Register (EC – AR 66)

The Epilog Count register (EC) is a 6-bit register used for counting the final (epilog) stages in IA-
64 modulo-scheduled loops. See “Modulo-scheduled Loop Support” on page 4-28 A diagram of 
the EC register is shown in Figure 3-8.

3.1.9 Performance Monitor Data Registers (PMD)

A set of performance monitoring registers can be configured by privileged software to be 
accessible at all privilege levels. Performance monitor data can be directly sampled from with
application. The operating system is allowed to secure user-configured performance monitor
Secured performance counters return zeros when read, regardless of the current privilege lev
performance monitors can only be written at the most privileged level. Refer to Chapter 7 for 
details. Performance monitors can be used to gather performance information for both IA-32
IA-64 instruction set execution.

Figure 3-7. PFS Format
63 62 61 58 57 52 51 38 37 0

ppl rv pec rv pfm
2 4 6 14 38

Table 3-5. PFS Field Description

Field Bit Range Description

pfm 37:0 Previous Frame Marker

pec 57:52 Previous Epilog Count

ppl 63:62 Previous Privilege Level

rv 51:38, 61:58 Reserved

Figure 3-8. Epilog Count Register Format
63 6 5 0

ig epilog count
58 6
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3.1.10 User Mask (UM)

The user mask is a subset of the Processor Status Register and is accessible to IA-64 application 
programs. The user mask controls memory access alignment, byte-ordering and user-configured 
performance monitors. It also records the modification state of IA-64 floating-point registers. 
Figure 3-9 show the user mask format and Table 3-6 describes the user mask fields. For more 
details on the PSR refer to “Processor Status Register (PSR)” on page 3-6 in Volume 2.

3.1.11 Processor Identification Registers

Application level processor identification information is available in an IA-64 register file term
CPUID. This register file is divided into a fixed region, registers 0 to 4, and a variable region,
register 5 and above. The CPUID[3].number field indicates the maximum number of 8-byte 
registers containing processor specific information.

Figure 3-9. User Mask Format
5 4 3 2 1 0

mfh mfl ac up be rv
1 1 1 1 1 1

Table 3-6. User Mask Field Descriptions

Field Bit Range Description

rv 0 Reserved

be 1 IA-64 Big-endian memory access enable
(controls loads and stores but not RSE memory accesses)
0: accesses are done little-endian 
1: accesses are done big-endian
This bit is ignored for IA-32 data memory accesses. IA-32 data 
references are always performed little-endian.

up 2 User performance monitor enable for IA-32 and IA-64 instruction set 
execution
0: user performance monitors are disabled 
1: user performance monitors are enabled

ac 3 Alignment check for IA-32 and IA-64 data memory references
0: unaligned data memory references may cause an Unaligned Data 
Reference fault.
1: all unaligned data memory references cause an Unaligned Data 
Reference fault. 

mfl 4 Lower (f2 .. f31) floating-point registers written – This bit is set to one 
when an IA-64 instruction that uses register f2..f31 as a target 
register, completes. This bit is sticky and is only cleared by an explicit 
write of the user mask. See Section 3.3.2 for conditions when IA-32 
instructions set this bit.

mfh 5 Upper (f32 .. f127) floating-point registers written – This bit is set to 
one when an IA-64 instruction that uses register f32..f127 as a target 
register, completes. This bit is sticky and only cleared by an explicit 
write of the user mask. See Section 3.3.2 for conditions when IA-32 
instructions set this bit.
Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 3-11



The CPUID registers are unprivileged and accessed using the indirect mov (from) instruction. All 
registers beyond register CPUID[3].number are reserved and raise a Reserved Register/Field fault 
if they are accessed. Writes are not permitted and no instruction exists for such an operation.

Vendor information is located in CPUID registers 0 and 1 and specify a vendor name, in ASCII, for 
the processor implementation (Figure 3-10). All bytes after the end of the string up to the 16th byte 
are zero. Earlier ASCII characters are placed in lower number register and lower numbered byte 
positions.

A Processor Serial Number is located in CPUID register 2. If Processor Serial Numbers are 
supported by the processor model and are not disabled, this register returns a 64-bit number 
Processor Serial Number (Figure 3-11), otherwise zero is returned. The Processor Serial Number 
(64-bits) must be combined with the 32-bit version information (CPUID register 3; processor 
archrev, family, model, and revision numbers) to form a 96-bit Processor Identifier. 

The 96-bit Processor Identifier is designed to be unique.

CPUID register 3 contains several fields indicating version information related to the processor 
implementation. Figure 3-12 and Table 3-7 specify the definitions of each field.

CPUID register 4 provides general application level information about IA-64 features. As shown in 
Figure 3-13, it is a set of flag bits used to indicate if a given IA-64 feature is supported in the 
processor model. When a bit is one the feature is supported; when 0 the feature is not supported. 
This register does not contain IA-32 instruction set features. IA-32 instruction set features can be 
acquired by the IA-32 cpuid insruction. There are no defined feature bits in the current 
architecture are listed in Table 3-8. As new features are added (or removed) from future processor 
models the presence (or removal) of new features will be indicated by new feature bits. A value of 
zero in this register indicates all features defined in the first IA-64 architectural revision are 
implemented.

Figure 3-10. CPUID Registers 0 and 1 – Vendor Information
63     0

CPUID[0] byte 0

CPUID[1] byte 15
64

Figure 3-11. CPUID Register 2 – Processor Serial Number
63    0

Processor Serial Number
64

Figure 3-12. CPUID Register 3 – Version Information
63 40 39 32 31 24 23 16 15 8 7 0

rv archrev family model revision number
24 8 8 8 8 8
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3.2 Memory

This section describes an IA-64 application program’s view of memory. This includes a descriptio
of how memory is accessed, for both 32-bit and 64-bit applications. The size and alignment 
addressable units in memory is also given, along with a description of how byte ordering is 
handled. 

3.2.1 Application Memory Addressing Model

Memory is byte addressable and is accessed with 64-bit pointers. A 32-bit pointer model with
hardware mode is supported architecturally. Pointers which are 32 bits in memory are loaded
manipulated in 64-bit registers. Software must explicitly convert 32-bit pointers into 64-bit poin
before use. 

Table 3-7. CPUID Register 3 Fields

Field Bits Description

number 7:0 The index of the largest implemented CPUID register (one less 
than the number of implemented CPUID registers). This value will 
be at least 4.

revision 15:8 Processor revision number. An 8-bit value that represents the 
revision or stepping of this processor implementation within the 
processor model.

model 23:16 Processor model number. A unique 8-bit value representing the 
processor model within the processor family.

family 31:24 Processor family number. A unique 8-bit value representing the 
processor family.

archrev 39:32 Architecture revision. An 8-bit value that represents the 
architecture revision number that the processor implements.

rv 63:40 Reserved.

Figure 3-13. CPUID Register 4 – General Features/Capability Bits
63    1 0

rv lb
63 1

Table 3-8. CPUID Register 4 Fields

Field Bits Description

lb 0 Processor implements the long branch (brl) instructions.

rv 63:1 Reserved.
Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 3-13



3.2.2 Addressable Units and Alignment

Memory can be addressed in units of 1, 2, 4, 8, 10 and 16 bytes.

It is recommended that all addressable units be stored on their naturally aligned boundaries. 
Hardware and/or operating system software may have support for unaligned accesses, possibly 
with some performance cost. 10-byte floating-point values should be stored on 16-byte aligned 
boundaries.

Bits within larger units are always numbered from 0 starting with the least-significant bit. 
Quantities loaded from memory to general registers are always placed in the least-significant 
portion of the register (loaded values are placed right justified in the target general register).

Instruction bundles (3 IA-64 instructions per bundle) are 16-byte units that are always aligned on 
16-byte boundaries.

3.2.3 Byte Ordering

The UM.be bit in the User Mask controls whether loads and stores use little-endian or big-endian 
byte ordering for IA-64 references. When the UM.be bit is 0, larger-than-byte loads and stores are 
little endian (lower-addressed bytes in memory correspond to the lower-order bytes in the register). 
When the UM.be bit is 1, larger-than-byte loads and stores are big endian (lower-addressed bytes in 
memory correspond to the higher-order bytes in the register). Load byte and store byte are not 
affected by the UM.be bit. The UM.be bit does not affect instruction fetch, IA-32 references, or the 
RSE. IA-64 instructions are always accessed by the processor as little-endian units. When 
instructions are referenced as big-endian data, the instruction will appear reversed in a register.

Figure 3-14 shows various loads in little-endian format. Figure 3-15 shows various loads in big 
endian format. Stores are not shown but behave similarly.

Figure 3-14. Little-endian Loads

000718
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3.3 Instruction Encoding Overview

Each IA-64 instruction is categorized into one of six types; each instruction type may be executed 
on one or more execution unit types. Table 3-9 lists the instruction types and the execution unit type 
on which they are executed:

Three instructions are grouped together into 128-bit sized and aligned containers called bundles. 
Each bundle contains three 41-bit instruction slots and a 5-bit template field. The format of a 
bundle is depicted in Figure 3-16.

During execution, architectural stops in the program indicate to the hardware that one or more 
instructions before the stop may have certain kinds of resource dependencies with one or more 
instructions after the stop. A stop is present after each slot having a double line to the right of it in 
Table 3-10. For example, template 00 has no stops, while template 03 has a stop after slot 1 and 
another after slot 2.

Figure 3-15. Big-endian Loads

000720

Table 3-9. Relationship between Instruction Type and Execution Unit Type

Instruction Description Execution Unit Type

A Integer ALU I-unit or M-unit

I Non-ALU integer I-unit

M Memory M-unit

F Floating-point F-unit

B Branch B-unit

L+X Extended I-unit/B-unit

Figure 3-16. Bundle Format
127 87 86 46 45 5 4 0

instruction slot 2 instruction slot 1 instruction slot 0 template
41 41 41 5

a
7 0

b

c

d

e

f

g

h

0

1

2

3

4

5

6

7

Address

Memory

0 0 0 0 0 0 0 b

Registers
63 0

LD1 [1] =>

0 0 0 0 0 0 c d

63 0

LD2 [2] =>

0 0 0 0 e f g h

63 0

LD4 [4] =>

a b c d e f g h

63 0

LD8 [0] =>
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In addition to the location of stops, the template field specifies the mapping of instruction slots to 
execution unit types. Not all possible mappings of instructions to units are available. Table 3-10 
indicates the defined combinations. The three rightmost columns correspond to the three instruction 
slots in a bundle. Listed within each column is the execution unit type controlled by that instruction 
slot.

Table 3-10. Template Field Encoding and Instruction Slot Mapping

Template Slot 0 Slot 1 Slot 2

00 M-unit I-unit I-unit
01 M-unit I-unit I-unit
02 M-unit I-unit I-unit
03 M-unit I-unit I-unit
04 M-unit L-unit X-unita

a. The MLX template was formerly called MLI, and for compatibility, the X slot may encode break.i 
and nop.i in addition to any X-unit instruction. Instructions of type L+X occupy 2 instruction slots.

05 M-unit L-unit X-unita

06
07
08 M-unit M-unit I-unit
09 M-unit M-unit I-unit
0A M-unit M-unit I-unit
0B M-unit M-unit I-unit
0C M-unit F-unit I-unit
0D M-unit F-unit I-unit
0E M-unit M-unit F-unit
0F M-unit M-unit F-unit
10 M-unit I-unit B-unit
11 M-unit I-unit B-unit
12 M-unit B-unit B-unit
13 M-unit B-unit B-unit
14
15
16 B-unit B-unit B-unit
17 B-unit B-unit B-unit
18 M-unit M-unit B-unit
19 M-unit M-unit B-unit
1A
1B
1C M-unit F-unit B-unit
1D M-unit F-unit B-unit
1E
1F
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Extended instructions, used for long immediate integer and long branch instructions, occupy two 
instruction slots. Depending on the major opcode, extended instructions execute on a B-unit (long 
branch/call) or an I-unit (all other L+X instructions).

3.4 Instruction Sequencing Considerations

Instruction execution consists of four phases:

1. Read the instruction from memory (fetch).

2. Read architectural state, if necessary (read).

3. Perform the specified operation (execute).

4. Update architectural state, if necessary (update).

An instruction group is a sequence of instructions starting at a given bundle address and slot 
number and including all instructions at sequentially increasing slot numbers and bundle addresses 
up to the first stop, taken branch, Break Instruction fault due to a break.b, or Illegal Operation 
fault due to a Reserved or Reserved if PR[qp] is 1 encoding in the B-type opcode space. For the 
instructions in an instruction group to have well-defined behavior, they must meet the ordering and 
dependency requirements described below.

For the purpose of clarification, the following do not end instruction groups:

• Break instructions other than break.b (break.f, break.i, break.m, break.x).

• Check instructions (chk.s, chk.a, fchkf).

• rfi instructions not followed by a stop.

• brl instructions not followed by a stop.

• Interruptions other than a Break Instruction fault due to a break.b or an Illegal Operation fault 
due to a Reserved or Reserved if PR[qp] is 1 encoding in the B-type opcode space.

Thus, even if one of the above causes a change in control flow, the instructions at sequentia
increasing addresses beyond the location of the change in control flow up to the next true end
instruction group had the change of control flow not occurred, can still cause undefined values
seen at the target of the change of control flow, if they cause a dependency violation. There 
never, however, any dependency between the instructions at the target of the change in contr
and those preceding the change in control flow, even for the above cases. 

If the instructions in instruction groups meet the resource-dependency requirements, then th
behavior of a program will be as though each individual instruction is sequenced through the
phases in the order listed above. The order of a phase of a given instruction relative to any p
a previous instruction is prescribed by the instruction sequencing rules below. 

• There is no a priori relationship between the fetch of an instruction and the read, execute, or 
update of any dynamically previous instruction. The sync.i and srlz.i instructions can be 
used to enforce a sequential relationship between the fetch of all dynamically succeeding 
instructions and the update of all dynamically previous instructions.

• Between instruction groups, every instruction in a given instruction group will behave as 
though its read occurred after the update of all the instructions from the previous instruct
group. All instructions are assumed to have unit latency. Instructions on opposing sides 
stop are architecturally considered to be separated by at least one unit of latency.
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Some system state updates require more stringent requirements than those described here. See 
“Serialization” on page 3-1 for details.

• Within an instruction group, every instruction will behave as though its read of the memo
and ALAT state occurred after the update of the memory and ALAT state of all prior 
instructions in that instruction group.

• Within an instruction group, every instruction will behave as though its read of the registe
state occurred before the update of the register state by any instruction (prior or later) in
instruction group, except as noted in the Register dependencies and Memory dependen
described below. 

The ordering rules above form the context for register dependency restrictions, memory 
dependency restrictions and the order of exception reporting. These dependency restrictions
only between instructions whose resource reads and writes are not dynamically disabled by 
predication.

• Register dependencies: Within an instruction group, read-after-write (RAW) and write-aft
write (WAW) register dependencies are not allowed (except as noted in “RAW Dependency 
Special Cases” on page 3-19 and “WAW Dependency Special Cases” on page 3-20). Write-
after-read (WAR) register dependencies are allowed (except as noted in “WAR Dependency 
Special Cases” on page 3-21). 

These dependency restrictions apply to both explicit register accesses (from the instruct
operands) and implicit register accesses (such as application and control registers implic
accessed by certain instructions). Predicate register PR0 is excluded from these register
dependency restrictions, since writes to PR0 are ignored and reads always return 1 (one

Some system state updates require more stringent requirements than those described h
“Serialization” on page 3-1 for details.

• Memory dependencies: Within an instruction group, RAW, WAW, and WAR memory 
dependencies and ALAT dependencies are allowed. A load will observe the results of the
recent store to the same memory address. In the event that multiple stores to the same 
are present in the same instruction group, memory will contain the result of the latest sto
after execution of the instruction group. A store following a load to the same address will
affect the data loaded by the load. Advanced loads, check loads, advanced load checks,
and memory semaphore instructions implicitly access the ALAT. RAW, WAW, and WAR 
ALAT dependencies are allowed within an instruction group and behave as described fo
memory dependencies. 

The net effect of the dependency restrictions stated above is that a processor may execute a
any subset) of the instructions within a legal instruction group concurrently or serially with the
result being identical. If these dependency restrictions are not met, the behavior of the progr
undefined.

Exceptions are reported in instruction order. The dependency restrictions apply independent
presence or absence of exceptions — that is, restrictions must be satisfied whether or not an
exception occurs within an instruction group. At the point of exception delivery for a correctly
formed instruction group, all prior instructions will have completed their update of architectur
state. All subsequent instructions will not have updated architectural state. If an instruction g
violates a dependency requirement, then the update of architectural state before and after a
exception is not guaranteed (the fault handler sees an undefined value on the registers involv
dependency violation even if the exception occurs between the first and second instructions 
violation). In the event multiple exceptions occur while executing instructions from the same 
instruction group, the exception occurring on the earliest instruction will be reported. 
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The instruction sequencing resulting from the rules stated above is termed sequential execution.

The ordering rules and the dependency restrictions allow the processor to dynamically re-order 
instructions, execute instructions with non-unit latency, or even concurrently execute instructions 
on opposing sides of a stop or taken branch, provided that correct sequencing is enforced and the 
appearance of sequential execution is presented to the programmer. 

IP is a special resource in that reads and writes of IP behave as though the instruction stream was 
being executed serially, rather than in parallel. RAW dependencies on IP are allowed, and the 
reader gets the IP of the bundle in which it is contained. So, each bundle being executed in parallel 
logically reads IP, increments it and writes it back. WAW is also allowed.

Ignored ARs are not exceptional for dependency checking purposes. RAW and WAW dependencies 
to ignored ARs are not allowed. 

For more details on resource dependencies, see Volume 2, Appendix A, “IA-64 Resource and 
Dependency Semantics”.

3.4.1 RAW Dependency Special Cases

There are four special cases in which RAW register dependencies within an instruction group
permitted. These special cases are the alloc instruction, check load instructions, instructions tha
affect branching, and the ld8.fill and st8.spill instructions.

The alloc instruction implicitly writes the Current Frame Marker (CFM) which is implicitly rea
by all instructions accessing the stacked subset of the general register file. Instructions that a
the stacked subset of the general register file may appear in the same instruction group as a
will see the stack frame specified by the alloc.

Some instructions have RAW or WAW dependencies on resources other than CFM affected 
alloc and are thus not allowed in the same instruction group after an alloc: flushrs, loadrs, 
move from AR[BSPSTORE], move from AR[RNAT], br.cexit, br.ctop, br.wexit, br.wtop, 
br.call, brl.call, br.ia, br.ret, clrrrb, cover, and rfi. See Appendix A, “IA-64 
Resource and Dependency Semantics” for details. Also note that alloc is required to be the first 
instruction in an instruction group.

A check load instruction may or may not perform a load since it is dependent upon its 
corresponding advanced load. If the check load misses the ALAT it will execute a load from 
memory. A check load and a subsequent instruction that reads the target of the check load m
in the same instruction group. The dependent instruction will get the new value loaded by the
load.

A branch may read branch registers and may implicitly read predicate registers, the LC, EC,
PFS application registers, as well as CFM. Except for LC, EC and predicate registers, writes 
of these registers by a non-branch instruction will be visible to a subsequent branch in the sa
instruction group. Writes to predicate registers by any non-floating-point instruction will be vis
to a subsequent branch in the same instruction group. RAW register dependencies within the
instruction group are not allowed for LC and EC. Dynamic RAW dependencies where the pre
writer is a floating-point instruction and the reader is a branch are also not allowed within the 
instruction group. Branches br.cond, br.call, brl.cond, brl.call, br.ret and br.ia work 
like other instructions for the purposes of register dependency; i.e. if their qualifying predicate
they are not considered readers or writers of other resources. Branches br.cloop, br.cexit, 
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br.ctop, br.wexit, and br.wtop are exceptional in that they are always readers or writers of 
their resources, regardless of the value of their qualifying predicate. An indirect brp is considered a 
reader of the specified BR.

The ld8.fill and st8.spill instructions implicitly access the User NaT Collection application 
register (UNAT). For these instructions the restriction on dynamic RAW register dependencies with 
respect to UNAT applies at the bit level. These instructions may appear in the same instruction 
group provided they do not access the same bit of UNAT. RAW UNAT dependencies between 
ld8.fill or st8.spill instructions and mov ar= or mov =ar instructions accessing UNAT must 
not occur within the same instruction group.

For the purposes of resource dependencies, CFM is treated as a single resource. 

3.4.2 WAW Dependency Special Cases

There are three special cases in which WAW register dependencies within an instruction group are 
permitted. The special cases are compare-type instructions, floating-point instructions, and the 
st8.spill instruction.

The set of compare-type instructions includes: cmp, cmp4, tbit, tnat, fcmp, frsqrta, frcpa, and 
fclass. Compare-type instructions in the same instruction group may target the same predicate 
register provided:

• The compare-type instructions are either all AND-type compares or all OR-type compare
(AND-type compares correspond to “.and” and “.andcm” completers; OR-type compares
correspond to “.or” and “.orcm” completers), or

• The compare-type instructions all target PR0. All WAW dependencies for PR0 are allowed
compares can be of any types and can be of differing types.

All other WAW dependencies within an instruction group are disallowed, including WAW regis
dependencies with move to PR instructions that access the same predicate registers as ano
writer.

The move to PR instructions only writes those PRs indicated by its mask, but the move from
instructions always reads all the predicate registers. 

Floating-point instructions implicitly write the Floating-point Status Register (FPSR) and the 
Processor Status Register (PSR). Multiple floating-point instructions may appear in the same
instruction group since the restriction on WAW register dependencies with respect to the FPS
PSR do not apply. The state of FPSR and PSR after executing the instruction group will be t
logical OR of all writes.

The st8.spill instruction implicitly writes the UNAT register. For this instruction the restrictio
on WAW register dependencies with respect to UNAT applies at the bit level. Multiple st8.spill 
instructions may appear in the same instruction group provided they do not write the same b
UNAT. WAW register dependencies between st8.spill instructions and mov ar= instructions 
targeting UNAT must not occur within the same instruction group.
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3.4.3 WAR Dependency Special Cases

The WAR dependency between the reading of predicate register 63 by any B-type instruction and 
the subsequent writing of predicate register 63 by a modulo-scheduled loop type branch (br.ctop, 
br.cexit, br.wtop, or br.wexit) in the same instruction group is not allowed. Otherwise, WAR 
dependencies are allowed.

3.4.4 Processor Behavior on Dependency Violations

If a program violates read-after-write, write-after-write or write-after-read resource dependency 
rules within an instruction group, then processor behavior is undefined. 

To help debug code that violates the architectural resource dependency rules, some IA-64 processor 
implementations may provide dependency violation detection hardware that may cause an 
instruction group that contains an illegal dependency to take an Illegal Dependency fault (defined 
in Chapter 5).  
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IA-64 Application Programming Model 4

This section describes the IA-64 architectural functionality from the perspective of the application 
programmer. IA-64 instructions are grouped into related functions and an overview of their 
behavior is given. Unless otherwise noted, all immediates are sign extended to 64 bits before use. 
The floating-point programming model is described separately in Chapter 5. Refer to Volume 2 for 
detailed information on IA-64 instructions. 

The main features of the IA-64 programming model covered here are:

• General Register Stack

• Integer Computation Instructions

• Compare Instructions and Predication

• Memory Access Instructions and Speculation

• Branch Instructions and Branch Prediction

• Multimedia Instructions

• Register File Transfer Instructions

• Character Strings and Population Count

• Privilege Level Transfer

4.1 Register Stack

As described in “General Registers” on page 3-3, the general register file is divided into static an
stacked subsets. The static subset is visible to all procedures and consists of the 32 register
GR 0 through GR 31. The stacked subset is local to each procedure and may vary in size fro
to 96 registers beginning at GR 32. The register stack mechanism is implemented by renam
register addresses as a side-effect of procedure calls and returns. The implementation of thi
rename mechanism is not otherwise visible to application programs. The register stack is dis
during IA-32 instruction set execution.

The static subset must be saved and restored at procedure boundaries according to softwar
convention. The stacked subset is automatically saved and restored by the Register Stack E
(RSE) without explicit software intervention (for details on the RSE see Chapter 6). All other 
register files are visible to all procedures and must be saved/restored by software according 
software convention.

4.1.1 Register Stack Operation

The registers in the stacked subset visible to a given procedure are called a register stack fra
frame is further partitioned into two variable-size areas: the local area and the output area. 
Immediately after a call, the size of the local area of the newly activated frame is zero and th
of the output area is equal to the size of the caller’s output area and overlays the caller’s outp
Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 4-1
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The local and output areas of a frame can be re-sized using the alloc instruction which specifies 
immediates that determine the size of frame (sof) and size of locals (sol).

Note: In the assembly language, alloc specifies three operands: the size of inputs; the size of 
locals; and the size of outputs. The value of sol is determined by adding the size of inputs 
immediate and the size of locals immediate; the value of sof is determined by adding all 
three immediates.

The value of sof specifies the size of the entire stacked subset visible to the current procedure; the 
value of sol specifies the size of the local area. The size of the output area is determined by the 
difference between sof and sol. The values of these parameters for the currently active procedure 
are maintained in the Current Frame Marker (CFM).

Reading a stacked register outside the current frame will return an undefined result. Writing a 
stacked register outside the current frame will cause an Illegal Operation fault. 

When a br.call or brl.call is executed, the CFM is copied to the Previous Frame Marker 
(PFM) field in the Previous Function State application register (PFS), and the callee’s frame 
created as follows:

• The stacked registers are renamed such that the first register in the caller’s output area be
GR 32 for the callee.

• The size of the local area is set to zero.

• The size of the callee’s frame (sofb1) is set to the size of the caller’s output area (sofa – sola).

Values in the output area of the caller’s register stack frame are visible to the callee. This ove
permits parameter and return value passing between procedures to take place entirely in reg

Procedure frames may be dynamically re-sized by issuing an alloc instruction. An alloc 
instruction causes no renaming, but only changes the size of the register stack frame and th
partitioning between local and output areas. Typically, when a procedure is called, it will alloc
some number of local registers for its use (which will include the parameters passed to it in t
caller’s output registers), plus an output area (for passing parameters to procedures it will ca
Newly allocated registers (including their NaT bits) have undefined values.

When a br.ret is executed, CFM is restored from PFM and the register renaming is restored t
caller’s configuration. The PFM is procedure local state and must be saved and restored by n
procedures. The CFM is not directly accessible in application programs and is updated only 
through the execution of calls, returns, alloc, cover, and clrrrb.

Figure 4-1 depicts the behavior of the register stack on a procedure call from procA (caller) to
procB (callee). The state of the register stack is shown at four points: prior to the call, immed
following the call, after procB has executed an alloc, and after procB returns to procA.

The majority of application programs need only issue alloc instructions and save/restore PFM in
order to effectively utilize the register stack. A detailed knowledge of the RSE (Register Stac
Engine) is required only by certain specialized application software such as user-level thread
packages, debuggers, etc. (See Chapter 6.)
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4.1.2 Register Stack Instructions

The alloc instruction is used to change the size of the current register stack frame. An alloc 
instruction must be the first instruction in an instruction group otherwise the results are undefined. 
An alloc instruction affects the register stack frame seen by all instructions in an instruction 
group, including the alloc itself. An alloc cannot be predicated. An alloc does not affect the 
values or NaT bits of the allocated registers. When a register stack frame is expanded, newly 
allocated registers may have their NaT bit set.

In addition, there are three instructions which provide explicit control over the state of the register 
stack. These instructions are used in thread and context switching which necessitate a 
corresponding switch of the backing store for the register stack. See Chapter 6 for details on 
explicit management of the RSE.

The flushrs instruction is used to force all previous stack frames out to backing store memory. It 
stalls instruction execution until all active frames in the physical register stack up to, but not 
including the current frame are spilled to the backing store by the RSE. A flushrs instruction 
must be the first instruction in an instruction group; otherwise, the results are undefined. A 
flushrs cannot be predicated.

The cover instruction creates a new frame of zero size (sof = sol = 0). The new frame is created 
above (not overlapping) the present frame. Both the local and output areas of the previous stack 
frame are automatically saved. A cover instruction must be the last instruction in an instruction 
group otherwise an Illegal Operation fault is taken. A cover cannot be predicated.

Figure 4-1. Register Stack Behavior on Procedure Call and Return

000721
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The loadrs instruction ensures that the specified portion of the register stack is present in the 
physical registers. It stalls instruction execution until the number of bytes specified in the loadrs 
field of the RSC application register have been filled from the backing store by the RSE (starting 
from the current BSP). By specifying a zero value for RSC.loadrs, loadrs can be used to indicate 
that all stacked registers outside the current frame must be loaded from the backing store before 
being used. In addition, stacked registers outside the current frame (that have not been spilled by 
the RSE) will not be stored to the backing store. A loadrs instruction must be the first instruction 
in an instruction group otherwise the results are undefined. A loadrs cannot be predicated.

Table 4-1 lists the architectural visible state relating to the register stack. Table 4-2 summarizes the 
register stack management instructions. Call- and return-type branches, which affect the stack, are 
described in “Branch Instructions” on page 4-26. 

4.2 Integer Computation Instructions

The integer execution units provide a set of arithmetic, logical, shift and bit-field-manipulation
instructions. Additionally, they provide a set of instructions to accelerate operations on 32-bit
and pointers.

Arithmetic, logical and 32-bit acceleration instructions can be executed on both I- and M-unit

4.2.1 Arithmetic Instructions

Addition and subtraction (add, sub) are supported with regular two input forms and special thre
input forms. The three input addition form adds one to the sum of two input registers. The thr
input subtraction form subtracts one from the difference of two input registers. The three inpu
forms share the same mnemonics as the two input forms and are specified by appending a “
third source operand.

Table 4-1. Architectural Visible State Related to the Register Stack

Register Description

AR[PFS].pfm Previous Frame Marker field

AR[RSC] Register Stack Configuration application register

AR[BSP] Backing store pointer application register

AR[BSPSTORE] Backing store pointer application register for memory stores

AR[RNAT] RSE NaT collection application register

Table 4-2. Register Stack Management Instructions

Mnemonic Operation

alloc Allocate register stack frame

flushrs Flush register stack to backing store

loadrs Load register stack from backing store

cover Cover current stack frame
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Immediate forms of addition and subtraction use a register and a 15-bit immediate. The immediate 
form is obtained simply by specifying an immediate rather than a register as the first operand. Also, 
addition can be performed between a register and a 22-bit immediate; however, the source register 
must be GR 0, 1, 2 or 3.

A shift left and add instruction (shladd) shifts one register operand to the left by 1 to 4 bits and 
adds the result to a second register operand. Table 4-3 summarizes the integer arithmetic 
instructions.

Note that an integer multiply instruction is defined which uses the floating-point registers. See 
“Integer Multiply and Add Instructions” on page 5-18 for details. Integer divide is performed in 
software similarly to floating-point divide.

4.2.2 Logical Instructions

Instructions to perform logical AND (and), OR (or), and exclusive OR (xor) between two 
registers or between a register and an immediate are defined. The andcm instruction performs a 
logical AND of a register or an immediate with the complement of another register. Table 4-4 
summarizes the integer logical instructions.

4.2.3 32-bit Addresses and Integers

Support for IA-64 32-bit addresses is provided in the form of add instructions that perform re
bit copying. This supports the virtual address translation model (see “32-bit Virtual Addressing” on 
page 4-24 for details). The add 32-bit pointer instruction (addp) adds two registers or a register an
an immediate, zeroes the most significant 32-bits of the result, and copies bits 31:30 of the s
source to bits 62:61 of the result. The shladdp instruction operates similarly but shifts the first 
source to the left by 1 to 4 bits before performing the add, and is provided only in the two-reg
form. 

Table 4-3. Integer Arithmetic Instructions

Mnemonic Operation

add Addition

add ...,1 Three input addition
sub Subtraction

sub ...,1 Three input subtraction
shladd Shift left and add

Table 4-4. Integer Logical Instructions

Mnemonic Operation

and Logical and

or Logical or

andcm Logical and complement

xor Logical exclusive or
Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 4-5
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In addition, support for 32-bit integers is provided through 32-bit compare instructions and 
instructions to perform sign and zero extension. Compare instructions are described in “Compare 
Instructions and Predication” on page 4-7. The sign and zero extend (sxt, zxt) instructions take an 
8-bit, 16-bit, or 32-bit value in a register, and produce a properly extended 64-bit result. Table 4-5 
summarizes 32-bit pointer and 32-bit integer instructions.

4.2.4 Bit Field and Shift Instructions

Four classes of instructions are defined for shifting and operating on bit fields within a genera
register: variable shifts, fixed shift-and-mask instructions, a 128-bit-input funnel shift, and spe
compare operations to test an individual bit within a general register. The compare instructio
testing a single bit (tbit), or for testing the NaT bit (tnat) are described in “Compare Instructions 
and Predication” on page 4-7.

The variable shift instructions shift the contents of a general register by an amount specified 
another general register. The shift right signed (shr) and shift right unsigned (shr.u) instructions 
shift the contents of a register to the right with the vacated bit positions filled with the sign bit
zeroes respectively. The shift left (shl) instruction shifts the contents of a register to the left.

The fixed shift-and-mask instructions (extr, dep) are generalized forms of fixed shifts. The extrac
instruction (extr) copies an arbitrary bit field from a general register to the least-significant bit
the target register. The remaining bits of the target are written with either the sign of the bit fi
(extr) or with zero (extr.u). The length and starting position of the field are specified by two 
immediates. This is essentially a shift-right-and-mask operation. A simple right shift by a fixe
amount can be specified by using shr with an immediate value for the shift amount. This is just a
assembly pseudo-op for an extract instruction where the field to be extracted extends all the 
the left-most register bit.

The deposit instruction (dep) takes a field from either the least-significant bits of a general regis
or from an immediate value of all zeroes or all ones, places it at an arbitrary position, and fills
result to the left and right of the field with either bits from a second general register (dep) or with 
zeroes (dep.z). The length and starting position of the field are specified by two immediates. T
is essentially a shift-left-mask-merge operation. A simple left shift by a fixed amount can be 
specified by using shl with an immediate value for the shift amount. This is just an assembly 
pseudo-op for dep.z where the deposited field extends all the way to the left-most register bit.

The shift right pair (shrp) instruction performs a 128-bit-input funnel shift. It extracts an arbitra
64-bit field from a 128-bit field formed by concatenating two source general registers. The sta
position is specified by an immediate. This can be used to accelerate the adjustment of unal
data. A bit rotate operation can be performed by using shrp and specifying the same register for 
both operands. Table 4-6 summarizes the bit field and shift instructions.

Table 4-5. 32-bit Pointer and 32-bit Integer Instructions

Mnemonic Operation

addp 32-bit pointer addition

shladdp Shift left and add 32-bit pointer

sxt Sign extend

zxt Zero extend
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4.2.5 Large Constants

A special instruction is defined for generating large constants (see Table 4-7). For constants up to 
22 bits in size, the add instruction can be used, or the mov pseudo-op (pseudo-op of add with GR0, 
which always reads 0). For larger constants, the move long immediate instruction (movl) is defined 
to write a 64-bit immediate into a general register. This instruction occupies two instruction slots 
within the same bundle, and is the only such instruction.

4.3 Compare Instructions and Predication

A set of compare instructions provides the ability to test for various conditions and affect the 
dynamic execution of instructions. A compare instruction tests for a single specified condition and 
generates a boolean result. These results are written to predicate registers. The predicate registers 
can then be used to affect dynamic execution in two ways: as conditions for conditional branches, 
or as qualifying predicates for predication.

4.3.1 Predication

Predication is the conditional execution of instructions. The execution of most IA-64 instructions 
is gated by a qualifying predicate. If the predicate is true, the instruction executes normally; if the 
predicate is false, the instruction does not modify architectural state (except for the unconditional 
type of compare instructions, floating-point approximation instructions and while-loop branches). 
Predicates are one-bit values and are stored in the predicate register file. A zero predicate is 
interpreted as false and a one predicate is interpreted as true (predicate register PR0 is hardwired to 
one).

Table 4-6. Bit Field and Shift Instructions

Mnemonic Operation

shr Shift right signed

shr.u Shift right unsigned

shl Shift left

extr Extract signed (shift right and mask)

extr.u Extract unsigned (shift right and mask)

dep Deposit (shift left, mask and merge)

dep.z Deposit in zeroes (shift left and mask)

shrp Shift right pair

Table 4-7. Instructions to Generate Large Constants

Mnemonic Operation

mov Move 22-bit immediate
movl Move 64-bit immediate
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A few IA-64 instructions cannot be predicated. These instructions are: allocate stack frame 
(alloc), branch predict (brp), bank switch (bsw), clear rrb (clrrrb), cover stack frame (cover), 
enter privileged code (epc), flush register stack (flushrs), load register stack (loadrs), counted 
branches (br.cloop, br.ctop, br.cexit), and return from interruption (rfi).

4.3.2 Compare Instructions

Predicate registers are written by the following instructions: general register compare (cmp, cmp4), 
floating-point register compare (fcmp), test bit and test NaT (tbit, tnat), floating-point class 
(fclass), and floating-point reciprocal approximation and reciprocal square root approximation 
(frcpa, fprcpa, frsqrta, fprsqrta). Most of these compare instructions (all but frcpa, 
fprcpa, frsqrta and fprsqrta) set two predicate registers based on the outcome of the 
comparison. The setting of the two target registers is described below in “Compare Types” on 
page 4-9. Compare instructions are summarized in Table 4-8.

The 64-bit (cmp) and 32-bit (cmp4) compare instructions compare two registers, or a register and
immediate, for one of ten relations (e.g. >, <=). The compare instructions set two predicate t
according to the result. The cmp4 instruction compares the least-significant 32-bits of both sourc
(the most significant 32-bits are ignored).

The test bit (tbit) instruction sets two predicate registers according to the state of a single bi
general register (the position of the bit is specified by an immediate). The test NaT (tnat) 
instruction sets two predicate registers according to the state of the NaT bit corresponding to
general register.

The fcmp instruction compares two floating-point registers and sets two predicate targets acco
to one of eight relations. The fclass instruction sets two predicate targets according to the 
classification of the number contained in the floating-point register source.

The frcpa, fprcpa, frsqrta and fprsqrta instructions set a single predicate target if their 
floating-point register sources are such that a valid approximation can be produced, otherwis
predicate target is cleared.

Table 4-8. Compare Instructions

Mnemonic Operation

cmp, cmp4 GR compare

tbit Test bit in a GR

tnat Test GR NaT bit

fcmp FR compare

fclass FR class

frcpa, fprcpa Floating-point reciprocal approximation

frsqrta, fprsqrta Floating-point reciprocal square root approximation
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4.3.3 Compare Types

Compare instructions can have as many as five compare types: Normal, Unconditional, AND, OR, 
or DeMorgan. The type defines how the instruction writes its target predicate registers based on the 
outcome of the comparison and on the qualifying predicate. The description of these types is 
contained in Table 4-9. In the table, “qp” refers to the value of the qualifying predicate of the 
compare and “result” refers to the outcome of the compare relation (one if the compare relati
true and zero if the compare relation is false).

The Normal compare type simply writes the compare result to the first predicate target and th
complement of the result to the second predicate target.

The Unconditional compare type behaves the same as the Normal type, except that if the qua
predicate is 0, both predicate targets are written with 0. This can be thought of as an initializa
the predicate targets, combined with a Normal compare. Note that compare instructions with
Unconditional type modify architectural state when their qualifying predicate is false.

The AND, OR and DeMorgan types are termed “parallel” compare types because they allow
multiple simultaneous compares (of the same type) to target a single predicate register. This
provides the ability to compute a logical equation such as p5 = (r4 == 0) || (r5 == r6) in a 
single cycle (assuming p5 was initialized to 0 in an earlier cycle). The DeMorgan compare ty
just a combination of an OR type to one predicate target and an AND type to the other predi
target. Multiple OR-type compares (including the OR part of the DeMorgan type) may specif
same predicate target in the same instruction group. Multiple AND-type compares (including
AND part of the DeMorgan type) may also specify the same predicate target in the same instr
group.

For all compare instructions (except for tnat and fclass), if one or both of the source registers 
contains a deferred exception token (NaT or NaTVal – see “Control Speculation” on page 4-13), 
the result of the compare is different. Both predicate targets are treated the same, and are e
written to 0 or left unchanged. In combination with speculation, this allows predicated code to
turned off in the presence of a deferred exception. (fclass behaves this way as well if NaTVal is 
not one of the classes being tested for.) Table 4-10 describes the behavior. Only a subset of the 
compare types are provided for some of the compare instructions. Table 4-11 lists the compare 
types which are available for each of the instructions.

Table 4-9. Compare Type Function

Compare Type Completer
Operation

First Predicate Target Second Predicate Target

Normal none if (qp) {target = result} if (qp) {target = !result}

Unconditional unc
if (qp) {target = result}
else {target = 0}

if (qp) {target = !result}
else {target = 0}

AND
and if (qp && !result) {target = 0} if (qp && !result) {target = 0}

andcm if (qp && result) {target = 0} if (qp && result) {target = 0}

OR
or if (qp && result) {target = 1} if (qp && result) {target = 1}

orcm if (qp && !result) {target = 1} if (qp && !result) {target = 1}

DeMorgan
or.andcm if (qp && result) {target = 1} if (qp && result) {target = 0}

and.orcm if (qp && !result) {target = 0} if (qp && !result) {target = 1}
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4.3.4 Predicate Register Transfers

Instructions are provided to transfer between the predicate register file and a general register. These 
instructions operate in a “broadside” manner whereby multiple predicate registers are transfe
parallel, such that predicate register N is transferred to/from bit N of a general register.

The move to predicates instruction (mov pr=) loads multiple predicate registers from a general 
register according to a mask specified by an immediate. The mask contains one bit for each o
through PR 15 (PR 0 is hardwired to 1) and one bit for all of PR 16 through PR63 (the rotatin
predicates). A predicate register is written from the corresponding bit in a general register if t
corresponding mask bit is 1; if the mask bit is 0 the predicate register is not modified.

The move to rotating predicates instruction (mov pr.rot=) copies 48 bits from an immediate value
into the 48 rotating predicates (PR 16 through PR 63). The immediate value includes 28 bits,
sign-extended. Thus PR 16 through PR 42 can be independently set to new values, and PR
through PR 63 are all set to either 0 or 1.

The move from predicates instruction (mov =pr) transfers the entire predicate register file into a 
general register target.

For all of these predicate register transfers, the predicate registers are accessed as though t
register rename base (CFM.rrb.pr) were 0. Typically, therefore, software should clear CFM.rr
before initializing rotating predicates.

Table 4-10. Compare Outcome with NaT Source Input

Compare Type Operation

Normal if (qp) {target = 0}

Unconditional target = 0

AND if (qp) {target = 0}

OR (not written)

DeMorgan (not written)

Table 4-11. Instructions and Compare Types Provided

Instruction Relation Types Provided

cmp, cmp4 a == b, a != b,
a > 0, a >= 0, a < 0, a <= 0,
0 > a, 0 >= a, 0 < a, 0 <= a

Normal, Unconditional,
AND, OR, DeMorgan

All other relations Normal, Unconditional

tbit, tnat All Normal, Unconditional,
AND, OR, DeMorgan

fcmp, fclass All Normal, Unconditional

frcpa, frsqrta,
fprcpa, fprsqrta

Not Applicable Unconditional
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4.4 Memory Access Instructions

Memory is accessed by simple load, store and semaphore instructions, which transfer data to and 
from general registers or floating-point registers. The memory address is specified by the contents 
of a general register.

Most load and store instructions can also specify base-address-register update. Base update adds 
either an immediate value or the contents of a general register to the address register, and places the 
result back in the address register. The update is done after the load or store operation, i.e. it is 
performed as an address post-increment.

For highest performance, data should be aligned on natural boundaries. Within a 4K-byte boundary, 
accesses misaligned with respect to their natural boundaries will always fault if UM.ac (alignment 
check bit in the User Mask register) is 1. If UM.ac is 0, then an unaligned access will succeed if it is 
supported by the implementation; otherwise it will cause an Unaligned Data Reference fault. Refer 
to the Merced Processor External Design Specification for Itanium processor specific behavior. All 
memory accesses that cross a 4K-byte boundary will cause an Unaligned Data Reference fault 
independent of UM.ac. Additionally, all semaphore instructions will cause an Unaligned Data 
Reference fault if the access is not aligned to its natural boundary, independent of UM.ac.

Accesses to memory quantities larger than a byte may be done in a big-endian or little-endian 
fashion. The byte ordering for all memory access instructions is determined by UM.be in the User 
Mask register for IA-64 memory references. All IA-32 memory references are performed little-
endian.

Load, store and semaphore instructions are summarized in Table 4-12 and the state related to 
memory reference instructions is summarized in Table 4-13.

4.4.1 Load Instructions

Load instructions transfer data from memory to a general register, a floating-point register or a pair 
of floating-point registers.

For general register loads, access sizes of 1, 2, 4, and 8 bytes are defined. For sizes less than eight 
bytes, the loaded value is zero extended to 64-bits.

For floating-point loads, five access sizes are defined: single precision (4 bytes), double precision 
(8 bytes), double-extended precision (10 bytes), single precision pair (8 bytes), and double 
precision pair (16 bytes). The value(s) loaded from memory are converted into floating-point 
register format (see “Memory Access Instructions” on page 5-8 for details). The floating-point load 
pair instructions load two adjacent single or double precision numbers into two independent 
floating-point registers (see the ldfp[s/d] instruction description for restrictions on target registe
specifiers). The floating-point load pair instructions cannot specify base register update.

Variants of both general and floating-point register loads are defined for supporting compiler-
directed control and data speculation. These use the general register NaT bits and the ALAT
“Control Speculation” on page 4-13 and “Data Speculation” on page 4-17.
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Variants are also provided for controlling the memory/cache subsystem. An ordered load can be 
used to force ordering in memory accesses. See “Memory Access Ordering” on page 4-25. A 
biased load provides a hint to acquire exclusive ownership of the accessed line. See “Memory 
Hierarchy Control and Consistency” on page 4-22.

Special-purpose loads are defined for restoring register values that were spilled to memory. 
ld8.fill instruction loads a general register and the corresponding NaT bit (defined for an 8
access only). The ldf.fill instruction loads a value in floating-point register format from 
memory without conversion (defined for 16-byte access only). See “Register Spill and Fill” on 
page 4-16.

Table 4-12. Memory Access Instructions

Mnemonic

Operation
General

Floating-point

Normal Load Pair

ld ldf ldfp Load

ld.s ldf.s ldfp.s Speculative load

ld.a ldf.a ldfp.a Advanced load

ld.sa ldf.sa ldfp.sa Speculative advanced load

ld.c.nc, ld.c.clr ldf.c.nc,
ldf.c.clr

ldfp.c.nc,
ldfp.c.clr

Check load

ld.c.clr.acq Ordered check load

ld.acq Ordered load

ld.bias Biased load

ld.fill ldf.fill Register Fill

st stf Store

st.rel Ordered store

st.spill stf.spill Register Spill

cmpxchg Compare and exchange

xchg Exchange memory and GR

fetchadd Fetch and add

Table 4-13. State Relating to Memory Access

Register Function

UM.be User mask byte ordering

UM.ac User mask Unaligned Data Reference fault enable

UNAT GR NaT collection

CCV Compare and Exchange Compare Value application register
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4.4.2 Store Instructions

Store instructions transfer data from a general or floating-point register to memory. Store 
instructions are always non-speculative. Store instructions can specify base-address-register 
update, but only by an immediate value. A variant is also provided for controlling the memory/
cache subsystem. An ordered store can be used to force ordering in memory accesses.

Both general and floating-point register stores are defined with the same access sizes as their load 
counterparts. The only exception is that there are no floating-point store pair instructions.

Special purpose stores are defined for spilling register values to memory. The st8.spill 
instruction stores a general register and the corresponding NaT bit (defined for 8-byte access only). 
This allows the result of a speculative calculation to be spilled to memory and restored. The 
stf.spill instruction stores a floating-point register in memory in the floating-point register 
format without conversion. This allows register spill and restore code to be written to be compatible 
with possible future extensions to the floating-point register format. The stf.spill instruction 
also does not fault if the register contains a NaTVal, and is defined for 16-byte access only. See 
“Register Spill and Fill” on page 4-16.

4.4.3 Semaphore Instructions

Semaphore instructions atomically load a general register from memory, perform an operatio
then store a result to the same memory location. Semaphore instructions are always non-
speculative. No base register update is provided.

Three types of atomic semaphore operations are defined: exchange (xchg); compare and exchange
(cmpxchg); and fetch and add (fetchadd).

The xchg target is loaded with the zero-extended contents of the memory location addressed 
first source and then the second source is stored into the same memory location.

The cmpxchg target is loaded with the zero-extended contents of the memory location address
the first source; if the zero-extended value is equal to the contents of the Compare and Exch
Compare Value application register (CCV), then the second source is stored into the same m
location.

The fetchadd instruction specifies one general register source, one general register target, a
immediate. The fetchadd target is loaded with the zero-extended contents of the memory loca
addressed by the source and then the immediate is added to the loaded value and the result 
into the same memory location.

4.4.4 Control Speculation

Special mechanisms are provided to allow for compiler-directed speculation. This speculation
two forms, control speculation and data speculation, with a separate mechanism to support 
See also “Data Speculation” on page 4-17.
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4.4.4.1 Control Speculation Concepts

Control speculation describes the compiler optimization where an instruction or a sequence of 
instructions is executed before it is known that the dynamic control flow of the program will 
actually reach the point in the program where the sequence of instructions is needed. This is done 
with instruction sequences that have long execution latencies. Starting the execution early allows 
the compiler to overlap the execution with other work, increasing the parallelism and decreasing 
overall execution time. The compiler performs this optimization when it determines that it is very 
likely that the dynamic control flow of the program will eventually require this calculation. In cases 
where the control flow is such that the calculation turns out not to be needed, its results are simply 
discarded (the results in processor registers are simply not used).

Since the speculative instruction sequence may not be required by the program, no exceptions 
encountered that would be visible to the program can be signalled until it is determined that the 
program’s control flow does require the execution of this instruction sequence. For this reaso
mechanism is provided for recording the occurrence of an exception so that it can be signalle
if and when it is necessary. In such a situation, the exception is said to be deferred. When an
exception is deferred by an instruction, a special token is written into the target register to ind
the existence of a deferred exception in the program.

Deferred exception tokens are represented differently in the general and floating-point regist
files. In general registers, an additional bit is defined for each register called the NaT bit (Not
Thing). Thus general registers are 65 bits wide. A NaT bit equal to 1 indicates that the regist
contains a deferred exception token, and that its 64-bit data portion contains an implementat
specific value that software cannot rely upon. In floating-point registers, a deferred exception
indicated by a specific pseudo-zero encoding called the NaTVal (see “Representation of Values in 
Floating-point Registers” on page 5-2 for details).

4.4.4.2 Control Speculation and Instructions

Instructions are divided into two categories: speculative (instructions which can be used 
speculatively) and non-speculative (instructions which cannot). Non-speculative instructions 
raise exceptions if they occur and are therefore unsafe to schedule before they are known to
executed. Speculative instructions defer exceptions (they do not raise them) and are therefo
to schedule before they are know to be executed.

Loads to general and floating-point registers have both non-speculative (ld, ldf, ldfp) and 
speculative (ld.s, ldf.s, ldfp.s) variants. Generally, all computation instructions which write
their results to general or floating-point registers are speculative. Any instruction that modifies
other than a general or floating-point register is non-speculative, since there would be no wa
represent the deferred exception (there are a few exceptions).

Deferred exception tokens propagate through the program in a dataflow manner. A speculat
instruction that reads a register containing a deferred exception token will propagate a deferr
exception token into its target. Thus a chain of instructions can be executed speculatively, an
the result register need be checked for a deferred exception token to determine whether any
exceptions occurred.

At the point in the program when it is known that the result of a speculative calculation is need
speculation check (chk.s) instruction is used. This instruction tests for a deferred exception tok
If none is found, then the speculative calculation was successful, and execution continues no
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erate 

r the 

o 

s are 

ken and 

NaT 
 two 

 a 

ed for.)

aise a 

at the 
tive 

ly by 

 
s are 
red) 
If a deferred exception token is found, then the speculative calculation was unsuccessful and must 
be re-done. In this case, the chk.s instruction branches to a new address (specified by an 
immediate offset in the chk.s instruction). Software can use this mechanism to invoke code that 
contains a copy of the speculative calculation (but with non-speculative loads). Since it is now 
known that the calculation is required, any exceptions which now occur can be signalled and 
handled normally.

Since computational instructions do not generally cause exceptions, the only instructions which 
generate deferred exception tokens are speculative loads. (IEEE floating-point exceptions are 
handled specially through a set of alternate status fields. See “Floating-point Status Register” on 
page 5-5.) Other speculative instructions propagate deferred exception tokens, but do not gen
them.

4.4.4.3 Control Speculation and Compares

As stated earlier, most instructions that write a register file other than the general registers o
floating-point registers are non-speculative. The compare (cmp, cmp4, fcmp), test bit (tbit), 
floating-point class (fclass), and floating-point approximation (frcpa, frsqrta) instructions are 
special cases. These instructions read general or floating-point registers and write one or tw
predicate registers.

For these instructions, if any source contains a deferred exception token, all predicate target
either cleared or left unchanged, depending on the compare type (see Table 4-10 on page 4-10). 
Software can use this behavior to ensure that any dependent conditional branches are not ta
any dependent predicated instructions are nullified. See “Predication” on page 4-7.

Deferred exception tokens can also be tested for with certain compare instructions. The test 
(tnat) instruction tests the NaT bit corresponding to the specified general register and writes
predicate results. The floating-point class (fclass) instruction can be used to test for a NaTVal in
floating-point register and write the result to two predicate registers. (fclass does not clear both 
predicate targets in the presence of a NaTVal input if NaTVal is one of the classes being test

4.4.4.4 Control Speculation without Recovery

A non-speculative instruction that reads a register containing a deferred exception token will r
Register NaT Consumption fault. Such instructions can be thought of as performing a non-
recoverable speculation check operation. In some compilation environments, it may be true th
only exceptions that are deferred are fatal errors. In such a program, if the result of a specula
calculation is checked and a deferred exception token is found, execution of the program is 
terminated. For such a program, the results of speculative calculations can be checked simp
using non-speculative instructions.

4.4.4.5 Operating System Control over Exception Deferral

An additional mechanism is defined that allows the operating system to control the exception
behavior of speculative loads. The operating system has the option to select which exception
deferred automatically in hardware and which exceptions will be handled (and possibly defer
by software. See “Deferral of IA-64 Speculative Load Faults” on page 5-10.
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4.4.4.6 Register Spill and Fill

Special store and load instructions are provided for spilling a register to memory and preserving 
any deferred exception token, and for restoring a spilled register.

The spill and fill general register instructions (st8.spill, ld8.fill) are defined to save/restore a 
general register along with the corresponding NaT bit.

The st8.spill instruction writes a general register’s NaT bit into the User NaT Collection 
application register (UNAT), and, if the NaT bit was 0, writes the register’s 64-bit data portion
memory. If the register’s NaT bit was 1, the UNAT is updated, but the memory update is 
implementation specific, and must consistently follow one of three spill behaviors: 

1. The st8.spill may not update memory with the register’s 64-bit data portion, or 

2. The st8.spill may write a zero to the specified memory location, or

3. The st8.spill may write the‘ register’s 64-bit data portion to memory, only if that 
implementation returns a zero into the target register of all NaTed speculative loads, an
implementation also guarantees that all NaT propagating instructions perform all 
computations as specified by the instruction pages.

Bits 8:3 of the memory address determine which bit in the UNAT register is written.

The ld8.fill instruction loads a general register from memory taking the corresponding NaT
from the bit in the UNAT register addressed by bits 8:3 of the memory address. The UNAT re
must be saved and restored by software. It is the responsibility of software to ensure that the
contents of the UNAT register are correct while executing st8.spill and ld8.fill instructions.

The floating-point spill and fill instructions (stf.spill, ldf.fill) are defined to save/restore a
floating-point register (saved as 16 bytes) without surfacing an exception if the FR contains a
NaTVal (these instructions do not affect the UNAT register).

The general and floating-point spill/fill instructions allow spilling/filling of registers that are targ
of a speculative instruction and may therefore contain a deferred exception token. Note also
transfers between the general and floating-point register files cause a conversion between th
deferred exception token formats.

Table 4-14 lists the state relating to control speculation. Table 4-15 summarizes the instructions 
related to control speculation.

Table 4-14. State Related to Control Speculation

Register Description

NaT bits 65th bit associated with each GR indicating a deferred exception

NaTVal Pseudo-Zero encoding for FR indicating a deferred exception

UNAT User NaT collection application register
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4.4.5 Data Speculation

Just as control speculative loads and checks allow the compiler to schedule instructions across 
control dependencies, data speculative loads and checks allow the compiler to schedule instructions 
across some types of ambiguous data dependencies. This section details the usage model and 
semantics of data speculation and related instructions.

4.4.5.1 Data Speculation Concepts

An ambiguous memory dependency is said to exist between a store (or any operation that may 
update memory state) and a load when it cannot be statically determined whether the load and store 
might access overlapping regions of memory. For convenience, a store that cannot be statically 
disambiguated relative to a particular load is said to be ambiguous relative to that load. In such 
cases, the compiler cannot change the order in which the load and store instructions were originally 
specified in the program. To overcome this scheduling limitation, a special kind of load instruction 
called an advanced load can be scheduled to execute earlier than one or more stores that are 
ambiguous relative to that load.

As with control speculation, the compiler can also speculate operations that are dependent upon the 
advanced load and later insert a check instruction that will determine whether the speculation was 
successful or not. For data speculation, the check can be placed anywhere the original non-data 
speculative load could have been scheduled.

Thus, a data-speculative sequence of instructions consists of an advanced load, zero or more 
instructions dependent on the value of that load, and a check instruction. This means that any 
sequence of stores followed by a load can be transformed into an advanced load followed by a 
sequence of stores followed by a check. The decision to perform such a transformation is highly 
dependent upon the likelihood and cost of recovering from an unsuccessful data speculation.

4.4.5.2 Data Speculation and Instructions

Advanced loads are available in integer (ld.a), floating-point (ldf.a), and floating-point pair 
(ldfp.a) forms. When an advanced load is executed, it allocates an entry in a structure called the 
Advanced Load Address Table (ALAT). Later, when a corresponding check instruction is executed, 
the presence of an entry indicates that the data speculation succeeded; otherwise, the speculation 
failed and one of two kinds of compiler-generated recovery is performed:

1. The check load instruction (ld.c, ldf.c, or ldfp.c) is used for recovery when the only 
instruction scheduled before a store that is ambiguous relative to the advanced load is the 
advanced load itself. The check load searches the ALAT for a matching entry. If found, the 

Table 4-15. Instructions Related to Control Speculation

Mnemonic Operation

ld.s, ldf.s, ldfp.s GR and FR speculative loads

ld8.fill, ldf.fill Fill GR with NaT collection, fill FR

st8.spill, stf.spill Spill GR with NaT collection, spill FR

chk.s Test GR or FR for deferred exception token

tnat Test GR NaT bit and set predicate
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speculation was successful; if a matching entry was not found, the speculation was 
unsuccessful and the check load reloads the correct value from memory. Figure 4-2 shows 
this transformation.

2. The advanced load check (chk.a) is used when an advanced load and several instructions 
that depend on the loaded value are scheduled before a store that is ambiguous relative to the 
advanced load. The advanced load check works like the speculation check (chk.s) in that, if 
the speculation was successful, execution continues inline and no recovery is necessary; if 
speculation was unsuccessful, the chk.a branches to compiler-generated recovery code. The 
recovery code contains instructions that will re-execute all the work that was dependent on 
the failed data speculative load up to the point of the check instruction. As with the check 
load, the success of a data speculation using an advanced load check is determined by 
searching the ALAT for a matching entry. This transformation is shown in Figure 4-3.

Recovery code may use either a normal or advanced load to obtain the correct value for the failed 
advanced load. An advanced load is used only when it is advantageous to have an ALAT entry 
reallocated after a failed speculation. The last instruction in the recovery code should branch to the 
instruction following the chk.a.

4.4.5.3 Detailed Functionality of the ALAT and Related Instructions

The ALAT is the structure that holds the state necessary for advanced loads and checks to operate 
correctly. The ALAT is searched in two different ways: by physical addresses and by ALAT register 
tags. An ALAT register tag is a unique number derived from the physical target register number and 
type in conjunction with other implementation-specific state. Implementation-specific state might 

Figure 4-2. Data Speculation Recovery Using ld.c

Before Data Speculation After Data Speculation

// other instructions
st8 [r4] = r12
ld8 r6 = [r8];;
add r5 = r6, r7;;
st8 [r18] = r5

ld8.a r6 = [r8];; // advanced 
load
// other instructions
st8 [r4] = r12
ld8.c.clr r6 = [r8] // check load
add r5 = r6, r7;;
st8 [r18] = r5

Figure 4-3. Data Speculation Recovery Using chk.a

Before Data Speculation After Data Speculation

// other instructions
st8 [r4] = r12
ld8 r6 = [r8];;
add r5 = r6, r7;;
st8 [r18] = r5

ld8.a r6 = [r8];;
// other instructions
add r5 = r6, r7;;
// other instructions
st8 [r4] = r12
chk.a.clr r6, recover

back:
st8 [r18] = r5

// somewhere else in program
recover:

ld8 r6 = [r8];;
add r5 = r6, r7
‘br back
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include register stack wraparound information to distinguish one instance of a physical register that 
may have been spilled by the RSE from the current instance of that register, thus avoiding the need 
to purge the ALAT on all register stack wraparounds.

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software can not rely 
on ALAT values being preserved across an instruction set transition. On entry to IA-32 instruction 
set, existing entries in the ALAT are ignored. 

4.4.5.3.1 Allocating and Checking ALAT Entries

Advanced loads perform the following actions:

1. The ALAT register tag for the advanced load is computed. (For ldfp.a, a tag is computed 
only for the first target register.)

2. If an entry with a matching ALAT register tag exists, it is removed.

3. A new entry is allocated in the ALAT which contains the new ALAT register tag, the load 
access size, and a tag derived from the physical memory address.

4. The value at the address specified in the advanced load is loaded into the target register and, 
if specified, the base register is updated and an implicit prefetch is performed.

Since the success of a check is determined by finding a matching register tag in the ALAT, both the 
chk.a and the target register of a ld.c must specify the same register as their corresponding 
advanced load. Additionally, the check load must use the same address and operand size as the 
corresponding advanced load; otherwise, the value written into the target register by the check load 
is undefined. 

An advanced load check performs the following actions:

1. It looks for a matching ALAT entry and if found, falls through to the next instruction.

2. If no matching entry is found, the chk.a branches to the specified address.

An implementation may choose to implement a failing advanced load check directly as a branch or 
as a fault where the fault-handler emulates the branch. Although the expected mode of operation is 
for an implementation to detect matching entries in the ALAT during checks, an implementation 
may fail a check instruction even when an entry with a matching ALAT register tag exists. This will 
be a rare occurrence but software must not assume that the ALAT does not contain the entry.

A check load checks for a matching entry in the ALAT. If no matching entry is found, it reloads the 
value from memory and any faults that occur during the memory reference are raised. When a 
matching entry is found, the target register is left unchanged.

1. The implementation may choose to either leave the target register unchanged or to reload the 
value from memory.

2. If the implementation chooses to leave the target register unchanged and a fault related to the 
data access or translation of the check load occurs, the implementation may choose to either 
raise the fault or ignore it and continue execution. The only faults that can be ignored are 
those related to data access and translation. See Table 5-5 on page 5-14.

3. If the implementation chooses to perform a reload, then any faults that occur because of the 
reload can not be ignored.

4. If the size, type, or address fields in the matching ALAT entry do not match that provided by 
a check load, the value returned by the check load is undefined. In such cases the 
implementation may choose to raise a fault or when the “no clear” variant of the check
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is issued, an implementation may choose to update the address, size, or type fields of the 
matching ALAT entry or to leave the entry unchanged.

If the check load was an ordered check load (ld.c.clr.acq), then it is performed with the 
semantics of an ordered load (ld.acq). ALAT register tag lookups by advanced load checks and 
check loads are subject to memory ordering constraints as outlined in “Memory Access Ordering” 
on page 4-25.

In addition to the flexibility described above, the size, organization, matching algorithm, and 
replacement algorithm of the ALAT are implementation dependent. Thus, the success or failu
specific advanced loads and checks in a program may change: when the program is run on d
processor implementations, within the execution of a single program on the same implemen
or between different runs on the same implementation.

4.4.5.3.2 Invalidating ALAT Entries

In addition to entries removed by advanced loads, ALAT entry invalidations can occur implicitl
events that alter memory state or explicitly by any of the following instructions: ld.c.clr, 
ld.c.clr.acq, chk.a.clr, invala, invala.e. Events that may implicitly invalidate ALAT 
entries include those that change memory state or memory translation state such as:

1. The execution of stores, semaphores, or ptc.ga on other processors in the coherence 
domain.

2. The execution of store or semaphore instructions issued on the local processor.

3. Platform-visible removal of a cache line from the processor’s caches.

When one of these events occurs, hardware checks each memory region represented by an
the ALAT to see if it overlaps with the locations affected by the invalidation event. ALAT entri
whose memory regions overlap with the invalidation event locations are removed. Note that 
invalidation events may require that multiple entries be removed from the ALAT. For example
ptc.ga instruction is page aligned, thus a ptc.ga from another processor would require that 
hardware invalidate all ALAT entries related to that page. Stores due to RSE spills are not ch
for ALAT invalidation and do not cause ALAT entries to be removed. See “RSE and ALAT 
Interaction” on page 6-14. When an external agent can observe that the processor has remove
physical address range from its caches, then that address range is guaranteed to be invalida
that processor’s ALAT as well. 

An implementation may invalidate entries over areas larger than explicitly required by a spec
invalidation event.

4.4.5.4 Combining Control and Data Speculation

Control speculation and data speculation are not mutually exclusive; a given load may be bo
control and data speculative. Both control speculative (ld.sa, ldf.sa, ldfp.sa) and non-control 
speculative (ld.a, ldf.a, ldfp.a) variants of advanced loads are defined for general and float
point registers. If a speculative advanced load generates a deferred exception token then:

1. Any existing ALAT entry with the same ALAT register tag is invalidated.

2. No new ALAT entry is allocated.

3. If the target of the load was a general-purpose register, its NaT bit is set.
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4. If the target of the load was a floating-point register, then NaTVal is written to the target 
register.

If a speculative advanced load does not generate a deferred exception, then its behavior is the same 
as the corresponding non-control speculative advanced load. 

Since there can be no matching entry in the ALAT after a deferred fault, a single advanced load 
check or check load is sufficient to check both for data speculation failures and to detect deferred 
exceptions.

4.4.5.5 Instruction Completers for ALAT Management

To help the compiler manage the allocation and deallocation of ALAT entries, two variants of 
advanced load checks and check loads are provided: variants with clear (chk.a.clr, ld.c.clr, 
ld.c.clr.acq, ldf.c.clr, ldfp.c.clr) and variants with no clear (chk.a.nc, ld.c.nc, 
ldf.c.nc, ldfp.c.nc). 

The clear variants are used when the compiler knows that the ALAT entry will not be used again 
and wants the entry explicitly removed. This allows software to indicate when entries are 
unneeded, making it less likely that a useful entry will be unnecessarily forced out because all 
entries are currently allocated.

For the clear variants of check load, any ALAT entry with the same ALAT register tag is 
invalidated independently of whether the address or size fields of the check load and the 
corresponding advanced load match. For chk.a.clr, the entry is guaranteed to be invalidated only 
when the instruction falls through (the recovery code is not executed). Thus, a failing chk.a.clr 
may or may not clear any matching ALAT entries. In such cases, the recovery code must explicitly 
invalidate the entry in question if program correctness depends on the entry being absent after a 
failed chk.a.clr.

Non-clear variants of both kinds of data speculation checks act as a hint to the processor that an 
existing entry should be maintained in the ALAT or that a new entry should be allocated when a 
matching ALAT entry doesn’t exist. Such variants can be used within loops to check advance
loads which were presumed loop-invariant and moved out of the loop by the compiler. This 
behavior ensures that if the check load fails on one iteration, then the check load will not 
necessarily fail on all subsequent iterations. Whenever a new entry is inserted into the ALAT
when the contents of an entry are updated, the information written into the ALAT only uses 
information from the check load and does not use any residual information from a prior entry
non-clear variant of chk.a, chk.a.nc, does not allocate entries and the ‘nc’ completer acts as a 
hint to the processor that the entry should not be cleared.

Table 4-16 and Table 4-17 summarize state and instructions relating to data speculation.

Table 4-16. State Relating to Data Speculation

Structure Function

ALAT Advanced load address table
Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 4-21



4.4.6 Memory Hierarchy Control and Consistency

4.4.6.1 Hierarchy Control and Hints

IA-64 memory access instructions are defined to specify whether the data being accessed possesses 
temporal locality. In addition, memory access instructions can specify which levels of the memory 
hierarchy are affected by the access. This leads to an architectural view of the memory hierarchy 
depicted in Figure 4-4 composed of zero or more levels of cache between the register files and 
memory where each level may consist of two parallel structures: a temporal structure and a non-
temporal structure. Note that this view applies to data accesses and not instruction accesses.

Table 4-17. Instructions Relating to Data Speculation

Mnemonic Operation

ld.a, ldf.a, ldfp.a GR and FR advanced load

st, st.rel, st8.spill, stf, stf.spill GR and FR store

cmpxchg, fetchadd, xchg GR semaphore

ld.c.clr, ld.c.clr.acq, ldf.c.clr, 
ldfp.c.clr

GR and FR check load, clear on ALAT 
hit

ld.c.nc, ldf.c.nc, ldfp.c.nc GR and FR check load, re-allocate on 
ALAT miss

ld.sa, ldf.sa, ldfp.sa GR and FR speculative advanced load

chk.a.clr, chk.a.nc GR and FR advanced load check

invala Invalidate all ALAT entries

invala.e Invalidate individual ALAT entry for GR 
or FR

Figure 4-4. Memory Hierarchy
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The temporal structures cache memory accessed with temporal locality; the non-temporal 
structures cache memory accessed without temporal locality. Both structures assume that memory 
accesses possess spatial locality. The existence of separate temporal and non-temporal structures, 
as well as the number of levels of cache, is implementation dependent. 

Three mechanisms are defined for allocation control: locality hints; explicit prefetch; and implicit 
prefetch. Locality hints are specified by load, store, and explicit prefetch (lfetch) instructions. A 
locality hint specifies a hierarchy level (e.g. 1, 2, all). An access that is temporal with respect to a 
given hierarchy level is treated as temporal with respect to all lower (higher numbered) levels. An 
access that is non-temporal with respect to a given hierarchy level is treated as temporal with 
respect to all lower levels. Finding a cache line closer in the hierarchy than specified in the hint 
does not demote the line. This enables the precise management of lines using lfetch and then 
subsequent uses by .nta loads and stores to retain that level in the hierarchy. For example, 
specifying the .nt2 hint by a prefetch indicates that the data should be cached at level 3. 
Subsequent loads and stores can specify .nta and have the data remain at level 3.

Locality hints do not affect the functional behavior of the program and may be ignored by the 
implementation. The locality hints available to loads, stores, and explicit prefetch instructions are 
given in Table 4-18. Instruction accesses are considered to possess both temporal and spatial 
locality with respect to level 1.

Each locality hint implies a particular allocation path in the memory hierarchy. The allocation paths 
corresponding to the locality hints are depicted in Figure 4-5. The allocation path specifies the 
structures in which the line containing the data being referenced would best be allocated. If the line 
is already at the same or higher level in the hierarchy no movement occurs. Hinting that a datum 
should be cached in a temporal structure indicates that it is likely to be read in the near future.

Explicit prefetch is defined in the form of the line prefetch instruction (lfetch, lfetch.fault). 
The lfetch instructions moves the line containing the addressed byte to a location in the memory 
hierarchy specified by the locality hint. If the line is already at the same or higher level in the 
hierarchy, no movement occurs. Both immediate and register post-increment are defined for 
lfetch and lfetch.fault. The lfetch instruction does not cause any exceptions, does not 
affect program behavior, and may be ignored by the implementation. The lfetch.fault 
instruction affects the memory hierarchy in exactly the same way as lfetch but takes exceptions 
as if it were a 1-byte load instruction.

Implicit prefetch is based on the address post-increment of loads, stores, lfetch and 
lfetch.fault. The line containing the post-incremented address is moved in the memory 
hierarchy based on the locality hint of the originating load, store, lfetch or lfetch.fault. If the 
line is already at the same or higher level in the hierarchy then no movement occurs. Implicit 
prefetch does not cause any exceptions, does not affect program behavior, and may be ignored by 
the implementation.

Table 4-18. Locality Hints Specified by Each Instruction Class

Mnemonic Locality Hint
Instruction Type

Load Store
lfetch, 

lfetch.fault

none Temporal, level 1 x x x

nt1 Non-temporal, level 1 x x
nt2 Non-temporal, level 2 x
nta Non-temporal, all levels x x x
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Another form of hint that can be provided on loads is the ld.bias load type. This is a hint to the 
implementation to acquire exclusive ownership of the line containing the addressed data. The bias 
hint does not affect program functionality and may be ignored by the implementation.

Two instructions are defined for flush control: flush cache (fc) and flush write buffers (fwb). The 
fc instruction invalidates the cache line in all levels of the memory hierarchy above memory. If the 
cache line is not consistent with memory, then it is copied into memory before invalidation. The 
fwb instruction provides a hint to flush all pending buffered writes to memory (no indication of 
completion occurs).

Table 4-19 summarizes the memory hierarchy control instructions and hint mechanisms.

4.4.6.2 Memory Consistency

IA-64 instruction accesses made by a processor are not coherent with respect to instruction and/or 
data accesses made by any other processor, nor are instruction accesses made by a processor 
coherent with respect to data accesses made by that same processor. Therefore, hardware is not 
required to keep a processor’s instruction caches consistent with respect to any processor’s
caches, including that processor’s own data caches; nor is hardware required to keep a proc
instruction caches consistent with respect to any other processor’s instruction caches. Data a

Figure 4-5. Allocation Paths Supported in the Memory Hierarchy
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Table 4-19. Memory Hierarchy Control Instructions and Hint Mechanisms

Mnemonic Operation

.nt1 and .nta completer on loads Load usage hints

.nta completer on stores Store usage hints

prefetch line at post-increment address on loads and stores Prefetch hint

lfetch, lfetch.fault with .nt1, .nt2, and .nta hints Prefetch line
fc Flush cache
fwb Flush write buffers
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from different processors in the same coherence domain are coherent with respect to each other; 
this consistency is provided by the hardware. Data accesses from the same processor are subject to 
data dependency rules; see “Memory Access Ordering” below. 

The mechanism(s) by which coherence is maintained is implementation dependent. Separat
unified structures for caching data and instructions are not architecturally visible. Within this 
context there are two categories of data memory hierarchy control: allocation and flush. Alloc
refers to movement towards the processor in the hierarchy (lower numbered levels) and flush
to movement away from the processor in the hierarchy (higher numbered levels). Allocation 
flush occur in line-sized units; the minimum architecturally visible line size is 32 bytes (aligne
a 32-byte boundary). The line size in an implementation may be smaller in which case the 
implementation will need to move multiple lines for each allocation and flush event. An 
implementation may allocate and flush in units larger than 32 bytes.

In order to guarantee that a write from a given processor becomes visible to the instruction s
of that same, and other, processors, the affected line(s) must be flushed to memory. Softwar
use the fc instruction for this purpose. Memory updates by DMA devices are coherent with res
to instruction and data accesses of processors. The consistency between instruction and data
of processors with respect to memory updates by DMA devices is provided by the hardware.
case a program modifies its own instructions, the sync.i and srlz.i instructions are used to 
ensure that prior coherency actions are observed by a given point in the program. Refer to th
description sync.i on page 2-220 in Volume 2 for an example of self-modifying code.

4.4.7 Memory Access Ordering

Memory data access ordering must satisfy read-after-write (RAW), write-after-write (WAW), a
write-after-read (WAR) data dependencies to the same memory location. In addition, memor
writes and flushes must observe control dependencies. Except for these restrictions, reads, 
and flushes may occur in an order different from the specified program order. Note that no ord
exists between instruction accesses and data accesses or between any two instruction acces
mechanisms described below are defined to enforce a particular memory access order. In th
following discussion, the terms “previous” and “subsequent” are used to refer to the program
specified order. The term “visible” is used to refer to all architecturally visible effects of perform
a memory access (at a minimum this involves reading or writing memory).

Memory accesses follow one of four memory ordering semantics: unordered, release, acquir
fence. Unordered data accesses may become visible in any order. Release data accesses g
that all previous data accesses are made visible prior to being made visible themselves. Acq
data accesses guarantee that they are made visible prior to all subsequent data accesses. F
operations combine the release and acquire semantics into a bi-directional fence, i.e. they gu
that all previous data accesses are made visible prior to any subsequent data accesses bein
visible. 

Explicit memory ordering takes the form of a set of instructions: ordered load and ordered ch
load (ld.acq, ld.c.clr.acq), ordered store (st.rel), semaphores (cmpxchg, xchg, fetchadd), 
and memory fence (mf). The ld.acq and ld.c.clr.acq instructions follow acquire semantics. 
The st.rel follows release semantics. The mf instruction is a fence operation. The xchg, 
fetchadd.acq, and cmpxchg.acq instructions have acquire semantics. The cmpxchg.rel, and 
fetchadd.rel instructions have release semantics. The semaphore instructions also have im
ordering. If there is a write, it will always follow the read. In addition, the read and write will b
performed atomically with no intervening accesses to the same memory region.
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Table 4-20 illustrates the ordering interactions between memory accesses with different ordering 
semantics. “O” indicates that the first and second reference are performed in order with resp
each other. A “-” indicates that no ordering is implied other than data dependencies (and con
dependencies for writes and flushes).

Table 4-21 summarizes memory ordering instructions related to cacheable memory. For defin
of the ordering rules related to non-cacheable memory, cache synchronization, and privilege
instructions, refer to “Sequentiality Attribute and Ordering”.

4.5 Branch Instructions

Branch instructions effect a transfer of control flow to a new address. Branch targets are bun
aligned, which means control is always passed to the first instruction slot of the target bundle
(slot 0). Branch instructions are not required to be the last instruction in an instruction group.
fact, an instruction group can contain arbitrarily many branches (provided that the normal RA
and WAW dependency requirements are met). If a branch is taken, only instructions up to the
branch will be executed. After a taken branch, the next instruction executed will be at the tar
the branch. 

There are three categories of branches: IP-relative branches, long branches, and indirect bra
IP-relative branches specify their target with a signed 21-bit displacement, which is added to
of the bundle containing the branch to give the address of the target bundle. The displaceme
allows a branch reach of ±16MBytes. Long branches are IP-relative with a 60-bit displacement
allowing the target to be anywhere in the 64-bit address space. Because of the long immediat
branches occupy two instruction slots. Indirect branches use the branch registers to specify 
target address. 

Table 4-20. Memory Ordering Rules

First Reference
Second Reference

Fence Acquire Release Unordered

 fence O O O O

acquire O O O O

release O – O –

unordered O – O –

Table 4-21. Memory Ordering Instructions

Mnemonic Operation

ld.acq, ld.c.clr.acq Ordered load and ordered check load

st.rel Ordered store

xchg Exchange memory and general register

cmpxchg.acq, cmpxchg.rel Conditional exchange of memory and general 
register

fetchadd.acq,fetchadd.rel Add immediate to memory

mf Memory ordering fence
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There are several branch types, as shown in Table 4-22. The conditional branch br.cond or br is a 
branch which is taken if the specified predicate is 1, and not-taken otherwise. The conditional call 
branch br.call does the same thing, and in addition, writes a link address to a specified branch 
register and adjusts the general register stack (see “Register Stack” on page 4-1). The conditional 
return br.ret does the same thing as an indirect conditional branch, plus it adjusts the gener
register stack. Unconditional branches, calls and returns are executed by specifying PR 0 (w
always 1) as the predicate for the branch instruction. The long branches, brl.cond or brl, and 
brl.call are identical to br.cond or br, and br.call, respectively, except for their longer 
displacement. 

The counted loop type (br.cloop) uses the Loop Count (LC) application register. If LC is non-
zero then it is decremented and the branch is taken. If LC is zero, the branch falls through. T
modulo-scheduled loop type branches (br.ctop, br.cexit, br.wtop, br.wexit) are described in 
“Modulo-scheduled Loop Support” on page 4-28. The loop type branches (br.cloop, br.ctop, 
br.cexit, br.wtop, br.wexit) are allowed only in slot 2 of a bundle. A loop type branch 
executed in slot 0 or 1 will cause an Illegal Operation fault.

Instructions are provided to move data between branch registers and general registers (mov =br, 
mov br=). Table 4-23 and Table 4-24 summarize state and instructions relating to branching.

Table 4-22. Branch Types

Mnemonic Function Branch Condition Target Address

br.cond or br Conditional branch Qualifying 
predicate

IP-rel or Indirect

br.call Conditional procedure call Qualifying 
predicate

IP-rel or Indirect

br.ret Conditional procedure 
return

Qualifying 
predicate

Indirect

br.ia Invoke the IA-32 
instruction set

Unconditional Indirect

br.cloop Counted loop branch Loop count IP-rel

br.ctop, br.cexit Modulo-scheduled 
counted loop

Loop count and 
Epilog count

IP-rel

br.wtop, br.wexit Modulo-scheduled while 
loop

Qualifying 
predicate and 
Epilog count

IP-rel

brl.cond or brl Long conditional branch Qualifying 
predicate

IP-rel

brl.call Long conditional 
procedure call

Qualifying 
predicate

IP-rel

Table 4-23. State Relating to Branching

Register Function

BRs Branch registers

PRs Predicate registers

CFM Current Frame Marker

PFS Previous Function State application register
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4.5.1 Modulo-scheduled Loop Support

Support for software-pipelined loops is provided through rotating registers and loop branch types. 
Software pipelining of a loop is analogous to hardware pipelining of a functional unit. The loop 
body is partitioned into multiple “stages” with zero or more instructions in each stage. Modulo
scheduled loops have 3 phases: prolog, kernel, and epilog. During the prolog phase, new loo
iterations are started each time around (filling the software pipeline). During the kernel phase
pipeline is full. A new loop iteration is started, and another is finished each time around. Durin
epilog phase, no new iterations are started, but previous iterations are completed (draining t
software pipeline).

A predicate is assigned to each stage to control the activation of the instructions in that stage
predicate is called the “stage predicate”). To support the pipelining effect of stage predicates
registers in a software-pipelined loop, a fixed sized area of the predicate and floating-point re
files (PR16-PR63 and FR32-FR127), and a programmable sized area of the general register f
defined to “rotate.” The size of the rotating area in the general register file is determined by a
immediate in the alloc instruction. This immediate must be either zero or a multiple of 8. The 
general register rotating area is defined to start at GR32 and overlay the local and output are
depending on their relative sizes. The stage predicates are allocated in the rotating area of th
predicate register file. For counted loops, PR16 is architecturally defined to be the first stage
predicate with subsequent stage predicates extending to higher predicate register numbers. 
while loops, the first stage predicate may be any rotating predicate with subsequent stage pre
extending to higher predicate register numbers. Software is required to initialize the stage (ro
predicates prior to entering the loop. An alloc instruction may not change the size of the rota
portion of the register stack frame unless all rotating register bases (rrb’s) in the CFM are zer
rrb’s can be set to zero with the clrrrb instruction. The clrrrb.pr form can be used to clear just
the rrb for the predicate registers. The clrrrb instruction must be the last instruction in an 
instruction group.

Rotation by one register position occurs when a software-pipelined loop type branch is execu
Registers are rotated towards larger register numbers in a wraparound fashion. For example
value in register X will be located in register X+1 after one rotation. If X is the highest addres
rotating register its value will wrap to the lowest addressed rotating register. Rotation is 
implemented by renaming register numbers based upon the value of a rotating register base
contained in CFM. A rrb is defined for each of the three rotating register files: CFM.rrb.gr for 

LC Loop Count application register

EC Epilog Count application register

Table 4-24. Instructions Relating to Branching

Mnemonic Operation

br Branch

brl Long branch

brp Provide early hint information about a future branch

mov =br Move from BR to GR
mov br= Move from GR to BR

Table 4-23. State Relating to Branching (Continued)

Register Function
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general registers, CFM.rrb.fr for the floating-point registers, and CFM.rrb.pr for the predicate 
registers. General registers only rotate when the size of the rotating region is not equal to zero. 
Floating-point and predicate registers always rotate. When rotation occurs, two or all three rrb
decremented in unison. Each rrb is decremented modulo the size of their respective rotating r
(e.g. 96 for rrb.fr). The operation of the rotating register rename mechanism is not otherwise v
to software. The instructions that modify the rrb’s are listed in Table 4-25.

There are two categories of software-pipelined loop branch types: counted and while. Both 
categories have two forms: top and exit. The “top” variant is used when the loop decision is lo
at the bottom of the loop body. A taken branch will continue the loop while a not-taken branch
exit the loop. The “exit” variant is used when the loop decision is located somewhere other th
bottom of the loop. A not-taken branch will continue the loop and a taken branch will exit the 
The “exit” variant is also used at intermediate points in an unrolled pipelined loop.

The branch condition of a counted loop branch is determined by the specific counted loop ty
(ctop or cexit), the value of the loop count application register (LC), and the value of the epilo
count application register (EC). Note that the counted loop branches do not use a qualifying 
predicate. LC is initialized to one less than the number of iterations for the counted loop and
initialized to the number of stages into which the loop body has been partitioned. While LC is
greater than zero, the branch direction will continue the loop, LC will be decremented, regist
will be rotated (rrb’s are decremented), and PR 16 will be set to 1 after rotation. (For each of
loop-type branches, PR 63 is written by the branch, and after rotation this value will be in PR

Execution of a counted loop branch with LC equal to zero signals the start of the epilog. Whi
the epilog and while EC is greater than one, the branch direction will continue the loop, EC w
decremented, registers will be rotated, and PR 16 will be set to 0 after rotation. Execution of
counted loop branch with LC equal to zero and EC equal to one signals the end of the loop; 
branch direction will exit the loop, EC will be decremented, registers will be rotated, and PR 
will be set to 0 after rotation. A counted loop type branch executed with both LC and EC equ
zero will have a branch direction to exit the loop. LC, EC, and the rrb’s will not be modified (n
rotation) and PR 63 will be set to 0. LC and EC equal to zero can occur in some types of optim
unrolled software-pipelined loops if the target of a cexit branch is set to the next sequential b
and the loop trip count is not evenly divisible by the unroll amount.

The direction of a while loop branch is determined by the specific while loop type (wtop or we
the value of the qualifying predicate, and the value of EC. The while loop branches do not us
While the qualifying predicate is one, the branch direction will continue the loop, registers wil
rotated, and PR 16 will be set to 0 after rotation. While the qualifying predicate is zero and E
greater than one, the branch direction will continue the loop, EC will be decremented, registe

Table 4-25. Instructions that Modify RRBs

Mnemonic Operation

clrrrb Clears all rrb’s

clrrrb.pr Clears rrb.pr

br.call, brl.call Clears all rrb’s

cover Clears all rrb’s

br.ret Restores CFM.rrb’s from PFM.rrb’s

rfi Restores CFM.rrb’s from IFM.rrb’s if IFM.v==1

br.ctop, br.cexit,
br.wtop, and br.wexit

Decrements all rrb’s
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be rotated, and PR 16 will be set to 0 after rotation. The qualifying predicate is one during the 
kernel and zero during the epilog. During the prolog, the qualifying predicate may be zero or one 
depending upon the scheme used to program the pipelined while loop. Execution of a while loop 
branch with qualifying predicate equal to zero and EC equal to one signals the end of the loop; the 
branch direction will exit the loop, EC will be decremented, registers will be rotated, and PR 16 
will be set to 0 after rotation. A while loop branch executed with a zero qualifying predicate and 
with EC equal to zero has a branch direction to exit the loop. EC and the rrb’s will not be mod
(no rotation) and PR 63 will be set to 0.

For while loops, the initialization of EC depends upon the scheme used to program the pipel
while loop. Often, the first valid condition for the while loop branch is not computed until seve
stages into the prolog. Therefore, software pipelines for while loops often have several specu
prolog stages. During these stages, the qualifying predicate can be set to zero or one depen
upon the scheme used to program the loop. If the qualifying predicate is one throughout the p
EC will be decremented only during the epilog phase and is initialized to one more than the n
of epilog stages. If the qualifying predicate is zero during the speculative stages of the prolog
will be decremented during this part of the prolog, and the initialization value for EC is increa
accordingly.

4.5.2 Branch Prediction Hints

Information about branch behavior can be provided to the processor to improve branch pred
This information can be encoded in two ways: with branch hints as part of a branch instructio
(referred to as hints), and with separate Branch Predict instructions (brp) where the entire 
instruction is hint information. Hints and brp instructions do not affect the functional behavior of
the program and may be ignored by the processor.

Branch instructions can provide three types of hints:

• Whether prediction strategy: This describes (for COND, CALL and RET type branches) 
how the processor should predict the branch condition. (For the loop type branches, pred
is based on LC and EC.) The suggested strategies that can be hinted are shown in Table 4-26. 

Table 4-26. Whether Prediction Hint on Branches

Completer Strategy Operation

spnt Static Not-Taken Ignore this branch, do not allocate prediction 
resources for this branch.

sptk Static Taken Always predict taken, do not allocate prediction 
resources for this branch.

dpnt Dynamic Not-Taken Use dynamic prediction hardware. If no dynamic 
history information exists for this branch, predict 
not-taken.

dptk Dynamic Taken Use dynamic prediction hardware. If no dynamic 
history information exists for this branch, predict 
taken.
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• Sequential prefetch: This indicates how much code the processor should prefetch at the 
branch target (shown in Table 4-27). 

• Predictor deallocation: This provides re-use information to allow the hardware to better 
manage branch prediction resources. Normally, prediction resources keep track of the m
recently executed branches. However, sometimes the most-recently executed branch is 
useful to remember, either because it will not be re-visited any time soon or because a h
instruction will re-supply the information prior to re-visiting the branch. In such cases, this
can be used to free up the prediction resources.

4.5.3 Branch Predict Instructions

Branch predict instructions are entire instructions whose only purpose is to provide early 
information about future branches. Branch predict instructions provide the following pieces o
information:

• Location of the branch: A displacement in the brp instruction added to the IP of the bundle
containing the brp instruction gives the IP of the bundle containing the future branch.

• Target of the branch: IP-relative brp instructions specify the target of the future branch wit
a 21-bit displacement (just like in branches). The displacement plus the IP of the bundle 
containing the brp instruction gives the target address. Indirect brp instructions specify the 
branch register which will be used by the future branch.

• Branch importance: This hint indicates to hardware that it should employ a very fast (but
small) prediction structure for this branch (useful on tight loops).

• Whether prediction strategy: Same as the strategy hint on branches, except that the avail
hints are slightly different. Static not-taken is not provided (it’s not useful to provide early
indication of such branches), and only one form of Dynamic prediction is provided. Instea
two strategies are included to indicate that the branch will be a “positive” (CLOOP, CTOP
WTOP) or “negative” (CEXIT, WEXIT) loop-type.

The move to branch register instruction can also provide this same hint information, simplifyin
setup for a hinted indirect branch.

Table 4-27. Sequential Prefetch Hint on Branches

Completer
Sequential Prefetch 

Hint
Operation

few Prefetch few lines When prefetching code at the branch target, stop 
prefetching after a few (implementation-dependent 
number of) lines.

many Prefetch many lines When prefetching code at the branch target, 
prefetch more lines (also an implementation-
dependent number).

Table 4-28. Predictor Deallocation Hint

Completer Operation

none Don’t deallocate
clr Deallocate branch information
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4.6 Multimedia Instructions

Multimedia instructions (see Table 4-29) treat the general registers as concatenations of eight 8-bit, 
four 16-bit, or two 32-bit elements. They operate on each element independently and in parallel. 
The elements are always aligned on their natural boundaries within a general register. Most 
multimedia instructions are defined to operate on multiple element sizes. Three classes of 
multimedia instructions are defined: arithmetic, shift and data arrangement.

4.6.1 Parallel Arithmetic

There are three forms of parallel addition and subtraction: modulo (padd, psub), signed saturation 
(padd.sss, psub.sss), and unsigned saturation (padd.uuu, padd.uus, psub.uuu, psub.uus). 
The modulo forms have the result wraparound the largest or smallest representable value in the 
range of the result element. In the saturating forms, results larger than the largest representable 
value of the range of the result element, or smaller than the smallest representable value of the 
range, are clamped to the largest or smallest value in the range of the result element respectively. 
The signed saturation form treats both sources as signed and clamps the result to the limits of a 

Table 4-29. Parallel Arithmetic Instructions

Mnemonic Operation 1-byte 2-byte 4-byte

padd Parallel modulo addition x x x

padd.sss Parallel addition with signed saturation x x

padd.uuu,
padd.uus

Parallel addition with unsigned saturation x x

psub Parallel modulo subtraction x x x

psub.sss Parallel subtraction with signed saturation x x

psub.uuu,
psub.uus

Parallel subtraction with unsigned saturation x x

pavg Parallel arithmetic average x x

pavg.raz Parallel arithmetic average with round away 
from zero

x x

pavgsub Parallel average of a difference x x

pshladd Parallel shift left and add with signed 
saturation

x

pshradd Parallel shift right and add with signed 
saturation

x

pcmp Parallel compare x x x

pmpy.l Parallel signed multiply of odd elements x

pmpy.r Parallel signed multiply of even elements x

pmpyshr Parallel signed multiply and shift right x

pmpyshr.u Parallel unsigned multiply and shift right x

psad Parallel sum of absolute difference x

pmin Parallel minimum x x

pmax Parallel maximum x x
4-32 Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0



signed range. The unsigned saturation form treats one source as unsigned and clamps the result to 
the limits of an unsigned range. Two variants are defined that treat the second source as either 
signed (.uus) or unsigned (.uuu).

The parallel average instruction (pavg, pavg.raz) adds corresponding elements from each source 
and right shifts each result by one bit. In the simple form of the instruction, the carry out of the 
most-significant bit of each sum is written into the most significant bit of the result element. In the 
round-away-from-zero form, a 1 is added to each sum before shifting. The parallel average subtract 
instruction (pavgsub) performs a similar operation on the difference of the sources.

The parallel shift left and add instruction (pshladd) performs a left shift on the elements of the first 
source and then adds them to the corresponding elements from the second source. Signed saturation 
is performed on both the shift and the add operations. The parallel shift right and add instruction 
(pshradd) is similar to pshladd. Both of these instructions are defined for 2-byte elements only.

The parallel compare instruction (pcmp) compares the corresponding elements of both sources and 
writes all ones (if true) or all zeroes (if false) into the corresponding elements of the target 
according to one of two relations (== or >).

The parallel multiply right instruction (pmpy.r) multiplies the corresponding two even-numbered 
signed 2-byte elements of both sources and writes the results into two 4-byte elements in the target. 
The pmpy.l instruction performs a similar operation on odd-numbered 2-byte elements. The 
parallel multiply and shift right instruction (pmpyshr, pmpyshr.u) multiplies the corresponding
2-byte elements of both sources producing four 4-byte results. The 4-byte results are shifted right 
by 0, 7, 15, or 16 bits as specified by the instruction. The least-significant 2 bytes of the 4-byte 
shifted results are then stored in the target register.

The parallel sum of absolute difference instruction (psad) accumulates the absolute difference of 
corresponding 1-byte elements and writes the result in the target.

The parallel minimum (pmin.u, pmin) and the parallel maximum (pmax.u, pmax) instructions 
deliver the minimum or maximum, respectively, of the corresponding 1-byte or 2-byte elements in 
the target. The 1-byte elements are treated as unsigned values and the 2-byte elements are treated as 
signed values.

4.6.2 Parallel Shifts

The parallel shift left instruction (pshl) individually shifts each element of the first source by a 
count contained in either a general register or an immediate. The parallel shift right instruction 
(pshr) performs an individual arithmetic right shift of each element of one source by a count 
contained in either a general register or an immediate. The pshr.u instruction performs an 
unsigned right shift. Table 4-30 summarizes the types of parallel shift instructions.

Table 4-30. Parallel Shift Instructions

Mnemonic Operation 1-byte 2-byte 4-byte

pshl Parallel shift left x x

pshr Parallel signed shift right x x

pshr.u Parallel unsigned shift right x x
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4.6.3 Data Arrangement

The mix right instruction (mix.r) interleaves the even-numbered elements from both sources into 
the target. The mix left instruction (mix.l) interleaves the odd-numbered elements. The unpack 
low instruction (unpack.l) interleaves the elements in the least-significant 4 bytes of each source 
into the target register. The unpack high instruction (unpack.h) interleaves elements from the most 
significant 4 bytes. The pack instructions (pack.sss, pack.uss) convert from 32-bit or 16-bit 
elements to 16-bit or 8-bit elements respectively. The least-significant half of larger elements in 
both sources are extracted and written into smaller elements in the target register. The pack.sss 
instruction treats the extracted elements as signed values and performs signed saturation on them. 
The pack.uss instruction performs unsigned saturation. The mux instruction (mux) copies 
individual 2-byte or 1-byte elements in the source to arbitrary positions in the target according to a 
specified function. For 2-byte elements, an 8-bit immediate allows all possible permutations to be 
specified. For 1-byte elements the copy function is selected from one of five possibilities (reverse, 
mix, shuffle, alternate, broadcast). Table 4-31 describes the various types of parallel data 
arrangement instructions.

4.7 Register File Transfers

Table 4-32 shows the instructions defined to move values between the general register file and the 
floating-point, branch, predicate, performance monitor, processor identification, and application 
register files. Several of the transfer instructions share the same mnemonic (mov). The value of the 
operand identifies which register file is accessed.

Table 4-31. Parallel Data Arrangement Instructions

Mnemonic Operation 1-byte 2-byte 4-byte

mix.l Interleave odd elements from both sources x x x

mix.r Interleave even elements from both sources x x x

mux Arbitrary copy of individual source elements x x

pack.sss Convert from larger to smaller elements with 
signed saturation

x x

pack.uss Convert from larger to smaller elements with 
unsigned saturation

x

unpack.l Interleave least-significant elements from both 
sources

x x x

unpack.h Interleave most significant elements from both 
sources

x x x

Table 4-32. Register File Transfer Instructions

Mnemonic Operation

getf.exp, getf.sig Move FR exponent or significand to GR

getf.s, getf.d Move single/double precision memory format from FR to GR

setf.s, setf.d Move single/double precision memory format from GR to FR

setf.exp, setf.sig Move from GR to FR exponent or significand

mov =br Move from BR to GR
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Memory access instructions only target or source the general and floating-point register files. It is 
necessary to use the general register file as an intermediary for transfers between memory and all 
other register files except the floating-point register file.

Two classes of move are defined between the general registers and the floating-point registers. The 
first type moves the significand or the sign/exponent (getf.sig, setf.sig, getf.exp, 
setf.exp). The second type moves entire single or double precision numbers (getf.s, setf.s, 
getf.d, setf.d). These instructions also perform a conversion between the deferred exception 
token formats.

Instructions are provided to transfer between the branch registers and the general registers. The 
move to branch register instruction can also optionally include branch hints. See “Branch 
Prediction Hints” on page 4-30.

Instructions are defined to transfer between the predicate register file and a general register.
instructions operate in a “broadside” manner whereby multiple predicate registers are transfe
parallel (predicate register N is transferred to and from bit N of a general register). The move
predicate instruction (mov pr=) transfers a general register to multiple predicate registers accord
to a mask specified by an immediate. The mask contains one bit for each of the static predic
registers (PR 1 through PR 15 – PR 0 is hardwired to 1) and one bit for all of the rotating pred
(PR 16 through PR63). A predicate register is written from the corresponding bit in a general
register if the corresponding mask bit is set. If the mask bit is clear then the predicate register
modified. The rotating predicates are transferred as if CFM.rrb.pr were zero. The actual valu
CFM.rrb.pr is ignored and remains unchanged. The move from predicate instruction (mov =pr) 
transfers the entire predicate register file into a general register target.

In addition, instructions are defined to move values between the general register file and the
mask (mov psr.um= and mov =psr.um). The sum and rum instructions set and reset the user mas
The user mask is the non-privileged subset of the Process Status Register (PSR). 

The mov =pmd[] instruction is defined to move from a performance monitor data (PMD) regis
to a general register. If the operating system has not enabled reading of performance monito
registers in user level then all zeroes are returned. The mov =cpuid[] instruction is defined to 
move from a processor identification register to a general register.

mov br= Move from GR to BR

mov =pr Move from predicates to GR

mov pr=, mov 
pr.rot=

Move from GR to predicates

mov ar= Move from GR to AR

mov =ar Move from AR to GR

mov =psr.um Move from user mask to GR

mov psr.um= Move from GR to user mask

sum, rum Set and reset user mask

mov =pmd[...] Move from performance monitor data register to GR

mov =cpuid[...] Move from processor identification register to GR

mov =ip Move from Instruction Pointer

Table 4-32. Register File Transfer Instructions (Continued)

Mnemonic Operation
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The mov =ip instruction is provided for copying the current value of the instruction pointer (IP) 
into a general register.

4.8 Character Strings and Population Count

A small set of special instructions accelerate operations on character and bit-field data.

4.8.1 Character Strings

The compute zero index instructions (czx.l, czx.r) treat the general register source as either eight 
1-byte or four 2-byte elements and write the general register target with the index of the first zero 
element found. If there are no zero elements in the source, the target is written with a constant one 
higher than the largest possible index (8 for the 1-byte form, 4 for the 2-byte form). The czx.l 
instruction scans the source from left to right with the left-most element having an index of zero. 
The czx.r instruction scans from right to left with the right-most element having an index of zero. 
Table 4-33 summarizes the compute zero index instructions.

4.8.2 Population Count

The population count instruction (popcnt) writes the number of bits which have a value of 1 in the 
source register into the target register.

4.9 Privilege Level Transfer

Three instructions may cause a privilege level change: break (break), enter privileged code (epc) 
and branch return (br.ret). The break instruction is defined to cause a Break Instruction fault 
which can be used to transfer privilege levels. The break instruction contains an immediate which 
is made available to a dedicated fault handler. The epc instruction increases the privilege level 
without causing an interruption or a control flow transfer. The new privilege level is specified by 
the TLB entry for the page containing the epc, if virtual address translation for instruction fetches 
is enabled. If the privilege level specified by PFS.ppl (in the Previous Function State application 
register) is lower than the current privilege level (as specified by PSR.cpl in the Processor Status 
Register) epc raises an Illegal Operation fault. The br.ret instruction is defined to demote the 
privilege level if PFS.ppl is lower than PSR.cpl. A br.ret will never increase privilege level.

Table 4-33. String Support Instructions

Mnemonic Operation 1-byte 2-byte

czx.l Locate first zero element, left to right x x

czx.r Locate first zero element, right to left x x
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IA-64 Floating-point Programming 
Model 5

The IA-64 floating-point architecture is fully compliant with the ANSI/IEEE Standard for Binary 
Floating-point Arithmetic (Std. 754-1985). There is full IEEE support for single, double, and 
double-extended real formats. The two IEEE methods for controlling rounding precision are 
supported. The first method converts results to the double-extended exponent range. The second 
method converts results to the destination precision. Some IEEE extensions such as fused multiply 
and add, minimum and maximum operations, and a register file format with a larger range than the 
minimum double-extended format are also included.

5.1 Data Types and Formats

Six data types are supported directly: single, double, double-extended real (IEEE real types); 64-bit 
signed integer, 64-bit unsigned integer, and the 82-bit floating-point register format. A “Parall
FP” format where a pair of IEEE single precision values occupy a floating-point register’s 
significand is also supported. A seventh data type, IEEE-style quad-precision, is supported b
software routines. A future architecture extension may include additional support for the qua
precision real type.

5.1.1 Real Types

The parameters for the supported IEEE real types are summarized in Table 5-1.

Table 5-1. IEEE Real-type Properties

Single Double Double-Extended Quad-Precision

IEEE Real-Type Parameters

Sign + or − + or − + or − + or −
Emax +127 +1023 +16383 +16383

Emin −126 −1022 −16382 −16382

Exponent bias +127 +1023 +16383 +16383

Precision (bits) 24 53 64 113

IEEE Memory Formats

Total memory format width 
(bits)

32 64 80 128

Sign field width (bits) 1 1 1 1

Exponent field width (bits) 8 11 15 15

Significand field width (bits) 23 52 64 112
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5.1.2 Floating-point Register Format

Data contained in the floating-point registers can be either integer or real type. The format of data 
in the floating-point registers is designed to accommodate both of these types with no loss of 
information.

Real numbers reside in 82-bit floating-point registers in a three-field binary format (see 
Figure 5-1). The three fields are:

• The 64-bit significand field, b63. b62b61 .. b1b0, contains the number's significant digits. This 
field is composed of an explicit integer bit (significand{63}), and 63 bits of fraction 
(significand{62:0}). 

• The 17-bit exponent field locates the binary point within or beyond the significant digits (i.e
determines the number's magnitude). The exponent field is biased by 65535 (0xFFFF). A
exponent field of all ones is used to encode the special values for IEEE signed infinity an
NaNs. An exponent field of all zeros and a significand field of all zeros is used to encode
special values for IEEE signed zeros. An exponent field of all zeros and a non-zero signif
field encodes the double-extended real denormals and double-extended real pseudo-
denormals.

• The 1-bit sign field indicates whether the number is positive (sign=0) or negative (sign=1)

The value of a finite floating-point number, encoded with non-zero exponent field, can be 
calculated using the expression:

The value of a finite floating-point number, encoded with zero exponent field, can be calculat
using the expression:

Integers (64-bit signed/unsigned) and Parallel FP numbers reside in the 64-bit significand fie
their canonical form, the exponent field is set to 0x1003E (biased 63) and the sign field is se

5.1.3 Representation of Values in Floating-point Registers

The floating-point register encodings are grouped into classes and subclasses and listed bel
Table 5-2 (shaded encodings are unsupported). The last two table entries contain the values 
constant floating-point registers, FR 0 and FR 1. The constant value in FR 1 does not change
parallel single precision instructions or for the integer multiply accumulate instruction.

Figure 5-1. Floating-point Register Format
81 80 64 63 0

sign exponent significand (with explicit integer bit)
1 17 64

(-1)(sign) * 2(exponent – 65535) * (significand{63}.significand{62:0}2)

(-1)(sign) * 2(-16382) * (significand{63}.significand{62:0}2)
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Table 5-2. Floating-point Register Encodings

Class or Subclass
Sign

(1 bit)

Biased
Exponent
(17-bits)

Significand
i.bb...bb

(explicit integer bit is shown)
(64-bits)

 NaNs 0/1 0x1FFFF 1.000...01 through 1.111...11

Quiet NaNs 0/1 0x1FFFF 1.100...00 through 1.111...11

Quiet NaN Indefinitea 1 0x1FFFF 1.100...00

Signaling NaNs 0/1 0x1FFFF 1.000...01 through 1.011...11

Infinity 0/1 0x1FFFF 1.000...00

Pseudo-NaNs 0/1 0x1FFFF 0.000...01 through 0.111...11 

Pseudo-Infinity 0/1 0x1FFFF 0.000...00

Normalized Numbers
(Floating-point Register Format Normals)

0/1 0x00001
through
0x1FFFE

1.000...00 through 1.111...11

Integers or Parallel FP
(large unsigned or negative signed 
integers)

0 0x1003E 1.000...00 through 1.111...11

Integer Indefiniteb 0 0x1003E 1.000...00

IEEE Single Real Normals 0/1 0x0FF81
through
0x1007E

1.000...00...(40)0s
through 
1.111...11...(40)0s

IEEE Double Real Normals 0/1 0x0FC01
through
0x103FE

1.000...00...(11)0s
through
1.111...11...(11)0s

IEEE Double-Extended Real Normals 0/1 0x0C001
through
0x13FFE

1.000...00 through 1.111...11

Normal numbers with the same value 
as Double-Extended Real Pseudo-
Denormals

0/1 0x0C001 1.000...00 through 1.111...11

IA-32 Stack Single Real Normals 
(produced when the computation 
model is IA-32 Stack Single)

0/1 0x0C001
through
0x13FFE

1.000...00...(40)0s
through
1.111...11...(40)0s

IA-32 Stack Double Real Normals 
(produced when the computation 
model is IA-32 Stack Double)

0/1 0x0C001
through
0x13FFE

1.000...00...(11)0s
through
1.111...11...(11)0s

Unnormalized Numbers
(Floating-point Register Format unnormalized 
numbers)

0/1 0x00000 0.000...01 through 1.111...11

0x00001
through
0x1FFFE

0.000...01 through 0.111...11

0x00001
through
0x1FFFD

0.000...00

1 0x1FFFE 0.000...00
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All register file encodings are allowed as inputs to arithmetic operations. The result of an arithmetic 
operation is always the most normalized register file representation of the computed value, with the 
exponent range limited from Emin to Emax of the destination type, and the significand precision 
limited to the number of precision bits of the destination type. Computed values, such as zeros, 
infinities, and NaNs that are outside these bounds are represented by the corresponding unique 
register file encoding. Double-extended real denormal results are mapped to the register file 

Integers or Parallel FP
(positive signed/unsigned integers)

0 0x1003E 0.000...00 through 0.111...11

IEEE Single Real Denormals 0/1 0x0FF81 0.000...01...(40)0s
through 
0.111...11...(40)0s

IEEE Double Real Denormals 0/1 0x0FC01 0.000...01...(11)0s
through 
0.111...11...(11)0s

Register Format Denormals 0/1 0x00001 0.000...01 through 0.111...11

Unnormal numbers with the same value 
as IEEE Double-Extended Real 
Denormals

0/1 0x0C001 0.000...01 through 0.111...11

IEEE Double-Extended Real Denormals 0/1 0x00000 0.000...01 through 0.111...11

IA-32 Stack Single Real Denormals
(produced when computation model 
is IA-32 Stack Single)

0/1 0x00000 0.000...01...(40)0s
through
0.111...11...(40)0s

IA-32 Stack Double Real Denormals
(produced when computation model 
is IA-32 Stack Double)

0/1 0x00000 0.000...01...(11)0s
through
0.111...11...(11)0s

Double-Extended Real Pseudo-
Denormals
(IA-32 stack and memory format)

0/1 0x00000 1.000...00 through 1.111...11

Pseudo-Zeros 0/1 0x00001
through
0x1FFFD

0.000...00

1 0x1FFFE 0.000...00

NaTValc 0 0x1FFFE 0.000...00

Zero 0/1 0x00000 0.000...00

FR 0 (positive zero) 0 0x00000 0.000...00

FR 1 (positive one) 0 0x0FFFF 1.000...00

a. Created by a masked real invalid operation.
b. Created by a masked integer invalid operation.
c. Created by an unsuccessful speculative memory operation.

Table 5-2. Floating-point Register Encodings (Continued)

Class or Subclass
Sign

(1 bit)

Biased
Exponent
(17-bits)

Significand
i.bb...bb

(explicit integer bit is shown)
(64-bits)
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exponent of 0x00000 (instead of 0x0C001). Unsupported encodings (Pseudo-NaNs and Pseudo-
Infinities), Pseudo-zeros and Double-extended Real Pseudo-denormals are never produced as a 
result of an arithmetic operation. 

Arithmetic on pseudo-zeros operates exactly as an equivalently signed zero, with one exception. 
Pseudo-zero multiplied by infinity returns the correctly signed infinity instead of an Invalid 
Operation Floating-point Exception fault (and QNaN). Also, pseudo-zeros are classified as 
unnormalized numbers, not zeros.

5.2 Floating-point Status Register

The Floating-point Status Register (FPSR) contains the dynamic control and status information for 
floating-point operations. There is one main set of control and status information (FPSR.sf0), and 
three alternate sets (FPSR.sf1, FPSR.sf2, FPSR.sf3). The FPSR layout is shown in Figure 5-2 and 
its fields are defined in Table 5-3. Table 5-4 gives the FPSR’s status field description and 
Figure 5-3 shows their layout.

Figure 5-2. Floating-point Status Register Format
63 58 57 45 44 32 31 19 18 6 5 0

rv sf3 sf2 sf1 sf0 traps
6 13 13 13 13 6

Table 5-3. Floating-point Status Register Field Description

Field Bits Description

traps.vd 0 Invalid Operation Floating-point Exception fault (IEEE Trap) 
disabled when this bit is set

traps.dd 1 Denormal/Unnormal Operand Floating-point Exception fault 
disabled when this bit is set

traps.zd 2 Zero Divide Floating-point Exception fault (IEEE Trap) disabled 
when this bit is set

traps.od 3 Overflow Floating-point Exception trap (IEEE Trap) disabled 
when this bit is set

traps.ud 4 Underflow Floating-point Exception trap (IEEE Trap) disabled 
when this bit is set

traps.id 5 Inexact Floating-point Exception trap (IEEE Trap) disabled when 
this bit is set

sf0 18:6 Main status field

sf1 31:19 Alternate status field 1

sf2 44:32 Alternate status field 2

sf3 57:45 Alternate status field 3

rv 63:58 Reserved
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The Denormal/Unnormal Operand status flag is an IEEE-style sticky flag that is set if the value is 
used in an arithmetic instruction and in an arithmetic calculation; e.g. unorm*NaN doesn’t set
flag. Canonical single/double/double-extended denormal/double-extended pseudo-denorma
register format denormal encodings are a subset of the floating-point register format unnorm
numbers.

Note: The Floating-point Exception fault/trap occurs only if an enabled floating-point excep
occurs during the processing of the instruction. Hence, setting a flag bit of a status fie
1 in software will not cause an interruption. The status fields flags are merely indicat
of the occurrence of floating-point exceptions.

Flush-to-Zero (FTZ) mode causes results which encounter “tininess” to be truncated to the co
signed zero. Flush-to-Zero mode can be enabled only if Underflow is disabled. This can be 
accomplished by disabling all traps (FPSR.sfx.td being set to 1), or by disabling it individually
(FPSR.traps.ud set to 1). If Underflow is enabled then it takes priority and Flush-to-Zero mod
ignored. Note that the software exception handler could examine the Flush-to-Zero mode bit
choose to emulate the Flush-to-Zero operation when an enabled Underflow exception arises
FPSR.sfx.u and FPSR.sfx.i bits will be set to 1 when a result is flushed to the correctly signed z
because of Flush-to-Zero mode. If enabled, an inexact result exception is signaled.

A floating-point result is rounded based on the instruction’s .pc completer and the status field’s wre, 
pc, and rc control fields. The result’s significand precision and exponent range are determined
described in Table 5-6. If the result isn’t exact, FPSR.sfx.rc specifies the rounding direction (see 
Table 5-5).

Figure 5-3. Floating-point Status Field Format
12 11 10 9 8 7 6 5 4 3 2 1 0

FPSR.sfx

flags controls

i u o z d v td rc pc wre ftz
6 7

Table 5-4. Floating-point Status Register’s Status Field Description

Field Bits Description

ftz 0 Flush-to-Zero mode

wre 1 Widest range exponent (see Table 5-6)

pc 3:2 Precision control (see Table 5-6)

rc 5:4 Rounding control (see Table 5-5)

td 6 Traps disableda

a. td is a reserved bit in the main status field, FPSR.sf0.

v 7 Invalid Operation (IEEE Flag)

d 8 Denormal/Unnormal Operand

z 9 Zero Divide (IEEE Flag)

o 10 Overflow (IEEE Flag)

u 11 Underflow (IEEE Flag)

i 12 Inexact (IEEE Flag)
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The trap disable (sfx.td) control bit allows one to easily set up a local IEEE exception trap default 
environment. If FPSR.sfx.td is clear (enabled), the FPSR.traps bits are used. If FPSR.sfx.td is set, 
the FPSR.traps bits are treated as if they are all set (disabled). Note that FPSR.sf0.td is a reserved 
field which returns 0 when read.

Table 5-5. Floating-point Rounding Control Definitions

Nearest
(or even)

– Infinity
(down)

+ Infinity
(up)

Zero
(truncate/chop)

FPSR.sfx.rc 00 01 10 11

Table 5-6. Floating-point Computation Model Control Definitions

Computation Model Control Fields Computation Model Selected

Instruction’s 
.pc 

Completer

FPSR.sfx’s 
Dynamic pc 

Field

FPSR.sfx’s 
Dynamic 
wre Field

Significand
Precision

Exponent
Range

Computational Style

.s ignored 0 24 bits 8 bits IEEE real single

.d ignored 0 53 bits 11 bits IEEE real double

.s ignored 1 24 bits 17 bits Register file range, 
single precision

.d ignored 1 53 bits 17 bits Register file range, 
double precision

none 00 0 24 bits 15 bits IA-32 stack single

none 01 0 N.A. N.A. Reserved

none 10 0 53 bits 15 bits IA-32 stack double

none 11 0 64 bits 15 bits IA-32 double-
extended

none 00 1 24 bits 17 bits Register file range, 
single precision

none 01 1 N.A. N.A. Reserved

none 10 1 53 bits 17 bits Register file range, 
double precision

none 11 1 64 bits 17 bits Register file range, 
double-extended 
precision

not 
applicablea

a. For parallel FP instructions which have no .pc completer (e.g. fpma).

ignored ignored 24 bits 8 bits A pair of IEEE real 
singles

not 
applicableb

b. For non-parallel FP instructions which have no .pc completer (e.g. frcpa).

ignored ignored 64 bits 17 bits Register file range, 
double-extended 
precision
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5.3 Floating-point Instructions

This section describes the IA-64 floating-point instructions. Refer to Volume 2 for a detailed 
description.

5.3.1 Memory Access Instructions

There are floating-point load and store instructions for the single, double, double-extended 
floating-point real data types, and the Parallel FP or signed/unsigned integer data type. The 
addressing modes for floating-point load and store instructions are the same as for integer load and 
store instructions, except for floating-point load pair instructions which can have an implicit base-
register post increment. The memory hint options for floating-point load and store instructions are 
the same as those for integer load and store instructions. See Section 4.4.6, “Memory Hierarchy 
Control and Consistency” on page 4-22.) Table 5-7 lists the types of floating-point load and store 
instructions. The floating-point load pair instructions require the two target registers to be odd
or even/odd. See “Floating-Point Load Pair” on page 2-134. The floating-point store instructions 
(stfs, stfd, stfe) require the value in the floating-point register to have the same type as the 
store for the format conversion to be correct.

Unsuccessful speculative loads write a NaTVal into the destination register or registers (see 
Section 4.4.4). Storing a NaTVal to memory will cause a Register NaT Consumption fault, except 
for the spill instruction (stf.spill).

Saving and restoring floating-point registers is accomplished by the spill and fill instructions 
(stf.spill, ldf.fill) using a 16-byte memory container. These are the only instructions that 
can be used for saving and restoring the actual register contents since they do not fault on NaTVal. 
They save and restore all types (single, double, double-extended, register format and integer or 
Parallel FP) and will ensure compatibility with possible future architecture extensions.

Figure 5-4, Figure 5-5, Figure 5-6 and Figure 5-7 describe how single precision, double precision, 
double-extended precision, and spill/fill data is translated during transfers between floating-point 
registers and memory.

Table 5-7. Floating-point Memory Access Instructions

Operations Load to FR Load Pair to FR Store from FR

Single ldfs ldfps stfs

Integer/Parallel FP ldf8 ldfp8 stf8

Double ldfd ldfpd stfd

Double-extended ldfe stfe

Spill/fill ldf.fill stf.spill
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Figure 5-4. Memory to Floating-point Register Data Translation – Single Precision
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Figure 5-5. Memory to Floating-point Register Data Translation – Double Precision
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Figure 5-6. Memory to Floating-point Register Data Translation – Double Extended, Integer, 
Parallel FP and Fill
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Figure 5-7. Floating-point Register to Memory Data Translation – Single Precision

Figure 5-8. Floating-point Register to Memory Data Translation – Double Precision
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Both little-endian and big-endian byte ordering is supported on floating-point loads and stores. For 
both single and double memory formats, the byte ordering is identical to the 32-bit and 64-bit 
integer data types (see Section 3.2.3). The byte-ordering for the spill/fill memory and double-
extended formats is shown in Figure 5-10.

Figure 5-9. Floating-point Register to Memory Data Translation – Double Extended, Integer, 
Parallel FP and Fill
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5.3.2 Floating-point Register to/from General Register Transfer 
Instructions

The setf and getf instructions (see Table 5-8) transfer data between floating-point registers (FR) 
and general registers (GR). These instructions will translate a general register NaT to/from a 
floating-point register NaTVal. For all other operands, the .s and .d variants of the setf and getf 
instructions translate to/from FR as per Figure 5-4, Figure 5-5 and Figure 5-7. The memory 
representation is read from or written to the GR. The .exp and .sig variants of the setf and getf 
instructions operate on the sign/exponent and significand portions of a floating-point register, 
respectively, and their translation formats are described in Table 5-9 and Table 5-10.

Figure 5-10. Spill/Fill and Double-extended (80-bit) Floating-point Memory Formats

Table 5-8. Floating-point Register Transfer Instructions

Operations GR to FR FR to GR

Single setf.s getf.s

Double setf.d getf.d
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5.3.3 Arithmetic Instructions

All of the arithmetic floating-point instructions except fcvt.xf (which is always exact), have a .sf 
specifier. This indicates which of the four FPSR’s status fields will both control and record the
status of the execution of the instruction (see Table 5-11). The status field specifies: enabled 
exceptions, rounding mode, exponent width, precision control, and which status field’s flags 
update. See “Floating-point Status Register” on page 5-5.

Most arithmetic floating-point instructions can specify the precision of the result statically by using 
a .pc completer, or dynamically using the .pc field of the FPSR status field. (see Table 5-6). 
Arithmetic instructions that do not have a .pc completer use the floating-point register file range 
and precision.

Table 5-12 lists the floating-point arithmetic instructions and Table 5-13 lists the pseudo-operation definitions. 

Table 5-9. General Register (Integer) to Floating-point Register Data Translation (setf)

General
Register

Floating-point Register (.sig) Floating-point Register (.exp)

Class NaT Integer Sign Exponent Significand Sign Exponent Significand

NaT 1 ignore NaTVal NaTVal

integers 0 000...00
through
111...11

0 0x1003E integer integer{17} integer{16:0} 0x8000000000000000

Table 5-10. Floating-point Register to General Register (Integer) Data Translation (getf)

Floating-point Register General Register (.sig) General Register (.exp)

Class Sign Exponent Significand NaT Integer NaT Integer

NaTVal 0 0x1FFFE 0.000...00 1 0x0000000000000000 1 0x1FFFE

integers or
parallel FP

0 0x1003E 0.000...00
through

1.111...11

0 significand 0 0x1003E

other any any any 0 significand 0 ((sign<<17) | 
exponent)

Table 5-11. Floating-point Instruction Status Field Specifier Definition

.sf Specifier .s0 .s1 .s2 .s3

Status field FPSR.sf0 FPSR.sf1 FPSR.sf2 FPSR.sf3

Table 5-12. Arithmetic Floating-point Instructions

Operation
Normal FP 

Mnemonic(s)
Parallel FP

Mnemonic(s)

Floating-point multiply and add fma.pc.sf fpma.sf

Floating-point multiply and subtract fms.pc.sf fpms.sf

Floating-point negate multiply and add fnma.pc.sf fpnma.sf

Floating-point reciprocal approximation frcpa.sf fprcpa.sf
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There are no pseudo-operations for Parallel FP addition, subtraction, negation or normalization 
since FR 1 does not contain a packed pair of single precision 1.0 values. A parallel FP addition can 
be performed by first forming a pair of 1.0 values in a register (using the fpack instruction) and 
then using the fpma instruction. Similarly, an integer add operation can be generated by first 
forming an integer 1 in a floating-point register (using the fcvt.fx instruction) and then using the 
xma instruction.

The fmpy pseudo-operation delivers the IEEE compliant result by rounding the product and 
without performing the addition inherent in the fma. An fma with the addend specified as a register 
other than FR 0, and containing the value +0.0, will not deliver the IEEE compliant multiply result 
in some cases.

Floating-point reciprocal square root approximation frsqrta.sf fprsqrta.sf

Floating-point compare fcmp.frel.fctype.sf fpcmp.frel.sf

Floating-point minimum fmin.sf fpmin.sf

Floating-point maximum fmax.sf fpmax.sf

Floating-point absolute minimum famin.sf fpamin.sf

Floating-point absolute maximum famax.sf fpamax.sf

Convert floating-point to signed integer fcvt.fx.sf 
fcvt.fx.trunc.sf

fpcvt.fx.sf 
fpcvt.fx.trunc.sf

Convert floating-point to unsigned integer fcvt.fxu.sf 
fcvt.fxu.trunc.sf

fpcvt.fxu.sf 
fpcvt.fxu.trunc.sf

Convert signed integer to floating-point fcvt.xf N.A.

Table 5-13. Floating-point Pseudo-operations

Operation Mnemonic Operation Used

Floating-point multiplication (IEEE)
Parallel FP multiplication

fmpy.pc.sf
fpmpy.sf

fma, using FR 0 for addend
fpma, using FR 0 for addend

Floating-point negate multiplication (IEEE)
Parallel FP negate multiplication

fnmpy.pc.sf
fpnmpy.sf

fnma, using FR 0 for addend
fpnma, using FR 0 for addend

Floating-point addition (IEEE) fadd.pc.sf fma, using FR 1 for multiplicand

Floating-point subtraction (IEEE) fsub.pc.sf fms, using FR 1 for multiplicand

Floating-point absolute value
Parallel FP absolute value

fabs
fpabs

fmerge.s, with sign from FR 0
fpmerge.s, with sign from FR 0

Floating-point negate
Parallel FP negate

fneg
fpneg

fmerge.ns
fpmerge.ns

Floating-point negate absolute value
Parallel FP negate absolute value

fnegabs
fpnegabs

fmerge.ns, with sign from FR 0
fpmerge.ns, with sign from FR 0

Floating-point normalization fnorm.pc.sf fma, using FR 1 for multiplicand and FR 
0 for addend

Convert unsigned integer to floating-point fcvt.xuf.pc.sf fma, using FR 1 for multiplicand and FR 
0 for addend

Table 5-12. Arithmetic Floating-point Instructions (Continued)

Operation
Normal FP 

Mnemonic(s)
Parallel FP

Mnemonic(s)
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The fneg pseudo-operation simply reverses the sign bit of the operand and is therefore not 
equivalent to the IEEE negation operation. For the IEEE negation operation, an fnma using FR 1 as 
the multiplicand and FR 0 as the addend must be used. 

5.3.4 Non-arithmetic Instructions

Table 5-14 lists the non-arithmetic floating-point instructions. The fclass instruction is used to 
classify the contents of a floating-point register. The fmerge instruction is used to merge data from 
two floating-point registers into one floating-point register. The fmix, fsxt, fpack, and fswap 
instructions are used to manipulate the Parallel FP data in the floating-point significand. The fand, 
fandcm, for, and fxor instructions are used to perform logical operations on the floating-point 
significand. The fselect instruction is used for conditional selects.

The non-arithmetic floating-point instructions always use the floating-point register (82-bit) 
precision since they do not have a .pc completer nor a .sf specifier.

Table 5-14. Non-arithmetic Floating-point Instructions

Operation Mnemonic(s)

Floating-point classify fclass.fcrel.fctype

Floating-point merge sign

Parallel FP merge sign

fmerge.s
fpmerge.s

Floating-point merge negative sign

Parallel FP merge negative sign

fmerge.ns
fpmerge.ns

Floating-point merge sign and exponent

Parallel FP merge sign and exponent

fmerge.se
fpmerge.se

Floating-point mix left fmix.l

Floating-point mix right fmix.r

Floating-point mix left-right fmix.lr

Floating-point sign-extend left fsxt.l

Floating-point sign-extend right fsxt.r

Floating-point pack fpack

Floating-point swap fswap

Floating-point swap and negate left fswap.nl

Floating-point swap and negate right fswap.nr

Floating-point And fand

Floating-point And Complement fandcm

Floating-point Or for

Floating-point Xor fxor

Floating-point Select fselect
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5.3.5 Floating-point Status Register (FPSR) Status Field 
Instructions

Speculation of floating-point operations requires that the status flags be stored temporarily in one 
of the alternate status fields (not FPSR.sf0). After a speculative execution chain has been 
committed, a fchkf instruction can be used to update the normal flags (FPSR.sf0.flags). This 
operation will preserve the correctness of the IEEE flags. The fchkf instruction does this by 
comparing the flags of the status field with the FPSR.sf0.flags and FPSR.traps. If the flags of the 
alternate status field indicate the occurrence of an event that corresponds to an enabled floating-
point exception in FPSR.traps, or an event that is not already registered in the FPSR.sf0.flags (i.e. 
the flag for that event in FPSR.sf0.flags is clear), then the fchkf instruction causes a Speculative 
Operation fault. If neither of these cases arise then the fchkf instruction does nothing.

The fsetc instruction allows bit-wise modification of a status field’s control bits. The 
FPSR.sf0.controls are ANDed with a 7-bit immediate and-mask and ORed with a 7-bit imme
or-mask to produce the control bits for the status field. The fclrf instruction clears all of the status
field’s flags to zero.

5.3.6 Integer Multiply and Add Instructions

Integer (fixed-point) multiply is executed in the floating-point unit using the three-operand xma 
instructions. The operands and result of these instructions are floating-point registers. The xma 
instructions ignore the sign and exponent fields of the floating-point register, except for a NaT
check. The product of two 64-bit source significands is added to the third 64-bit significand (z
extended) to produce a 128-bit result. The low and high versions of the instruction select the
appropriate low/high 64-bits of the 128-bit result, respectively, and write it into the destination
register as a canonical integer. The signed and unsigned versions of the instructions treat th
multiplicands as signed and unsigned 64-bit integers respectively.

Table 5-15. FPSR Status Field Instructions

Operation Mnemonic(s)

Floating-point check flags fchkf.sf

Floating-point clear flags fclrf.sf

Floating-point set controls fsetc.sf

Table 5-16. Integer Multiply and Add Instructions

Integer Multiply and Add Low High

Signed xma.l xma.h

Unsigned xma.lu (pseudo-op) xma.hu
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5.4 Additional IEEE Considerations

This section describes the support of the IEEE standard in the areas where specific details are left 
open to implementation.

5.4.1 Floating-point Interruptions

Floating-point interruptions are precise. The exception reporting and handling occurs on the 
instruction which causes the interruption. There are three floating-point interruptions: Disabled 
Floating-point Register fault, Floating-point Exception fault, and Floating-point Exception trap 
(see Chapter 5 for more details).

Exceptions are processed according to a predetermined precedence. Precedence in exception 
handling means that higher-priority exceptions are flagged first and results are delivered according 
to the requirements of that exception. Lower-priority exceptions are not flagged even if they occur. 
For example, dividing an SNaN by zero causes an invalid operation exception (due to the SNaN) 
and not a zero-divide exception; the exception disabled result is the QNaN indefinite, not infinity. 
However, an IEEE Inexact Floating-point Exception trap can accompany an IEEE Underflow or 
Overflow Floating-point Exception trap.

For instructions that access the floating-point register file, the Disabled Floating-point Register 
fault has the highest priority.

5.4.1.1 Disabled Floating-point Register Fault

Two bits in the PSR, PSR.dfl and PSR.dfh, (see “Processor Status Register (PSR)” on page 3-6) can 
be used by an operating system to enable or disable access to two subsets of floating-point 
registers: FR 2 to FR 31, and FR 32 to FR 127, respectively. The Disabled Floating-point Register 
fault occurs when an access (read or write) is made to a FR which has been disabled. Operating 
systems can use this fault to identify a task as integer or floating-point and optimize the default set 
of registers which get saved on a task switch. If a mainly integer task is able to use only FR 2 to FR 
32 for executing integer multiply and divide operations, then context switch time may be reduced 
by disabling access to the high floating-point registers.

5.4.1.2 Floating-point Exception Fault

A Floating-point Exception fault occurs if one of the following four circumstances arises:

1. The processor requests system software assistance to complete the operation, via the 
Software Assist fault.

2. The IEEE Invalid Operation trap is enabled and this condition occurs.

3. The IEEE Zero Divide trap is enabled and this condition occurs.

4. The Denormal/Unnormal Operand trap is enabled and an unnormalized operand (denormals 
are represented as unnormalized numbers in the register file) is encountered by a floating-
point arithmetic instruction.

If a Floating-point Exception fault occurs, the only indication of which fault occurred is in the 
ISR.code. The appropriate status flags are not updated in the FPSR.
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There is no requirement that the Software Assist Floating-point Exception fault ever be signaled 
(except for certain operands in the frcpa and the frsqrta instructions), nor is there a mode to 
force its use. If there is no input NaTVal operand, a processor implementation may signal a 
Software Assist Floating-point Exception fault at any time during the operation. In order to ensure 
maximum floating-point performance, most implementations will not use this exception except in 
difficult situations such as operations consuming denormal numbers.

The precedence among Floating-point Exception faults for arithmetic operations is depicted in 
Figure 5-11.

Figure 5-11. Floating-point Exception Fault Prioritization
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5.4.1.3 Floating-point Exception Trap

A Floating-point Exception trap occurs if one of the following four circumstances arises:

1. The processor requests system software assistance to complete the operation, via the 
Software Assist trap

2. The IEEE Overflow trap is enabled and an overflow occurs

3. The IEEE Underflow trap is enabled and an underflow occurs

4. The IEEE Inexact trap is enabled and an inexact result occurs

When an overflow, underflow, or inexact result occurs, the appropriate status flags are updated in 
the FPSR. If enabled, a Floating-point Exception trap occurs, and an indication of which enabled 
trap occurred is stored in ISR.code and the fpa bit in ISR.code (ISR{14}) is set as described in the 
next paragraph.

ISR.fpa is set to 1 when the magnitude of the delivered result is greater than the magnitude of the 
infinitely precise result. It is set to 0 otherwise. The magnitude of the delivered result may be 
greater if:

• The significand is incremented during rounding, or

• A larger pre-determined value (e.g. infinity) is substituted for the computed result (e.g. w
overflow is disabled).

There is no requirement that the Software Assist Floating-point Exception trap ever be signa
nor is there a mode to force its use. In order to ensure maximum floating-point performance,
implementations will not use this exception except in difficult situations, such as operations 
creating denormal numbers. The occurrence of a Software Assist trap is indicated when a tra
set in ISR.code, but that trap is disabled. The destination register contains the trap enabled re
for that trap.

The precedence among Floating-point Exception traps for arithmetic operations is depicted i
Figure 5-12.

5.4.2 Definition of Overflow

The overflow exception can occur whenever the rounded true result would exceed, in magni
the largest finite number in the destination format. 

The IEEE Overflow Floating-point Exception trap disabled response for all normal and Paralle
arithmetic instructions is to either return an infinity or the correctly signed maximum finite val
for the destination precision. This depends on the rounding mode, the sign of the result, and
operation. An inexact result exception is signaled.

The IEEE Overflow Floating-point Exception trap enabled response for all normal arithmetic 
instructions is to return the true biased exponent value MOD 217 and for all Parallel-FP arithmetic 
instructions is to return the true biased exponent value MOD 28. The value’s significand is rounded
to the specified precision and written to the destination register. If the rounded value is differe
from the infinitely-precise value, then inexactness is signaled. If the significand was rounded
adding a one to its least significant bit, then bit fpa in ISR.code is set to 1. Finally, an interruption
due to a Floating-point Exception trap will occur.
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Note that when rounding to single, double, or double-extended real, the overflow trap enabled 
response for normal (non Parallel FP) arithmetic instructions is not guaranteed to be in the range of 
a valid single, double, or double-extended real quantity, because it is in 17-bit exponent format.

5.4.3 Definition of Tininess, Inexact and Underflow

Tininess is detected after rounding, and is said to occur when a non-zero result (computed as 
though the exponent range were unbounded) would lie strictly between +2Emin and -2Emin. See 
Table 5-1 for the values of Emin for each real type. Creation of a tiny result may cause an exception 
later (such as overflow upon division because it is so small). 

Inexactness is said to occur when the result differs from what would have been computed if both 
the exponent range and precision were unbounded.

Figure 5-12. Floating-point Exception Trap Prioritization
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How tininess and inexactness trigger the underflow exception depends on whether the Underflow 
Floating-point Exception trap is disabled or enabled. If the trap is disabled then the underflow 
exception is signaled when the result is both tiny and inexact. If the trap is enabled then the 
underflow exception is signaled when the result is tiny, regardless of inexactness. Note that in the 
event that the Underflow Floating-point Exception trap is disabled and tininess but not inexactness 
occurs, then neither underflow nor inexactness is signaled, and the result is a denormal.

The IEEE Underflow Floating-point Exception trap disabled response for all normal and Parallel-
FP arithmetic instructions is to denormalize the infinitely precise result and then round it to the 
destination precision. The result may be a denormal, zero, or a normal. The inexact exception is 
signaled when appropriate.

The IEEE Underflow Floating-point Exception trap enabled response for all normal arithmetic 
instructions is to return the true biased exponent value MOD 217and for all Parallel-FP arithmetic 
instructions is to return the true biased exponent value MOD 28. The significand is rounded to the 
specified precision and written to the destination register independent of the possibility of the 
exponent calculation requiring a borrow. If the rounded value is different from the infinitely-precise 
value, then inexactness is signaled. If the significand was rounded by adding a one to its least 
significant bit, then bit fpa in ISR.code is set to 1. Finally, an interruption due to a Floating-point 
Exception trap will occur.

Note: When rounding to single, double, or double-extended real, the underflow trap enabled 
response for normal (non Parallel FP) arithmetic instructions is not guaranteed to be in the 
range of a valid single, double, or double-extended real quantity, because it is in 17-bit 
exponent format.

When Flush-to-Zero mode is enabled, the behavior for tiny results is different. If an instruction 
would deliver a tiny result, a correctly signed zero is delivered instead and the appropriate 
FPSR.sfx.u and FPSR.sfx.i bits are set. This mode may improve the performance on 
implementations that do not implement denormal handling in hardware. When the Flush-to-Zero 
mode is enabled, floating-point exception software assist traps will not occur when producing tiny 
results.

5.4.4 Integer Invalid Operations

Floating-point to integer conversions which are invalid (in the IEEE sense) signal an Invalid 
Operation Floating-point Exception fault. If the IEEE Invalid Operation trap is disabled, then the 
largest magnitude negative integer is the result, even for unsigned integer operations.

5.4.5 Definition of Arithmetic Operations

Arithmetic operations are those that compute on the operands by treating each operand’s en
as a value, whereas non-arithmetic operations perform bit manipulations on the input operan
without regard to the value represented by the encoding (except for NaTVal detection). Non-
arithmetic instructions do not cause Floating-point Exception faults or traps, but can cause th
Disabled Floating-point Register fault. 
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5.4.6 Definition of SNaNs, QNaNs and Propagation of NaNs

Signaling NaNs have a zero in the most significant fractional bit of the significand. Quiet NaNs 
have a one in the most significant fractional bit of the significand. This definition of signaling and 
quiet NaNs easily preserves “NaNness” when converting between different precisions. When
propagating NaNs in operations that have more than one NaN operand, the result NaN is ch
from one of the operand NaNs in the following priority based on register encoding fields: first f4, 
then f2, and lastly f3.

5.4.7 IEEE Standard Mandated Operations Deferred to Software

The following IEEE mandated operations will be implemented in software:

• String to floating-point conversion

• Floating-point to string conversion

• Divide (with help from frcpa or fprcpa instruction)

• Square root (with help from frsqrta or fprsqrta instruction)

• Remainder (with help from frcpa or fprcpa instruction)

• Floating-point to integer valued floating-point conversion

• Correctly wrapping the exponent for single, double, and double-extended overflow and 
underflow values, as recommended by the IEEE standard

5.4.8 Additions beyond the IEEE Standard

• The fused multiply and add (fma, fms, fnma, fpma, fpms, fpnma) operations enable efficient 
software divide, square root, and remainder algorithms.

• The extended range of the 17-bit exponent in the register file format allows simplified 
implementation of many basic numeric algorithms by the careful numeric programmer.

• The NaTVal is a natural extension of the IEEE concept of NaNs. It is used to support 
speculative execution.

• Flush-to-Zero mode is an industry standard addition.

• The minimum and maximum instructions allow the efficient execution of the common For
Intrinsic Functions: MIN(), MAX(), AMIN(), AMAX(); and C language idioms such as 
a<b?a:b.

• All mixed precision operations are allowed. The IEEE standard suggests that implementa
allow lower precision operands to produce higher precision results; this is supported. Th
IEEE standard also suggests that implementations not allow higher precision operands t
produce lower precision results; this suggestion is not followed. When computations with
higher precision operands produce values beyond the destination precision range, the 
information provided in the ISR.code allows the true result to be unambiguously determi
by software. The correct wrapping count and the appropriate bias amount can also be 
computed.

• An IEEE style quad-precision real type that is supported in software.
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IA-32 Application Execution Model in an 
IA-64 System Environment 6

The IA-64 architecture enables the execution of IA-32 application binaries unmodified on IA-32 
legacy operating systems provided the required platform and firmware support exists in the system.

This chapter describes IA-32 instruction execution in an IA-64 System Environment. The IA-64 
architecture supports 16-bit Real Mode, 16-bit VM86, and 16-bit/32-bit Protected Mode IA-32 
applications running on IA-64 operating system. IA-64 operating system support for these 
capabilities is defined by the respect operating system vendors.

The main features covered in this chapter are:

• IA-32 and IA-64 instruction set transitions.

• IA-32 integer, segment, floating-point, MMX technology, and Streaming SIMD Extension
register state mappings.

• IA-32 memory and addressing model overview.

This chapter does not cover the details of IA-32 application programming model, IA-32 
instructions and registers. Refer to the Intel Architecture Software Developer’s Manual for details 
regarding IA-32 application programming model.

6.1 Instruction Set Modes

The processor can be executing either IA-32 or IA-64 instructions at any point in time. PSR.is 
(defined in Section 3.3.2 in Volume 2) specifies the currently executing instruction set, where 1 
indicates IA-32 instructions are executing, and 0 indicates IA-64 instructions are executing. Three 
special instructions and interruptions are defined to transition the processor between the IA-32 and 
the IA-64 instruction sets as shown in Figure 6-1.

• JMPE (IA-32 instruction) Jump to an IA-64 target instruction, and change the instruction s
IA-64.

• br.ia (IA-64 instruction) IA-64 branch to an IA-32 target instruction, and change the 
instruction set to IA-32.

• rfi (IA-64 instruction) Return from interruption is defined to return to either an IA-32 or 
IA-64 instruction when resuming from an interruption.

• Interruptions transition the processor to the IA-64 instruction set for all interruption conditio

The jmpe and br.ia instructions provide a low overhead mechanism to transfer control betwe
the instruction sets. These primitives typically are incorporated into “thunks” or “stubs” that 
implement the required call linkage and calling conventions to call dynamic or statically linke
libraries.
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6.1.1 IA-64 Instruction Set Execution

While the processor executes from the IA-64 instruction set:

• IA-64 instructions are fetched, decoded and executed by the processor.

• IA-64 instructions can access the entire IA-64 and IA-32 application register state. This 
includes IA-32 segment descriptors, selectors, general registers, physical floating-point 
registers, MMX technology registers, and Streaming SIMD Extension registers. See 
Section 6.2 for a description of the register state mapping.

• Segmentation is disabled. No segmentation protection checks are applied nor are segm
bases added to compute virtual addresses, all computed addresses are virtual addresse

• 264 virtual addresses can be generated and IA-64 memory management is used for all m
and I/O references.

6.1.2 IA-32 Instruction Set Execution

While the processor is executing the IA-32 instruction set (PSR.is is 1) within the IA-64 Syste
Environment, the IA-32 application architecture as defined by the Pentium® III processor is used, 
namely:

• IA-32 16/32-bit application level, MMX technology instructions, and Streaming SIMD 
Extension instructions are fetched, decoded, and executed by the processor. Instruction
confined to 32/16-bit operations. 

• Only IA-32 application level register state is visible (i.e. IA-32 general registers, MMX 
technology registers, and Streaming SIMD Extension registers, selectors, EFLAGS, FP 
registers and FP control registers). IA-64 application and control state is not visible, e.g. 
branch, predicate, application, control, debug, test, and performance monitor registers.

• IA-32, Real Mode, VM86 and Protected Mode segmentation is in effect. Segment protec
checks are applied and virtual addresses generated according to IA-32 segmentation ru
GDT and LDT segments are defined to support IA-32 segmented applications. Segment
and 32-bit code is fully supported.

• Virtual addresses are confined to the lower 4G bytes of virtual region 0. IA-64 memory 
management is used to translate virtual to physical addresses for all IA-32 instruction se
memory and I/O Port references.

• Instruction and Data memory references are forced to be little-endian. Memory ordering 
the Pentium III processor memory ordering model.

Figure 6-1. Instruction Set Transition Model
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• IA-32 operating system resources; IA-32 paging, MTRRs, IDT, control registers, debug 
registers and privileged instructions are superseded by IA-64 defined resources. All acce
these resources result in an interception fault.

6.1.3 Instruction Set Transitions

The following section summarizes behavior for each instruction set transition. Detailed instru
description on jmpe (IA-32 instruction) and br.ia (IA-64 instruction) should be consulted for 
details

Operating systems can disable instruction set transitions (jmpe and br.ia) by setting PSR.di to 
one. If PSR.di is one, execution of jmpe or br.ia results in a Disabled Instruction Set Transition
Fault. System level instruction set transitions due to either rfi or an interruption ignore the state o
PSR.di (defined in Section 3.3.2).

6.1.3.1 JMPE Instruction

JMPE reg16/32; JMPE disp16/32 is used to jump and transfer control to the IA-64 instruction set. 
There are two forms; register indirect and absolute. The absolute form computes the virtual I
target address as follows:

IP{31:0} =disp16/32 + CSD.base

IP{63:32} = 0

The indirect form reads a 16/32-bit register location and then computes the IA-64 target addr
follows:

IP{31:0} = [reg16/32] + CSD.base

IP{63:32} = 0

IA-64 jmpe targets are forced to be 16-byte aligned, and are constrained to the lower 4G-byt
the 64-bit virtual address space due to limited IA-32 addressability. If there are any pending I
numeric exceptions, jmpe is nullified, and an IA-32 floating-point exception fault is generated.

Transitions into the IA-64 instruction set do not change the privilege level of the processor. 

6.1.3.2 Branch to IA Instruction

Unconditional branches to the IA-32 instruction set use the IA-64 defined indirect branch 
mechanism. IA-32 targets are specified by a 32-bit virtual address target (not an effective add
The IA-32 virtual address is truncated to 32-bits. The br.ia branch hints should always be set to
predicted static taken. The processor transitions to the IA-32 instruction set as follows:

IP{31:0} = BR[b]{31:0}

IP{63:32} = 0

EIP{31:0} = IP{31:0} - CSD.base

Transitions into the IA-32 instruction set do not change the privilege level of the processor. 
Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 6-3
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Software should ensure the code segment descriptor and selector are properly loaded before issuing 
the branch. If the target EIP value exceeds the code segment limit or has a code segment privilege 
violation, an IA-32 GPFault(0) exception is reported on the target IA-32 instruction. 

The processor does not ensure IA-64 instruction set generated writes into the IA-32 instruction 
stream are observed by the processor. For details, see “Self Modifying Code” on page 6-24. Before 
entering the IA-32 instruction set, IA-64 software must ensure all prior register stack frames 
been flushed to memory. All registers left in the current and prior register stack frames are lef
undefined state after IA-32 instruction set execution. Software can not rely on the value of th
registers across an instruction set transition. For details, see “IA-64 Register Stack Engine” on 
page 6-25.

6.1.4 IA-32 Operating Mode Transitions

As described in “IA-32 Instruction Set Execution” on page 6-2, jmpe, br.ia, and rfi and 
interruptions can transition the processor between the two instruction set modes. Transitions
allowed between all major IA-32 modes and IA-64. jmpe and interruptions will transition the 
processor from either IA-32 VM86, Real Mode or Protected Mode into the IA-64 instruction s
mode. Mode transitions between IA-32 Real Mode, Protected Mode and VM86 definitions ar
same as those defined in the Intel Architecture Software Developer’s Manual.

IA-64 interface code is responsible for setting up and loading a consistent Protected Mode, Real 
Mode, or VM86 environment (e.g. loading segment selectors and descriptors, etc.) as defined in 
“Segment Descriptor and Environment Integrity” on page 6-11. The processor applies additional 
segment descriptor checks to ensure operations are performed in a consistent manner.

6.2 IA-32 Application Register State Model

As shown in Figure 6-3 and Table 6-1, IA-32 general purpose registers, segment selectors, and
segment descriptors, are mapped into the lower 32-bits of IA-64 general purpose registers G
GR31. The floating-point register stack, MMX technology registers, and Streaming SIMD 
Extension registers are mapped on IA-64 floating-point registers FR8 to FR31. 

Figure 6-2. Instruction Set Mode Transitions
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To promote straight-forward parameter passing, IA-32 and IA-64 integer and IEEE floating-point 
register and memory data types are binary compatible between both IA-32 and IA-64 instruction 
sets. 

Some IA-64 registers are modified to an undefined state by hardware as a side-effect during IA-32 
instruction set execution as noted in Table 6-1 and Figure 6-2. Generally, IA-64 system state is not 
affected by IA-32 instruction set execution. IA-64 code can reference all IA-64 and IA-32 registers, 
while IA-32 instruction set references are confined to the IA-32 visible application register state. 

Registers are assigned the following conventions during transitions between IA-32 and IA-64 
instruction sets:

• IA-32 state: The register contains an IA-32 register during IA-32 instruction set execution
Expected IA-32 values should be loaded before switching to the IA-32 instruction set. Af
completion of IA-32 instructions, these registers contain the results of the execution of IA
instructions. These registers may contain any value during IA-64 instruction execution 
according to IA-64 software conventions. Software should follow IA-32 and IA-64 calling
conventions for these registers.

Figure 6-3. IA-32 Application Register Model
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• Undefined: Registers marked as undefined may be used as scratch areas for execution 
IA-32 instructions by the processor and are not ensured to be preserved across instructi
transitions.

• Shared: Shared registers contain values that have similar functionality in either instruction
For example, the stack pointer (ESP) and instruction pointer (IP) are shared. 

• Unmodified: These registers are not altered by IA-32 execution. IA-64 code can rely on t
values not being modified during IA-32 instruction set execution. The register will have th
same contents when entering the IA-32 instruction set and when exiting the IA-32 instru
set.

Table 6-1. IA-32 Application Register Mapping

IA-64 Reg IA-32 Reg Convention Size Description

General Purpose Integer Registers

GR0 constant 0

GR1-3 undefinedf scratch for IA-32 execution

GR4-7 unmodified IA-64 preserved registers

GR8 EAX

IA-32 state

32a IA-32 general purpose registers

GR9 ECX

GR10 EDX

GR11 EBX

GR12 ESP

GR13 EBP

GR14 ESI

GR15 EDI

GR16{15:0} DS

64 IA-32 selectors

GR16{31:16} ES

GR16{47:32} FS

GR16{63:48} GS

GR17{15:0} CS

GR17{31:16} SS

GR17{47:32} LDT

GR17{63:48} TSS

GR18-23 undefinedf scratch for IA-32 execution

GR24 ESD IA-32 state 64 IA-32 segment descriptors (register 
format)b

GR25-26 undefinedf scratch for IA-32 execution

GR27 DSD

IA-32 state 64
IA-32 segment descriptors (register 
format)b

GR28 FSD

GR29 GSD

GR30 LDTDc

GR31 GDTD

GR32-127 undefinedd IA-32 code execution space
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Process Environment

IP IP shared 64 shared IA-32 and IA-64 virtual 
Instruction Pointer 

Floating-point Registers

FR0 constant +0.0

FR1 constant +1.0

FR2-5 unmodified IA-64 preserved registers

FR6-7 undefined IA-32 code execution space

FR8 MM0/FP0

IeA-32 
state

64/8
0

IA-32 MMX™ technology registers 
(aliased on 64-bit FP mantissa)

IA-32 FP registers (physical registers 
vmapping)e

FR9 MM1/ FP1

FR10 MM2/FP2

FR11 MM3/FP3

FR12 MM4/FP4

FR13 MM5/FP5

FR14 MM6/FP6

FR15 MM7/FP7

FR16-17 XMM0

IA-32 state 64

IA-32 Streaming SIMD Extension 
registers

low order 64-bits of XMM0 are mapped 
to FR16{63:0}

high order 64-bits of XMM0 are mapped 
to FR17{63:0}

FR18-19 XMM1

FR20-21 XMM2

FR22-23 XMM3

FR24-25 XMM4

FR26-27 XMM5

FR28-29 XMM6

FR30-31 XMM7

FR32-127 undefinedf IA-32 code execution space

Predicate Registers

PR0 constant 1

PR1-63 undefinedf IA-32 code execution space

Branch Registers

BR0-5 unmodified IA-64 preserved registers

BR6-7 undefined IA-32 code execution space

Application Registers

RSC

unmodified
not used for IA-32 execution

IA-64 preserved registers

BSP

BSPSTORE

RNAT

CCV undefinedf 64 IA-32 code execution space

UNAT unmodified not used for IA-32 execution, IA-64 
preserved

Table 6-1. IA-32 Application Register Mapping (Continued)

IA-64 Reg IA-32 Reg Convention Size Description
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6.2.1 IA-32 General Purpose Registers

Integer registers are mapped into the lower 32-bits of IA-64 general registers GR8 to 15. Values in 
the upper 32-bits of GR8 to 15 are ignored on entry to IA-32 execution. After the IA-32 instruction 
set completes execution, the upper 32-bits of GR8 - GR15 are sign-extended from bit 31.

Based on IA-32 and IA-64 calling conventions, the required IA-32 state must be loaded in memory 
or registers by IA-64 code before entering the IA-32 instruction set. 

FPSR.sf0 unmodified IA-64 numeric status and controls

FPSR.sf1,2,3 undefinedf IA-32 code execution space.

FSR FSW,FTW,

MXCSR

IA-32 state

64 IA-32 numeric status and tag word and 
Streaming SIMD Extension status

FCR FCW, 
MXCSR

64 IA-32 numeric and Streaming SIMD 
Extension control

FIR FOP, FIP, 
FCS

64 IA-32 x87 numeric environment 
opcode, code selector and IP

FDR FEA, FDS 64 IA-32 x87 numeric environment data 
selector and offset

ITC TSC shared 64 shared IA-32 time stamp counter (TSC) 
and IA-64 Interval Timer

PFS

unmodified

not used for IA-32 code execution, Prior 
EC is preserved in PFM

IA-64 preserved registers
LC

EC

EFLAG EFLAG

IA-32 state

32 IA-32 System/Arithmetic flags, 

writes of some bits condition by CPL 
and EFLAG.iopl.

CSD CSD 64 IA-32 code segment (register format)b

SSD SSD IA-32 stack segment (register format)b

CFLG CR0/CR4 64 IA-32 control flags 

CR0=CFLG{31:0}, CR4=CFLG{63:32}, 
writable at CPL=0 only.

a.  On transitions into the IA-32 instruction set the upper 32-bits are ignored. On exit the upper 
32-bits are sign extended from bit 31.

b. Segment descriptor formats differ from the IA-32 memory format, see for details. Modification of a 
selector or descriptor does not set the access/busy bit in memory.

c. The GDT/LDT descriptors are NOT protected from modification by IA-64 user level code.
d. All registers in the current and prior registers frames are left in an undefined state after IA-32 

execution. Software must preserve these values before entering the IA-32 instruction set.
e. IA-32 floating-point register mappings are physical and do not reflect the IA-32 top of stack value.
f. These registers are used by the processor and may be left an undefined state following IA-32 

instruction set execution. Software should preserve required values before entering IA-32 code.

Table 6-1. IA-32 Application Register Mapping (Continued)

IA-64 Reg IA-32 Reg Convention Size Description
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6.2.2 IA-32 Instruction Pointer

The processor maintains two instruction pointers for IA-32 instruction set references, EIP (32-bit 
effective address) and IP (a 64-bit virtual address equivalent to the IA-64 instruction set IP). IP is 
generated by adding the code segment base to EIP and zero extending to 64-bits. IP should not be 
confused with the 16-bit effective address instruction pointer of the 8086. EIP is an offset within 
the current code segment, while IP is a 64-bit virtual pointer shared with the IA-64 instruction set. 
The following relationship is defined between EIP and IP while executing IA-32 instructions.

IP{63:32} = 0;

IP{31:0} = EIP{31:0} + CSD.Base;

EIP is added to the code segment base and zero extended into a 64-bit virtual address on every 
IA-32 instruction fetch. If during an IA-32 instruction fetch, EIP exceeds the code segment limit, a 
GPFault is generated on the referencing instruction. Effective instruction addresses (sequential 
values or jump targets) above 4G-bytes are truncated to 32 bits, resulting in a 4-G byte wraparound 
condition.

6.2.3 IA-32 Segment Registers

IA-32 segment selectors and descriptors are mapped to GR16 - GR29 and AR25 - AR26. 
Descriptors are maintained in an unscrambled format shown in Figure 6-6. This format differs from 
the IA-32 scrambled memory descriptor format. The unscrambled register format is designed to 
support fast conversion of IA-32 segmented 16/32-bit pointers into virtual addresses by IA-64 
code. IA-32 segment register load instructions unscramble the GDT/LDT memory format into the 
descriptor register format on a segment register load. IA-64 software can also directly load 
descriptor registers provided they are properly unscrambled by software. For a complete definition 
of all bit fields and field semantics refer to the Intel Architecture Software Developer’s Manual.

Figure 6-4. IA-32 General Registers (GR8 to GR15)
63 32 31 0

sign extended EAX.. EDI{31:0}

Figure 6-5. IA-32 Segment Register Selector Format
63 48 47 32 31 16 15 0

GS FS ES DS GR16

TSS LDT SS CS GR17

Figure 6-6. IA-32 Code/Data Segment Register Descriptor Format
63 62 61 60 59 58 57 56 55 52 51 32 31 0

g d/
b

ig av p dpl s type lim{19:0} base{31:0}
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Table 6-2. IA-32 Segment Register Fields

Field Bits Description

selector 15:0 Segment Selector value, see the Intel Architecture Software 
Developer’s Manual for bit definition.

base 31:0 Segment Base value. This value when zero extended to 64-bits, points 
to the start of the segment in the 64-bit virtual address space for IA-32 
instruction set memory references.

lim 51:32 Segment Limit. Contains the maximum effective address value within 
the segment for expand up segments for IA-32 instruction set memory 
references. For expand down segments, limit defines the minimum 
effective address within the segment. See the Intel Architecture 
Software Developer’s Manual for details and segment limit fault 
conditions. The segment limit is scaled by (lim << 12) | 0xFFF if the 
segment’s g-bit is 1.

type 55:52 Type identifier for data/code segments, including the Access bit (bit 
52). See the Intel Architecture Software Developer’s Manual for 
encodings and definition.

s 56 Non System Segment. If 1, a data segment, if 0 a system segment.

dpl 58:57 Descriptor Privilege Level. The DPL is checked for memory access 
permission for IA-32 instruction set memory references.

p 59 Segment Present bit. If 0, and a IA-32 memory reference uses this 
segment an IA Exception(GPFault) is generated for data segments 
(CS, DS, ES, FS, GS) and an IA-32_Exception(StackFault) for SS.

av 60 Ignored - For the CS, SS descriptors reads of this field return zeros. 
For the DS, ES, FS, and GS descriptors reads of this field return the 
last value written by IA-64 code. Reads of this field return zero if 
written by IA-32 descriptor loads. This field is ignored by the processor 
during IA-32 instruction set execution. Available for software use, there 
will be no future use for this field. 

ig 61 Ignored - For the CS, SS descriptors reads of this field return zeros. 
For the DS, ES, FS, and GS descriptors reads of this field return the 
last value written by IA-64 code. Reads of this field return zero if 
written by IA-32 descriptor loads. This field is ignored by the processor 
during IA-32 instruction set execution. This field may have a future use 
and should be set to zero by software.

d/b 62 Segment Size. If 0, IA-32 instruction set effective addresses within the 
segment are truncated to 16-bits. Otherwise, effective addresses are 
32-bits. The code segment’s d/b-bit also controls the default operand 
size for IA-32 instructions. If 1, the default operand size is 32-bits, 
otherwise 16-bits.

g 63 Segment Limit Granularity. If 1, scales the segment limit by 
lim=(lim<<12) | 0xFFF for IA-32 instruction set memory references. 
This field is ignored for IA-64 instruction set memory references.
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6.2.3.1 Data and Code Segments

On the transition into IA-32 code, the IA-32 segment descriptor and selector registers (GDT, LDT, 
DS, ES, CS, SS, FS and GS) must be initialized by IA-64 code to the required values based on 
IA-32 and IA-64 calling conventions and the segmentation model used.

IA-64 code may manually load a descriptor with an 8-byte fetch from the LDT/GDT, unscramble 
the descriptor and write the segment base, limit and attribute. Alternately, IA-64 software can 
switch to the IA-32 instruction set and perform the required segment load with an IA-32 Mov Sreg 
instruction. If IA-64 code explicitly loads the segment descriptors, it is responsible for the integrity 
of the segment descriptor.

The processor does not ensure coherency between descriptors in memory and the descriptor 
registers, nor does the processor set segment access bits in the LDT/GDT if segment registers are 
loaded by IA-64 instructions.

6.2.3.2 Segment Descriptor and Environment Integrity

For IA-32 instruction set execution, most segment protection checks are applied by the processor 
when the segment descriptor is loaded by IA-32 instructions into a segment register. However, 
segment descriptor loads from the IA-64 instruction set into the general purpose register file 
perform no such protection checks, nor are segment Access-bits updated by the processor. 

If IA-64 software directly loads a descriptor, it is responsible for the validity of the descriptor, and 
ensuring integrity of the IA-32 Protected Mode, Real Mode or VM86 environments. Table 6-3 
defines software guidelines for establishing the initial IA-32 environment. The processor checks 
the integrity of the IA-32 environment as defined in Section 6.2.3.3, “IA-32 Environment Run-time
Integrity Checks” on page 6-14. On the transitions between IA-64 and IA-32 code, the processo
does NOT alter the base, limit or attribute values of any segment descriptor, nor is there a cha
privilege level.

 Table 6-3. IA-32 Environment Initial Register State

Register Field Real Mode Protected Mode VM86 Mode

PSR cpl 0 privilege level 3

EFLAG vm 0 0 1

CR0 pe 0 1 1

CS

selector base >> 4a selector base >> 4
base selector << 4b base selector << 4
dpl PSR.cpl (0) PSR.cplc PSR.cpl (3)

d-bit 16-bitd 16/32-bit 16-bit
type data rd/wr, expand 

up
execute data rd/wr, expand 

up
s-bit 1 1 1
p-bit 1 1 1
a-bit 1 1 1

g-bit/limit 0xFFFFe limit 0xFFFF
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SS

selector base >> 4a selector base >> 4
base selector << 4b base selector << 4
dpl PSR.cpl (0) PSR.cpl PSR.cpl (3)

d-bit 16-bitd 16/32-bit size 16-bit
type data rd/wr, expand 

up
data types data rd/wr, expand 

up
s-bit 1 1 1
p-bit 1 1 1
a-bit 1 1 1

g-bit/limit 0xFFFFe limit 0xFFFF

DS, ES,
FS, GS

selector base >> 4a selector base >> 4
base selector << 4b base selector << 4
dpl dpl >= PSR.cpl (0) dpl >= PSR.cpl dpl >= PSR.cpl (3)

d-bit 16-bitd 16/32-bit 0
type data rd/wr, expand 

up
data types data rd/wr, expand 

up
s-bit 1 1 1
a-bit 1 1 1
p-bit 1 1/0f 1

g-bit/limit 0xFFFFe limit 0xFFFF

LDT, GDT,
TSS

selector

na

selector
base base
dpl dpl >= PSR.cpl

d-bit 0
type ldt/gdt/tss types
s-bit 0
p-bit 1
a-bit 1

g-bit/limit limit

a. Selectors should be set to 16*base for normal RM 64KB operation.
b. Segment base should be set to selector/16 for normal RM 64KB operation.
c. Unless a conforming code segment is specified.
d. Segment size should be set to 16-bits for normal RM 64KB operation.
e. Segment limit should be set to 0xFFFF for normal RM 64KB operation. 
f. For valid segments the p-bit should be set to 1, for null segments the p-bit should be set to 0.

Table 6-3. IA-32 Environment Initial Register State (Continued)

Register Field Real Mode Protected Mode VM86 Mode

PSR cpl 0 privilege level 3

EFLAG vm 0 0 1

CR0 pe 0 1 1
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6.2.3.2.1 Protected Mode

IA-64 software should follow these rules for setting up the segment descriptors for Protected Mode 
environment before entering the IA-32 instruction set:

• IA-64 software should ensure the stack segment descriptor register’s DPL==PSR.cpl. 

• For DSD, ESD, FSD and GSD segment descriptor registers, IA-64 software should ensu
DPL>=PSR.cpl. 

• For CSD segment descriptor register, IA-64 software should ensure DPL==PSR.cpl (exc
for conforming code segments). 

• Software should ensure that all code, stack and data segment descriptor registers do not 
encodings for any system segments.

• Software should ensure the a-bit of all segment descriptor registers are set to 1.

• Software should ensure the p-bit is set to 1 for all valid data segments and to 0 for all NU
data segments.

6.2.3.2.2 VM86

IA-64 software should follow these rules when setting up segment descriptors for the VM86 
environment before entering the IA-32 instruction set:

• PSR.cpl must be 3 (or IPSR.cpl must be 3 for rfi).

• IA-64 software should ensure the stack segment descriptor register’s DPL==PSR.cpl==3
set to 16-bit, data read/write, expand up. 

• For CSD, DSD, ESD, FSD and GSD segment descriptor registers, IA-64 software should
ensure DPL==3, the segment is set to 16-bit, data read/write, expand up. 

• Software should ensure that all code, stack and data segment descriptor registers do not 
encodings for any system segments.

• Software should ensure the P-bit and A-bit of all segment descriptor registers is one.

• Software should ensure that the relationship Base = Selector*16, is maintained for all DS
CSD, ESD, SSD, FSD, and GSD segment descriptor registers, otherwise processor oper
unpredictable.

• Software should ensure that the DSD, CSD, ESD, SSD, FSD, and GSD segment descrip
register’s limit value is set to 0xFFFF, otherwise spurious segment limit faults (GPFault o
Stack Faults) may be generated.

• IA-64 software should ensure all segment descriptor registers are data read/write, includi
code segment. The processor will ignore execute permission faults.

6.2.3.2.3 Real Mode

IA-64 software should follow these rules when setting up segment descriptors for the Real M
environments before entering the IA-32 instruction set, otherwise software operation is 
unpredictable. 

• IA-64 software should ensure PSR.cpl is 0.

• IA-64 software should ensure the stack segment descriptor register’s DPL is 0. 

• Software should ensure that all code, stack and data segment descriptor registers do not 
encodings for any system segments.

• Software should ensure the P-bit and A-bit of all segment descriptor registers is one.
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• For normal real mode 64K operations, software should ensure that the relationship Base
Selector*16, is maintained for all DSD, CSD, ESD, SSD, FSD, and GSD segment descri
registers.

• For normal real mode 64K operations, software should ensure that the DSD, CSD, ESD,
FSD, and GSD segment descriptor register’s limit value is set to 0xFFFF and the segme
is set to 16-bit (64K).

• IA-64 software should ensure all segment descriptor registers indicate readable, writable
including the code segment for normal Real Mode operation.

6.2.3.3 IA-32 Environment Run-time Integrity Checks

IA-64 processors perform additional run-time checks to verify the integrity of the IA-32 
environments. These checks are in addition to the run-time checks defined on IA-32 processo
are high-lighted in Table 6-4. Existing IA-32 run-time checks are listed but not highlighted. 
Descriptor fields not listed in the table are not checked. As defined in the table, run-time chec
performed either on IA-32 instruction code fetches or on an IA-32 data memory reference to o
the specified segment registers. These run-time checks are not performed during IA-64 to IA
instruction set transitions.

 Table 6-4. IA-32 Environment Run Time Integrity Checks

Reference Resource Real Mode Protected Mode VM86Mode Fault

all code 
fetches

PSR.cpl is not 0 ignored is not 3

Code Fetch 
Fault 
(GPFault(0))a

EFLAG.vm
CFLG.pe

EFLAG.vm is 1 and CFLG.pe is 0

EFLAG.vif

EFLAG.vip

EFLAG.vip & EFLAG.vif & CFLG.pe & 
PSR.cpl==3 & 

(CFLG.pvi | (EFLAG.vm & 
CFLG.vme))

all code 
fetches CS

dpl ignored dpl is not 3

Code Fetch 
Fault 
(GPFault(0))

d-bit is not 16-bit

type ignored (can be exec or data)

 GPFault if data expand down

s, p, a-bits are not 1

g-bit/limit segment limit violation

data memory 
references to 
SS

dpl dpl!=PSR.cpl

Stack Fault

d-bit ignored is not 16-bit

type ignored data expand down

read and not readable, write and not writeable

s, p, a-bits are not 1

g-bit/limit segment limit violation
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6.2.4 IA-32 Application EFLAG Register

The EFLAG (AR24) register is made up of two major components, user arithmetic flags (CF, PF, 
AF, ZF, SF, OF, and ID) and system control flags (TF, IF, IOPL, NT, RF, VM, AC, VIF, VIP). None 
of the arithmetic or system flags affect IA-64 instruction execution. See “IA-32 System EFLA
Register” on page 16-5.

The arithmetic flags are used by the IA-32 instruction set to reflect the status of IA-32 operat
control IA-32 string operations, and control branch conditions for IA-32 instructions. These fla
are ignored by IA-64 instructions. Flags ID, OF, DF, SF, ZF, AF, PF and CF are defined in theIntel 
Architecture Software Developer’s Manual.

data memory 
references to 
DS, ES, FS 
and GS

dpl ignored

GPFault(0)

d-bit ignored is not 16-bit

type ignored data expand down

read and not readable, write and not writeable

s, p, a-bits are not 1

g-bit/limit segment limit violation

data memory 
references to 
CS

dpl ignored

GPFault(0)

d-bit ignored is not 16-bit

type ignored data expand down

rd/wr checks are 
ignored

rd and not 
readable, wr and 

not writeable

rd/wr checks are 
ignored

s, p, a-bits are not 1

g-bit/limit segment limit violation

memory 
references to 
LDT,GDT, 
TSS

dpl ignored

GPFault
(Selector/0)b

type ignored

s-bit is not 0

a, d-bits ignored

p-bit is not 1

g-bit/limit segment limit violation

a. Code Fetch Faults are delivered as higher priority GPFault(0).
b. The GP Fault error code is the selector value if the reference is to GDT or LDT. Otherwise the error code is zero.

Figure 6-7. IA-32 EFLAG Register (AR24)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (set to 0) id vi
p

vif ac vm rf 0 nt iopl of df if tf sf zf 0 af 0 pf 1 cf

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0)

Table 6-4. IA-32 Environment Run Time Integrity Checks (Continued)

Reference Resource Real Mode Protected Mode VM86Mode Fault
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6.2.5 IA-32 Floating-point Registers

IA-32 floating-point register stack, numeric controls and environment are mapped into the IA-64 
floating-point registers FR8 - FR15 and the application register name space as shown in Table 6-6.

Table 6-5. IA-32 EFLAGS Register Fields

EFLAGa

a. On entry into the IA-32 instruction set all bits may be read by subsequent IA-32 instructions, after 
exit from the IA-32 instruction set these bits represent the results of all prior IA-32 instructions. 
None of the EFLAG bits alter the behavior of IA-64 instruction set execution.

Bits Description

cf 0 IA-32 Carry Flag. See the Intel Architecture Software Developer’s 
Manual for details.

1 Ignored - Writes are ignored, reads return one for IA-32 and IA-64 
instructions.

3,5,

15

Ignored - Writes are ignored, reads return zero for IA-32 and IA-64 
instructions. Software should set these bits to zero.

pf 2 IA-32 Parity Flag. See the Intel Architecture Software Developer’s 
Manual for details.

af 4 IA-32 Aux Flag. See the Intel Architecture Software Developer’s 
Manual for details.

zf 6 IA-32 Zero Flag. See the Intel Architecture Software Developer’s 
Manual for details.

sf 7 IA-32 Sign Flag. See the Intel Architecture Software Developer’s 
Manual for details.

tf 8
IA-32 System EFLAG Register

if 9

df 10 IA-32 Direction Flag. See the Intel Architecture Software Developer’s 
Manual for details.

of 11 IA-32 Overflow Flag. See the Intel Architecture Software Developer’s 
Manual for details.

iopl 13:1
2

 IA-32 System EFLAG Register

nt 14

rf 16

vm 17

ac 18

vif 19

vip 20

id 21

63:2
2

Reserved must be set to zero
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6.2.5.1 IA-32 Floating-point Stack

IA-32 floating-point registers are defined as follows:

• IA-32 numeric register stack is mapped to FR8 - FR15, using the Intel 8087 80-bit IEEE 
floating-point format. 

• For IA-32 instruction set references, floating-point registers are logically mapped into FR
FR15 based on the IA-32 top-of-stack (TOS) pointer held in FCR.top. FR8 represents a 
physical register after the TOS adjustment and is not necessarily the top of the logical 
floating-point register stack.

• For IA-64 instruction set references, the floating-point register numbers are physical and
function of the numeric TOS pointer, e.g. references to FR8 always return the value in ph
register FR8 regardless of the TOS value. IA-64 software cannot necessarily assume tha
contains the IA-32 logical register ST(0). It is highly recommended that typically IA-32 cal
conventions be used which pass floating-point values through memory.

Table 6-6. IA-32 Floating-point Register Mappings

IA-64 Reg IA-32 Reg Size (bits) Description

FR8 ST[(TOS + 
N)==0]

80

IA-32 numeric register stack

IA-64 accesses to FR8 – FR15 ignore the 
IA-32 TOS adjustment

IA-32 accesses use the TOS adjustment 
for a given register N

FR9 ST[(TOS + 
N)==1]

FR10 ST[(TOS + 
N)==2]

FR11 ST[(TOS + 
N)==3]

FR12 ST[(TOS + 
N)==4]

FR13 ST[(TOS + 
N)==5]

FR14 ST[(TOS + 
N)==6]

FR15 ST[(TOS + 
N)==7]

FCR (AR21) FCW, MXCSR 64 IA-32 numeric and Streaming SIMD 
Extension control register

FSR (AR28) FSW,FTW, 
MXCSR

64 IA-32 numeric and Streaming SIMD 
Extension status and tag word

FIR (AR29) FOP, FCS, FIP 64 IA-32 numeric instruction pointer

FDR (AR30) FDS, FEA 48 IA-32 numeric data pointer
Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 6-17
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6.2.5.2 IA-32/IA-64 Special Cases

For IA-32 floating-point instructions, loading a single or double denormal results in a normalized 
double-extended value placed in the target floating-point register. For IA-64 instructions, loading a 
single or double denormal results in an un-normalized denormal value placed in the target 
floating-point register. There are two IA-64 canonical exponent values which indicate single 
precision and double precision denormals.

When transferring floating-point values from IA-64 to IA-32 instructions, it is highly 
recommended that typical IA-32 calling conventions be followed which pass floating-point values 
through the memory stack. If software does pass floating-point values from IA-64 to IA-32 code 
via the floating-point registers, software must ensure the following:

• IA-64 single or double precision denormals must be converted into a normalized double 
extended precision value expected by IA-32 instructions. Software can convert IA-64 
denormals by multiplying by 1.0 in double extended precision (fma.sfx fr = fr, f1, f0). 
If an illegal single or double precision denormal is encountered in IA-32 floating-point 
operations, an IA-32 Exception (FPError Invalid Operand) fault is generated.

• Floating-point values must be within the range of the IA-32 80-bit (15-bit exponent) doub
extended precision format. IA-64 allows 82-bit (17-bit widest range exponent) for intermed
calculations. Software must ensure all IA-64 floating-point register values passed to IA-3
instructions are representable in double extended precision 80-bit format, otherwise proc
operation is model specific and undefined. Undefined behavior can include but is not lim
to: the generation of an IA-32_Exception (FPError Invalid Operation) fault when used by
IA-32 floating-point instruction, rounding of out-of-range values to zero/denormal/infinity a
possible IA-32_Exception (FPError Overflow/Underflow) faults, or float-point register(s) 
containing out of range values silently converted to QNAN or SNAN (conversion could o
during entry to the IA-32 instruction set or on use by an IA-32 floating-point instruction). 
Software can ensure all passed floating-point register values are within range by multiply
by 1.0 in double extended precision format (with widest range exponent disabled) by usi
fma.sfx fr = fr, f1, f0.

• IA-64 floating-point NaTVal values must not be propagated into IA-32 floating-point 
instructions, otherwise processor operation is model specific and undefined. Processors
silently convert floating-point register(s) containing NaTVal to a SNAN (during entry to th
IA-32 instruction set or on a consuming IA-32 floating-point instruction). Dependent IA-3
floating-point instructions that directly or indirectly consume a propagated NaTVal registe
will either propagate the NaTVal indication or generate an IA-32_Exception (FPError Inv
Operand) fault. Whether a processor generates the fault or propagates the NaTVal is mo
specific. In no case will the processor allow a NaTVal register to be used without either 
propagating the NaTVal or generating an IA-32_Exception (FPError Invalid Operand) fau

Note: It is not possible for IA-32 code to read a NaTVal from a memory location with an
IA-32 floating-point load instruction, since a NatVal cannot be expressed by a 80
double extended precision number. 

It is highly recommended that floating-point values be passed on the memory stack per typic
IA-32 calling conventions to avoid numeric problems with NatVal and IA-64 denormals.
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6.2.5.3 IA-32 Floating-point Control Registers

FPSR controls IA-64 floating-point instructions control and status bits. FPSR does not control 
IA-32 floating-point instructions or reflect the status of IA-32 floating-point instructions. IA-32 
floating-point and Streaming SIMD Extension instructions have separate control and status 
registers, namely FCR (floating-point control register) and FSR (floating-point status register).

FCR contains the IA-32 FCW bits and all Streaming SIMD Extension control bits as shown in 
Figure 6-8.

FSR contains the IA-32 floating-point status flags FSW, FTW, and Streaming SIMD Extension 
status fields as shown in Figure 6-9. The Tag fields indicate whether the corresponding IA-32 
logical floating-point register is empty. Tag encodings for zero and special conditions such as NaN, 
Infinity or Denormal of each IA-32 logical floating-point register are not supported. However, 
IA-32 instruction set reads of FTW compute the additional special conditions of each IA-32 
floating-point register. IA-64 code can issue a floating-point classify operation to determine the 
disposition of each IA-32 floating-point register.

FCR and FSR collectively hold all IA-32 floating-point control, status and tag information. IA-32 
instructions that are updated and controlled by MXSCR, FCW, FSW and FTAG effectively update 
FSR and are controlled by FSR. IA-32 reads/writes of MXCSR, FSW, FCW and FTW return the 
same information as IA-64 reads/writes of FSR and FCR. 

Software must ensure that FCR and FSR are properly loaded for IA-32 numeric execution before 
entering the IA-32 instruction set.

Figure 6-8. IA-32 Floating-point Control Register (FCR)

IA-32 FCW{12:0}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (set to 0) IC RC PC 0 1 PMUMOM ZMDM IM
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0) FZ RC PMUMOM ZMDM IM rv ignored
IA-32 MXCSR (control)

Figure 6-9. IA-32 Floating-point Status Register (FSR)

IA-32 FTW{15:0} IA-32 FSW{15:0}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 T 
G 
7

0 T 
G 
6

0 T 
G 
5

0 T 
G 
4

0 T 
G 
3

0 T 
G 
2

0 T 
G 
1

0 TG
0 B C3 TOP C2 C1 C0 ES SF PE UEOE ZE DE IE

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
reserved (set to 0) ignored rv PE UEOE ZE DE IE

IA-32 MXCSR (status)
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Table 6-7. IA-32 Floating-point Status Register Mapping (FSR)

IA-32 State
IA-64 
State

Bits IA-32 Usage IA-64 Usage

FSW, FTW, MXCSR state in the FSR Register
FSW.ie FSR.ie 0 Invalid operation 

Exception

None of these bits reflect 
the status of IA-64 
floating-point execution. 

See the Intel Architecture 
Software Developer’s 
Manual for IA-32 numeric 
flag details

FSW.de FSR.de 1 Denormalized operand 
Exception

FSW.ze FSR.ze 2 Zero divide Exception
FSW.oe FSR.oe 3 Overflow Exception
FSW.ue FSR.ue 4 Underflow Exception
FSW.pe FSR.pe 5 Precision Exception
FSW.sf FSR.sf 6 Stack Fault
FSW.es FSR.esa

a. Exception Summary bit, see Section 6.2.5.4 for details.

7 Error Summary
FSW.c3:0 FSR.c3:0 8:10,14 Numeric Condition codes
FSW.top FSR.top 11:13 Top of IA-32 numeric 

stack
FSW.b FSR.b 15 IA-32 FPU Busy always 

equals state of FSW.ES
FTW FSR.tg

{7:0}b
16,18,20,
22,24,26,
28,30

Numeric Tags 
0-NotEmpty, 1-Emptyc

zeros 17,19,21,
23,25,27,
29,31, 
39:47

Ignored - Writes are 
ignored, reads return zero

MXCSR.ie FSR.ie 32 Streaming SIMD 
Extension Invalid 
operation Exception

Does not reflect the status 
of IA-64 floating-point 
execution. 

See IA-32 Pentium® III 
documentation for details.

MXCSR.de FSR.de 33 Streaming SIMD 
Extension Denormalized 
operand Exception

MXCSR.ze FSR.ze 34 Streaming SIMD 
Extension Zero divide 
Exception

MXCSR.oe FSR.oe 35 Streaming SIMD 
Extension Overflow 
Exception

MXCSR.ue FSR.ue 36 Streaming SIMD 
Extension Underflow 
Exception

MXCSR.pe FSR.pe 37 Streaming SIMD 
Extension Precision 
Exception

reserved 38, 48:63 Reserved
ignored 39:47 Ignored - Writes are 

ignored, reads return zero
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6.2.5.4 IA-32 Floating-point Environment

To support the Intel 8087 delayed numeric exception model, FSR, FDR and FIR contain pending 
information related to the numeric exception. FDR contains the operand’s effective address a
segment selector. FIR contains the numeric instruction’s effective address, code segment se
and opcode bits. FSR summaries the type of numeric exception in the IE, DE, ZE, OE, UE, P
and ES-bits. The ES-bit summarizes the IA-32 floating-point exception status as follows:

• When FSR.es is read by IA-64 code, the value returned is a summary of any unmasked 
pending exceptions contained in the FSR, IE, DE, ZE, OE, UE, PE, and SF bits. Note tha
reads of the ES-bit do not necessarily return the last value written if the ES-bit is inconsi
with the other pending exception bits in FSR.

• When FSR.es is set to 1 by IA-64 code, delayed IA-32 numeric exceptions are generated
next IA-32 floating-point instruction, regardless of numeric exception information written i
FSR bits; IE, DE, ZE, OE, UE, PE, and SF.

• When FSR.es is written with inconsistent state with respect to the FSR bits (IE, DE, ZE, 
OE,PE and SF), subsequent numeric exceptions may report inconsistent floating-point s
bits. 

FSR, FDR, and FIR must be preserved across a context switch to generate and accurately r
numeric exceptions. 

6.2.6 IA-32 MMX™ Technology Registers

The eight IA-32 MMX technology registers are mapped on the eight IA-64 floating registers FR8 - 
FR15 where MM0 is mapped to FR8 and MM7 is mapped to FR15. The MMX technology register 
mapping for the IA-32 floating-point stack view is dependent on the floating-point IA-32 
Top-of-Stack value. 

b. Tag encodings indicate whether each IA-32 numeric register contains an zero, NaN, Infinity or 
Denormal are not supported by IA-64 reads of FSR. IA-32 instruction set reads of the FTW field do 
return zero, Nan, Infinity and Denormal classifications.

c. All MMX™ instructions set all Numeric Tags to 0 = NotEmpty. However, MMX instruction MS sets 
all Numeric Tags to 1 = Empty.

Figure 6-10. Floating-point Data Register (FDR)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

operand offset (fea)

636261605958575655 54 53 5251504948 47 46 4544434241403938373635343332

reserved (set to 0) operand selector (fds)

Figure 6-11. Floating-point Instruction Register (FIR)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

code offset (fip)

636261605958575655 54 53 5251504948 47 46 4544434241403938373635343332

reserved opcode {10:0} (fop) code selector (fcs)
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• When a value is written to an MMX technology register using an IA-32 MMX technology 
instruction: 

• The exponent field of the corresponding floating-point register (bits 80-64) and the s
bit (bit 81) are set to all ones.

• The mantissa (bits 63-0) is set to the MMX technology data value.

• When a value is read from a MMX technology register by an IA-32 MMX technology 
instruction: 

• The exponent field of the corresponding floating-point register (bits 80-64) and its sig
(bit 81) are ignored, including any NaTVal encodings.

As a result of this mapping, the mantissa of a floating-point value written by either IA-32 or IA
floating-point instructions will also appear in an IA-32 MMX technology register. An IA-32 MM
technology register will also appear in one of the eight mapped floating-point register’s mant
field.

To avoid performance degradation, software programmers are strongly recommended not to
intermix IA-32 floating and IA-32 MMX technology instructions. See the Intel Architecture 
Software Developer’s Manual for MMX technology coding guidelines for details.

6.2.7 IA-32 Streaming SIMD Extension Registers

The eight 128-bit IA-32 Streaming SIMD Extension registers (XMM0-7) are mapped on sixteen 
physical IA-64 floating register pairs FR16 - FR31. The low order 64-bits of XMM0 are mapped to 
FR16{63:0}, and the high order 64-bits of XMM0 are mapped to FR17{63:0}. 

• When a value is written to an Streaming SIMD Extension register using IA-32 Streaming
SIMD Extension instructions:

• The exponent field of the corresponding IA-64 floating-point register (bits 80-64) is se
0x1003E and the sign bit (bit 81) is set to 0.

• The mantissa (bits 63-0) is set to the XMM data value bits{63:0} for even registers a
bits{127:64} for odd registers.

• When a Streaming SIMD Extension register is read using IA-32 Streaming SIMD Extens
instructions:

• The exponent field of the corresponding IA-64 floating-point register (bits 80-64) and
sign bit (bit 81) are ignored, including any NaTVal encodings.

Figure 6-12. IA-32 MMX™ Technology Registers (MM0 to MM7)
81 80 64 63 0

1 ones MM0..MM7{31:0} FR8-15

Figure 6-13. Streaming SIMD Extension Registers (XMM0-XMM7)
81 80 64 63 0

0 0x1003E XMM0-7{127:64} FR17-31, 
odd

8180 6463 0

0 0x1003E XMM0-7{63:0} FR16-30, 
even
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6.3 Memory Model Overview

Virtual addresses within either the IA-64 or IA-32 instruction set are defined to address the same 
physical memory location. IA-64 instructions directly generate 64-bit virtual addresses. IA-32 
instructions generate 16 or 32-bit effective addresses that are then converted into 32-bit virtual 
addresses by IA-32 segmentation. 32-bit virtual addresses are then converted into 64-bit virtual 
addresses by zero extending to 64-bits. Zero extension places all IA-32 memory references in the 
lower 4G-bytes of the 64-bit virtual address space within virtual region 0. Virtual addresses 
generated by either instruction set are then translated into physical addresses using IA-64 memory 
management mechanisms defined in Chapter 4, “IA-64 Addressing and Protection” in Volume 2. 

6.3.1 Memory Endianess

Memory integer and floating-point (IEEE) data types are binary compatible between the IA-32
IA-64 instruction sets. IA-64 applications and operating systems that interact with IA-32 code
should use “little-endian” accesses to ensure that memory formats are the same. All IA-32 
instruction data and instruction memory references are forced to “little-endian”.

6.3.2 IA-32 Segmentation

Segmentation is not used for IA-64 instruction set memory references. Segmentation is perfo
on IA-32 instruction set memory references based on the state of EFLAG.vm and CFLG.pe. 
Real Mode, VM86, or Protected Mode segmentation rules are followed as defined in the Intel 
Architecture Software Developer’s Manual, specifically: 

• IA-32 Data 16/32-bit Effective Addresses: 16 or 32-bit effective addresses are generated, 
based on CSD.d, SSD.b and prefix overrides, by the addition of a base register, scaled i
register and 16/32-bit displacement value. Starting effective addresses (first byte of multi
operands) larger than 16 or 32 bits are truncated to 16 or 32-bits. Ending (last byte of 
multi-byte operands) 16-bit effective addresses can extend above the 64K byte boundar
however, ending 32-bit effective addresses are truncated to 32-bits and do not extend ab
4G-byte effective address boundary. Refer to the Intel Architecture Software Developer’s 
Manual for complete details on wrap conditions.

Figure 6-14. Memory Addressing Model

000914

32-bit Virtual
Address

Base

Index Zero Extend

64-bit Virtual
Address

16-/32-bit Effective
Address

Displacement

+

Base

IA-32

IA-64

Segmentation
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• IA-32 Code 16/32-bit Effective Addresses: 16 or 32-bit EIP, based on CSD.d, is used as th
effective address. Starting EIP values (first byte of multi-byte instruction) larger than 16 o
32 bits are truncated to 16 or 32-bits. Ending (last byte of multi-byte instruction) 16-bit 
effective addresses can extend above the 64K byte boundary, however, ending 32-bit EI
values are truncated to 32-bits and do not extend above the 4G-byte effective address 
boundary.

• IA-32 32-bit Virtual Address Generation: The resultant 16 or 32-bit effective address is 
mapped into the 32-bit virtual address space by the addition of a segment base. Full seg
protection and limit checks are verified as specified by the Intel Architecture Software 
Developer’s Manual and additional checks as specified in this section. Starting 32-bit virtual 
addresses are truncated to 32-bits after the addition of the segment base. Ending virtual address 
(last byte of a multiple byte operand or instruction) is truncated (wrapped) at the 4G-byte 
virtual boundary

• IA-32 64-bit Address Generation: The resultant 32-bit virtual address is converted into a 
64-bit virtual address by zero extending to 64-bits, this places all IA-32 instruction set me
references within the first 4G-bytes of the 64-bit virtual address space within virtual regio

If IA-32 code is utilizing a flat segmented model (segment bases are set to zero) then IA-32 a
IA-64 code can freely exchange pointers after a pointer has been zero extended to 64-bits. F
segmented IA-32 code, effective address pointers must be first transformed into a virtual add
before they are shared with IA-64 code. 

6.3.3 Self Modifying Code

While operating in the IA-32 instruction set, self modifying code and instruction cache cohere
(coherency with respect to the local processor’s data cache) is supported for all IA-32 progra
Self modifying code detection is directly supported at the same level of compatibility as the 
Pentium processor. Software must insert an IA-32 branch instruction between the store operati
and the instruction modified for the updated instruction bytes to be recognized. 

It is undefined whether the processor will detect a IA-32 self modifying code event for the 
following conditions; (1) PSR.dt is not the same value as PSR.it, or (2) there are virtual alias
different physical addresses between the instruction and data TLBs. To ensure self modifying
works correctly for IA-32 applications, the operating system must ensure that PSR.dt is the s
value as PSR.it and that there are no virtual aliases to different physical addresses between
instruction and data TLBs.

When switching from the IA-64 to the IA-32 instruction set, and while executing IA-64 
instructions, self modifying code and instruction cache coherency are not directly supported 
processor hardware. Specifically, if a modification is made to IA-32 instructions by IA-64 
instructions, IA-64 code must explicitly synchronize the instruction caches with the code sequ
defined in Section 4.4.6.2, “Memory Consistency” on page 4-24. Otherwise the modification may 
or may not be observed by subsequent IA-32 instructions.

When switching from the IA-32 to the IA-64 instruction sets, modification of the local instructi
cache contents by IA-32 instructions is detected by the processor hardware. The processor e
that the instruction cache is made coherent with respect to the modification and all subseque
IA-64 instruction fetches see the modification.
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6.3.4 Memory Ordering Interactions

IA-32 instructions are mapped into the IA-64 memory ordering model as follows:

• All IA-32 stores have release semantics.

• All IA-32 loads have acquire semantics.

• All IA-32 read-modify-write or lock instructions have release and acquire semantics (fully 
fenced).

Instruction set transitions do not automatically fence memory data references. To ensure pro
ordering software needs to take into account the following ordering rules:

IA-64 to IA-32 Transitions

• All data dependencies are honored, IA-32 loads see the results of all prior IA-64 stores.

• IA-32 stores (release) can not pass any prior IA-64 load or store.

• IA-32 loads (acquire) can pass prior IA-64 unordered loads or any prior IA-64 store to a 
different address. IA-64 software can prevent IA-32 loads from passing prior IA-64 loads
stores by issuing an acquire operation (or mf) before the instruction set transition.

IA-32 to IA-64 Transitions

• All data dependencies are honored, IA-64 loads see the results of all prior IA-32 stores.

• IA-64 stores or loads can not pass prior IA-32 loads (acquire).

• IA-64 unordered stores or any IA-64 load can pass prior IA-32 stores (release) to a different 
address. IA-64 software can prevent IA-64 loads and stores from passing prior IA-32 stor
issuing a release operation (or mf) after the instruction set transition.

6.4 IA-32 Usage of IA-64 Registers

This section lists software considerations for the IA-64 general and floating-point registers, an
ALAT when interacting with IA-32 code. 

6.4.1 IA-64 Register Stack Engine

Software must ensure that all dirty registers in the register stack have been flushed to the ba
store using a flushrs instruction before starting IA-32 execution either via the br.ia or rfi. 
Any dirty registers left in the current and prior register stack frames are left in an undefined s
Software can not rely on the value of these registers across an instruction set transition.

Once IA-32 instruction set execution is entered, the RSE is effectively disabled, regardless o
RSE control register enabling conditions.

After exiting the IA-32 instruction set due to a jmpe instruction or interruption, all stacked register
are marked as invalid and the number of clean registers is set to zero.
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6.4.2 IA-64 ALAT

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software cannot rely on 
ALAT state values being preserved across an instruction set transition. On entry to IA-32 code, 
existing entries in the ALAT are ignored. For details on ALAT, refer to Section 4.4.5.2, “Data 
Speculation and Instructions” on page 4-17.

6.4.3 IA-64 NaT/NaTVal Response for IA-32 Instructions

If IA-64 code sets a NaT condition in the integer registers or a NaTVal condition in a floating-p
register, MMX technology register, or Streaming SIMD Extension register before switching to
IA-32 instruction set the following conditions can arise:

• When the IA-32 instruction set is entered, IA-64 NaT values must not be contained in an
register defined to contain IA-32 state, otherwise processor operation is model specific a
undefined. Processors may generate a NaT Register Consumption Abort on any IA-32 
instruction at any time (including the first IA-32 instruction) for all IA-32 integer, MMX, SS
or FP instructions regardless of whether not that instruction directly (or indirectly) referen
register containing a NaT. NaT Register Consumption aborts encountered during IA-32 
execution may terminate IA-32 instructions in the middle of execution with architectural s
already modified.

• IA-64 floating-point NaTVal values must not be propagated into IA-32 floating-point 
instructions, otherwise processor operation is model specific and undefined. Processors
convert floating-point register(s) containing NaTVal to a SNAN (during entry to the IA-32
instruction set or on a consuming IA-32 floating-point instruction). Dependent IA-32 
floating-point instructions that directly or indirectly consume a propagated NaTVal registe
will either propagate the NaTVal indication or generate an IA-32_Exception (FPError Inv
Operand) fault. Whether a processor generates the fault or propagates the NaTVal is mo
specific. In no case will the processor allow a NaTVal register to be used without either 
propagating the NaTVal or generating an IA-32_Exception (FPError Invalid Operand) fau

Note: It is not possible for IA-32 code to read a NaTVal from a memory location with an
IA-32 floating-point load instruction since a NatVal cannot be expressed by a 80
double extended precision number. It is highly recommended that floating-point 
ues be passed on the memory stack per typical IA-32 calling conventions to avo
problems with NatVal and IA-64 denormals.

• IA-32 Streaming SIMD Extension instructions that directly or indirectly consume a registe
containing a NaTVal encoding, will ignore the NaTVal encoding and interpret the register
mantissa field as a legal data value.

• IA-32 MMX technology instructions that directly or indirectly consume a register containin
NaTVal encoding, will ignore the NaTVal encoding and interpret the register’s mantissa f
as a legal data value.

Software should not rely on the behavior of NaT or NaTVal during IA-32 instruction execution
propagate NaT or NaTVal into IA-32 instructions. 
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About the IA-64 Optimization Guide 7

The second portion of this document explains in detail optimization techniques associated with the 
IA-64 instruction set. It is intended for those interested in furthering their understanding of IA-64 
application architecture features and optimization techniques that benefit application performance. 
Intel and the industry are developing compilers to take advantage of these techniques. Application 
developers are not advised to use this as a guide to IA-64 assembly language programming. 

Note: To demonstrate techniques, this guide contains code examples that are not targeted 
towards a specific IA-64 processor, but rather a hypothetical implementation. For these 
code examples, ALU operations are assumed to take one cycle and loads take two cycles 
to return from first level cache and that there are two load/store execution units and four 
ALUs. Other latencies and execution unit details are described as needed in the text. This 
guide will refer to this model as the “generic” implementation.

7.1 Overview of the IA-64 Optimization Guide

Chapter 8, “Introduction to IA-64 Programming”. Provides an overview of the IA-64 application 
programming environment.

Chapter 9, “Memory Reference”. Discusses features and optimizations related to control and d
speculation.

Chapter 10, “Predication, Control Flow, and Instruction Stream”. Describes optimization features 
related to predication, control flow, and branch hints.

Chapter 11, “Software Pipelining and Loop Support”. Provides a detailed discussion on optimizin
loops through use of software pipelining.

Chapter 12, “Floating-point Applications”. Discusses current performance limitations in floating
point applications and IA-64 features that address these limitations.
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Introduction to IA-64 Programming 8

8.1 Overview

The IA-64 instruction set is designed to allow the compiler to communicate information to the 
processor to manage resource characteristics such as instruction latency, issue width, and functional 
unit assignment. Although such resources can be statically scheduled, IA-64 does not require that 
code be written for a specific microarchitecture implementation in order to be functional.

IA-64 includes a complete instruction set with new features designed to: 

• Increase instruction-level parallelism (ILP).

• Better manage memory latencies.

• Improve branch handling and management of branch resources.

• Reduce procedure call overhead.

IA-64 also enables high floating-point performance and provides direct support for multimedia 
applications.

Complete descriptions of the syntax and semantics of IA-64 instructions can be found in Part 
I: IA-64 Instruction Set Descriptions in Volume 3. Though this chapter provides a high level 
introduction to application level IA-64 programming, it assumes prior experience with assembly 
language programming as well as some familiarity with the IA-64 application architecture. 
Optimization is explored in other chapters of this guide.

8.2 Registers

IA-64 architecture defines 128 general purpose registers, 128 floating-point registers, 64 predicate 
registers, and up to 128 special purpose registers. The large number of architectural registers in 
IA-64 enable multiple computations to be performed without having to frequently spill and fill 
intermediate data to memory.

There are 128, 64-bit general purpose registers (r0-r127) that are used to hold values for 
integer and multimedia computations. Each of the 128 registers has one additional NaT (Not a 
Thing) bit which is used to indicate whether the value stored in the register is valid. Execution of 
IA-64 speculative instructions can result in a register’s NaT bit being set. Register r0 is read-only 
and contains a value of zero (0). Attempting to write to r0 will cause a fault.

There are 128, 82-bit floating-point registers (f0-f127) that are used for floating-point 
computations. The first two registers, f0 and f1, are read-only and read as +0.0 and +1.0, 
respectively. Instructions that write to f0 or f1 will fault.

There are 64, one-bit predicate registers (p0-p63) that control conditional execution of 
instructions and conditional branches. The first register, p0, is read-only and always reads true (1)
The results of instructions that write to p0 are discarded.
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There are 8, 64-bit branch registers (b0-b7) that are used to specify the target addresses of 
indirect branches. 

There is space for up to 128 application registers (ar0-ar127) that support various functions. 
Many of these register slots are reserved for future use. Some application registers have assembler 
aliases. For example, ar66 is the Epilogue Counter and is called ar.ec.

The instruction pointer is a 64-bit register that points to the currently executing instruction 
bundle.

8.3 Using IA-64 Instructions

IA-64 instructions are grouped into 128-bit bundles of three instructions. Each instruction occupies 
the first, second, or third slot of a bundle.   Instruction format, expression of parallelism, and bundle 
specification are described below.

8.3.1 Format

A basic IA-64 instruction has the following syntax:

[qp] mnemonic[.comp]   dest=srcs

Where:

qp Specifies a qualifying predicate register. The value of the qualifying predicate 
determines whether the results of the instruction are committed in hardware or 
discarded. When the value of the predicate register is true (1), the instruction 
executes, its results are committed, and any exceptions that occur are handled as 
usual. When the value is false (0), the results are not committed and no exceptions 
are raised. Most IA-64 instructions can be accompanied by a qualifying predicate.

mnemonic Specifies a name that uniquely identifies an IA-64 instruction.

comp Specifies one or more instruction completers. Completers indicate optional 
variations on a base instruction mnemonic. Completers follow the mnemonic and 
are separated by periods.

dest Represents the destination operand(s), which is typically the result value(s) 
produced by an instruction.

srcs Represents the source operands. Most IA-64 instructions have at least two input 
source operands.

8.3.2 Expressing Parallelism

IA-64 requires the compiler or assembly writer to explicitly indicate groups of instructions, called 
instruction groups, that have no register read after write (RAW) or write after write (WAW) register 
dependencies. Instruction groups are delimited by stops in the assembly source code. Since 
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instruction groups have no RAW or WAW register dependencies, they can be issued without 
hardware checks for register dependencies between instructions. Both of the examples below show 
two instruction groups separated by stops (indicated by double semicolons):

ld8 r1=[r5] ;;// First group

add r3=r1,r4 // Second group

A more complex example with multiple register flow dependencies is shown below:
ld8 r1=[r5] // First group

sub r6=r8,r9 ;;// First group

add r3=r1,r4 // Second group

st8 [r6]=r12 // Second group

All instructions in a single instruction group may not necessarily issue in parallel because specific 
IA-64 implementations may not have sufficient resources to issue all instructions in an instruction 
group.

8.3.3 Bundles and Templates

In assembly code, each 128-bit bundle is enclosed in curly braces and contains a template 
specification and three instructions. Thus, a stop may be specified at the end of any bundle or in the 
middle of a bundle by using one of two special template types that implicitly include mid-bundle 
stops.

Each instruction in a bundle is 41-bits long. Five other bits are used by a template-type 
specification. Bundle templates enable IA-64 processors to dispatch instructions with simple 
instruction decoding, and stops enable explicit specification of parallelism.

There are five IA-64 slot types (M, I, F, B, and L), six IA-64 instruction types (M, I, A, F, B, L), and 
12 basic template types (MII, MI_I, MLX, MMI, M_MI, MFI, MMF, MIB, MBB, BBB, MMB, 
MFB). Each basic template type has two versions: one with a stop after the third slot and one 
without. Instructions must be placed in slots corresponding to their instruction types based on the 
template specification, except for A-type instructions that can go in either I or M slots. For 
example, a template specification of .MII means that of the three instructions in a bundle, the first 
is a memory (M) or A-type instruction, and the next two are ALU integer (I) or A-type instructions:
{ .mii

ld4  r28=[r8] // Load a 4-byte value

add  r9=2,r1 // 2+r1 and put in r9

add  r30=1,r1 // 1+r1 and put in r30

}

For readability, most code examples in this book do not specify templates or braces.

Note: Bundle boundaries have no direct correlation with instruction group boundaries as instruc-
tion groups can extend over an arbitrary number of bundles. Instruction groups begin and 
end where stops are set in assembly code, and dynamically whenever a branch is taken or 
a stop is encountered.
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8.4 Memory Access and Speculation

IA-64 provides memory access only through register load and store instructions and special 
semaphore instructions. IA-64 also provides extensive support for hiding memory latency via 
programmer-controlled speculation.

8.4.1 Functionality

Data and instructions are referenced by 64-bit addresses. Instructions are stored in memory in little 
endian byte order, in which the least significant byte appears in the lowest addressed byte of a 
memory location. For data, modes for both big and little endian byte order are supported and can be 
controlled by a bit in the User Mask Register.

Integer loads of one, two, and four bytes are zero-extended, since all 64 bits of each register are 
always written. Integer stores write one, two, four, or eight bytes of registers to memory as 
specified.

8.4.2 Speculation

Speculation allows a programmer to break data or control dependencies that would normally limit 
code motion. The two kinds of speculation are called control speculation and data speculation. This 
section summarizes IA-64 speculation. See Chapter 9, “Memory Reference” for more detailed 
descriptions of speculative instruction behavior and application.

8.4.3 Control Speculation

Control speculation allows loads and their dependent uses to be safely moved above branch
Support for this is enabled by special NaT bits that are attached to integer registers and by s
NatVal values for floating-point registers. When a speculative load causes an exception, it is
immediately raised. Instead, the NaT bit is set on the destination register (or NatVal is written
the floating-point register). Subsequent speculative instructions that use a register with a set
bit propagate the setting until a non-speculative instruction checks for or raises the deferred 
exception.

For example, in the absence of other information, the compiler for a typical RISC architectur
cannot safely move the load above the branch in the sequence below:
(p1) br.cond.dptk L1 // Cycle 0

     ld8 r3=[r5] ;; // Cycle 1

     shr r7=r3,r87 // Cycle 3

Supposing that the latency of a load is 2 cycles, the shift right (shr) instruction will stall for 1.  
However, by using the speculative loads and checks provided in IA-64, two cycles can be sa
rewriting the above code as shown below:

 ld8.s r3=[r5] // Earlier cycle

 // Other instructions
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(p1) br.cond.dptk L1 ;; // Cycle 0

     chk.s r3,recovery // Cycle 1

     shr r7=r3,r87  // Cycle 1

This code assumes r5 is ready when accessed and that there are sufficient instructions to fill the 
latency between the ld8.s and the chk.s.

8.4.4 Data Speculation

Data speculation allows loads to be moved above possibly conflicting memory references. 
Advanced loads exclusively refer to data speculative loads. Review the order of loads and stores in 
this IA-64 assembly sequence:

st8 [r55]=r45 // Cycle 0

ld8 r3=[r5] ;;// Cycle 0

shr r7=r3,r87 // Cycle 2

IA-64 allows the programmer to move the load above the store even if it is not known whether the 
load and the store reference overlapping memory locations. This is accomplished using special 
advanced load and check instructions:

ld8.a r3=[r5] // Advanced load

// Other instructions

st8 [r55]=r45 // Cycle 0

ld8.c r3=[r5] // Cycle 0 - check

shr r7=r3,r87 // Cycle 0

Note: The shr instruction in this schedule could issue in cycle 0 if there were no conflicts 
between the advanced load and intervening stores. If there were a conflict, the check load 
instruction (ld8.c) would detect the conflict and reissue the load. 

8.5 Predication

Predication is the conditional execution of an instruction based on a qualifying predicate. A 
qualifying predicate is a predicate register whose value determines whether the processor commits 
the results computed by an instruction.

The values of predicate registers are set by the results of instructions such as compare (cmp) and 
test bit (tbit).  When the value of a qualifying predicate associated with an instruction is true (1), 
the processor executes the instruction, and instruction results are committed. When the value is 
false (0), the processor discards any results and raises no exceptions. Consider the following 
C code:

if (a) {

    b = c + d;

}

if (e) {

    h = i + j;

}
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This code can be implemented in IA-64 using qualifying predicates so that branches are removed. 
The IA-64 pseudo-code shown below implements the C expressions without branches:

cmp.ne  p1,p2=a,r0 // p1 <- a != 0

cmp.ne  p3,p4=e,r0 ;;// p3 <- e != 0

(p1)add b=c,d // If a != 0 then add

(p3)sub h=i,j // If e != 0 then sub

See Chapter 10, “Predication, Control Flow, and Instruction Stream” for detailed discussion of 
predication. There are a few special cases where predicated instructions read or write archit
resources regardless of their qualifying predicate.

8.6 IA-64 Support for Procedure Calls

Calling conventions normally require callee and caller saved registers which can incur signifi
overhead during procedure calls and returns. To address this problem, a subset of the IA-64 g
registers are organized as a logically infinite set of stack frames that are allocated from a finit
of physical registers.

8.6.1 Stacked Registers

Registers r0 through r31 are called global or static registers and are not part of the stacked 
registers. The stacked registers are numbered r32 up to a user-configurable maximum of r127.

A called procedure specifies the size of its new stack frame using the alloc instruction. The 
procedure can use this instruction to allocate up to 96 registers per frame shared amongst in
output, and local values. When a call is made, the output registers of the calling procedure a
overlapped with the input registers of the called procedure, thus allowing parameters to be p
with no register copying or spilling.

The hardware renames physical registers so that the stacked registers are always reference
procedure starting at r32.

8.6.2 Register Stack Engine

Management of the register stack is handled by a hardware mechanism called the Register 
Engine (RSE). The RSE moves the contents of physical registers between the general regis
and memory without explicit program intervention. This provides a programming model that l
like an unlimited physical register stack to compilers; however, saving and restoring of registe
the RSE may be costly, so compilers should still attempt to minimize register usage.
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8.7 Branches and Hints

Since branches have a major impact on program performance, IA-64 includes features to improve 
their performance by:

• Using predication to reduce the number of branches in the code. This improves instruction 
fetching because there are fewer control flow changes, decreases the number of branch 
mispredicts since there are fewer branches, and it increases the branch prediction hit rates since 
there is less competition for prediction resources.

• Providing software hints for branches to improve hardware use of prediction and prefetching 
resources.

• Supplying explicit support for software pipelining of loops and exit prediction of counted 
loops.

8.7.1 Branch Instructions

Branching in IA-64 is largely expressed the same way as on other microprocessors. The major 
difference is that branch triggers are controlled by predicates rather than conditions encoded in 
branch instructions. IA-64 also provides a rich set of hints to control branch prediction strategy, 
prefetching, and specific branch types like loops, exits, and branches associated with software 
pipelining. Targets for indirect branches are placed in branch registers prior to branch instructions.

8.7.2 Loops and Software Pipelining

Compilers sometimes try to improve the performance of loops by using unrolling.   However, 
unrolling is not effective on all loops for the following reasons:

• Unrolling may not fully exploit the parallelism available.

• Unrolling is tailored for a statically defined number of loop iterations.

• Unrolling can increase code size.

To maintain the advantages of loop unrolling while overcoming these limitations, IA-64 provides 
architectural support for software pipelining. Software pipelining enables the compiler to interleave 
the execution of several loop iterations without having to unroll a loop. Software pipelining in 
IA-64 is performed using:

• Loop-branch instructions.

• LC and EC application registers.

• Rotating registers and loop stage predicates.

• Branch hints that can assign a special prediction mechanism to important branches.

In addition to software pipelined while and counted loops, IA-64 provides particular support for 
simple counted loops using the br.cloop instruction. The cloop branch instruction uses the 
64-bit Loop Count (LC) application register rather than a qualifying predicate to determine the 
branch exit condition. 

For a complete discussion of software pipelining support in IA-64, see Chapter 11, “Software 
Pipelining and Loop Support”.
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8.7.3 Rotating Registers

Rotating registers enable succinct implementation of software pipelining with predication.    
Rotating registers are rotated by one register position each time one of the special loop branches is 
executed. Thus, after one rotation, the content of register X will be found in register X+1 and the 
value of the highest numbered rotating register will be found in r32. The size of the rotating region 
of general registers can be any multiple of 8 and is selected by a field in the alloc instruction. The 
predicate and floating-point registers can also be rotated but the number of rotating registers is not 
programmable: predicate registers p16 through p63 are rotated, and floating-point registers f32 
through f127 are rotated.

8.8 Summary

IA-64 provides features that reduce the effects of traditional microarchitectural performance 
barriers by enabling:

• Improved ILP with a large number of registers and software scheduling of instruction groups 
and bundles.

• Better branch handling through predication.

• Reduced overhead for procedure calls through the register stack mechanism.

• Streamlined loop handling through hardware support of software pipelined loops.

• Support for hiding memory latency using speculation.
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Memory Reference 9

9.1 Overview

Memory latency is a major factor in determining the performance of integer applications. In order 
to help reduce the effects of memory latency, IA-64 explicitly supports software pipelining, large 
register files, and compiler-controlled speculation. This chapter discusses features and 
optimizations related to compiler-controlled speculation. See Chapter 11, “Software Pipelining and
Loop Support” for a complete description of how to use software pipelining.

The early sections of this chapter review non-speculative load and store in IA-64 and genera
concepts and terminology related to data dependencies. The concept of speculation is then 
introduced, followed by discussions and examples of how speculation is used in IA-64. The 
remainder of this chapter describes several important optimizations related to memory acces
instruction scheduling.

9.2 Non-speculative Memory References

IA-64 supports non-speculative loads and stores, as well as explicit memory hint instructions

9.2.1 Stores to Memory

Integer store instructions in IA-64 can write either 1, 2, 4, or 8 bytes and 4, 8, or 10 bytes for
floating-point stores. For example, a st4 instruction will write the first four bytes of a register to 
memory.

Although IA-64 uses a little endian memory byte order by default, software can change the b
order by setting the big endian (be) bit of the user mask (UM).

9.2.2 Loads from Memory

Integer load instructions in IA-64 can read either 1, 2, 4, or 8 bytes from memory depending o
type of load issued. Loads of 1, 2, or 4 bytes of data are zero-extended to 64-bits prior to bei
written into their target registers.

Although loads are provided for various data types, the basic IA-64 data type is the quadwor
(8 bytes). Apart from a few exceptions, all integer operations are on quadword data. This can
particularly important when dealing with signed integers and 32-bit addresses, or any address
are shorter than 64 bits.
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9.2.3 Data Prefetch Hint

The lfetch instruction requests that lines be moved between different levels of the memory 
hierarchy. Like all hint instructions in IA-64, lfetch has no effect on program correctness, and 
any microarchitecture implementation of IA-64 may choose to ignore it.

9.3 Instruction Dependencies

Data and control dependencies are fundamental factors in optimization and instruction scheduling. 
Such dependencies can prevent a compiler from scheduling instructions in an order that would 
yield shorter critical paths and better resource usage since they restrict the placement of instructions 
relative to other instructions on which they are dependent.

In general, memory references are the major source of control and data dependencies that cannot be 
broken due to getting a wrong answer (if a data dependency is broken) or raising a fault that should 
not be raised (if a control dependency is broken). This section describes:

• Background material on memory reference dependencies.

• Descriptions of how dependencies constrain code scheduling on traditional architectures.

Section 9.4 describes IA-64 memory reference features that increase the number of dependencies 
that can be removed by a compiler.

9.3.1 Control Dependencies

An instruction is control dependent on a branch if the direction taken by the branch affects whether 
the instruction is executed. In the code below, the load instruction is control dependent on the 
branch:
(p1)br.cond some_label

ld8 r4=[r5]

The following sections provide overviews of control dependencies and their effects on 
optimization.

9.3.1.1 Instruction Scheduling and Control Dependencies

The code below contains a control dependency at the branch instruction:

add r7=r6,1 // Cycle 0

add r13=r25,r27

cmp.eq p1,p2=r12,r23

(p1)br.cond  some_label ;;

ld4 r2=[r3] ;; // Cycle 1

sub r4=r2,r11 // Cycle 3
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A compiler cannot safely move the load instruction before the branch unless it can guarantee that 
the moved load will not cause a fatal program fault or otherwise corrupt program state. Since the 
load cannot be moved upward, the schedule cannot be improved using normal code motion. 

Thus, the branch creates a barrier to instructions whose execution depends upon it. In Figure 9-1, 
the load in block B cannot be moved up because of a conditional branch at the end of block A.

9.3.2 Data Dependencies

A data dependency exists between an instruction that accesses a register or memory location and 
another instruction that alters the same register or location. 

9.3.2.1 Basics of Data Dependency

The following basic terms describe data dependencies between instructions:

Write-after-write (WAW) A dependency between two instructions that write to the same register or 
memory location.

Write-after-read (WAR) A dependency between two instructions in which an instruction reads a 
register or memory location that a subsequent instruction writes.

Read-after-write (RAW) A dependency between two instructions in which an instruction writes to 
a register or memory location that is read by a subsequent instruction.

Ambiguous memory dependencies
Dependencies between a load and a store, or between two stores where it 
cannot be determined if the involved instructions access overlapping 
memory locations. Ambiguous memory references include possible 
WAW, WAR, or RAW dependencies.

Independent memory references
References by two or more memory instructions that are known not to 
have conflicting memory accesses.

Figure 9-1. Control Dependency Preventing Code Motion
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block B
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Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 9-3



9.3.2.2 Data Dependency in IA-64

The IA-64 architecture requires the programmer to insert stops between RAW and WAW register 
dependencies to ensure correct code results. For example, in the code below, the add instruction 
computes a value in r4 needed by the sub instruction:

add r4=r5,r6 ;;// Instruction group 1

sub r7=r4,r9 // Instruction group 2

The stop after the add instruction terminates one instruction group so that the sub instruction can 
legally read r4.

On the other hand, IA-64 implementations are architecturally required to observe memory-based 
dependencies within an instruction group. In a single instruction group, a program can contain 
memory-based data dependent instructions and hardware will produce the same results as if the 
instructions were executed sequentially and in program order. The pseudo-code below 
demonstrates a memory dependency that will be observed by hardware:

mov r16=1

mov r17=2 ;;

st8 [r15]=r16 

st8 [r14]=r17 ;;

If the address in r14 is equal to the address in r15, uni-processor hardware guarantees that the 
memory location will contain the value in r17 (2). The following RAW dependency is also legal in 
the same instruction group even if software is unable to determine if r1 and r2 overlap:

st8 [r1]=x

ld4 y=[r2]

9.3.2.3 Instruction Scheduling and Data Dependencies

The dependency rules are sufficient to generate correct code, but to generate efficient code, the 
compiler must take into account the latencies of instructions. For example, the generic 
implementation has a two cycle latency to the first level data cache. In the code below, the stop 
maintains correct ordering, but a use of r2 is scheduled only one cycle after its load:

add r7=r6,1 // Cycle 0

add r13=r25,r27

cmp.eq p1,p2=r12,r23 ;;

add r11=r13,r29 // Cycle 1

ld4 r2=[r3] ;;

sub r4=r2,r11 // Cycle 3
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Since the latency of a load is two cycles, the sub instruction will stall until cycle three.  To avoid a 
stall, the compiler can move the load earlier in the schedule so that the machine can perform useful 
work each cycle:

ld4 r2=[r3] // Cycle 0

add r7=r6,1

add r13=r25,r27

cmp.eq p1,p2=r12,r23 ;;

add r11=r13,r29 ;; // Cycle 1

sub r4=r2,r11 // Cycle 2

In this code, there are enough independent instructions to move the load earlier in the schedule to 
make better use of the functional units and reduce execution time by one cycle.

Now suppose that the original code sequence contained an ambiguous memory dependency 
between a store instruction and the load instruction:

add r7=r6,1 // Cycle 0

add r13=r25,r27

cmp.ne p1,p2=r12,r23 ;;

st4 [r29]=r13 // Cycle 1

ld4 r2=[r3] ;;

sub r4=r2,r11 // Cycle 3

In this case, the load cannot be moved past the store due to the memory dependency. Stores will 
cause data dependencies if they cannot be disambiguated from loads or other stores.

In the absence of other architectural support, stores can prevent moving loads and their dependent 
instructions:  The following C language statements could not be reordered unless ptr1 and ptr2 
were statically known to point to independent memory locations:

*ptr1 = 6;

x = *ptr2;

9.4 Using IA-64 Speculation to Overcome Dependencies

Both data and control dependencies constrain optimization of program code. IA-64 provides 
support for two basic techniques used to overcome dependencies:

Data speculation Allows a load and possibly its uses to be moved across ambiguous 
memory writes.  

Control speculation Allows a load and possibly its uses to be moved across a branch on which 
the load is control dependent.

These techniques are used to hide load latencies and reduce execution time.  
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9.4.1 IA-64 Speculation Model

The limitations imposed by dependencies on instruction scheduling can be solved by separating the 
loading of data  from the exception handling or the acknowledgment of data conflicts.  IA-64 
supports special speculative versions of instructions to accomplish this:

• Control speculative load instructions defer exceptions.

• Data speculative load instructions save address information.

• Special check instructions check for exceptions or data conflicts.

An IA-64 speculative load can be moved above a dependency barrier (shown as a dashed line) as 
shown in Figure 9-2.

The check detects a deferred exception or a conflict with an intervening store and provides a 
mechanism to recover from failed speculation.  With this support, speculative loads and their uses 
can be scheduled earlier than non-speculative instructions.  As a result, the memory latencies of 
these loads can be hidden more easily than for non-speculative loads.

9.4.2 Using IA-64 Data Speculation

Data speculation in IA-64 uses a special load instruction (ld.a) called an advanced load 
instruction and an associated check instruction (chk.a or ld.c) to validate data-speculated 
results.

When the ld.a instruction is executed, an entry is allocated in a hardware structure called the 
Advanced Load Address Table (ALAT).  The ALAT is indexed by physical register number and 
records the load address, the type of the load, and the size of the load.

A check instruction must be executed before the result of an advanced load can be used by any 
non-speculative instruction.  The check instruction must specify the same register number as the 
corresponding advanced load.

When a check instruction is executed, the ALAT is searched for an entry with the same target 
physical register number and type.   If an entry is found, execution continues normally with the next 
instruction.

Figure 9-2. IA-64 Speculation Model
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If no matching entry is found, the speculative results need to be recomputed:

• Use a chk.a if a load and some of its uses are speculated.  The chk.a jumps to 
compiler-generated recovery code to re-execute the load and dependent instructions.

• Use a ld.c if no uses of the load are speculated.  The ld.c reissues the load.

Entries are removed from the ALAT due to:

• Stores that write to addresses overlapping with ALAT entries.

• Other advanced loads that target the same physical registers as ALAT entries.

• Implementation-defined hardware or operating system conditions needed to maintain 
correctness.

• Limitations of the capacity, associativity, and matching algorithm used for a given 
implementation of the ALAT.

9.4.2.1 Advanced Load Example

Advanced loads can reduce the critical path of a sequence of instructions.  In the code below, a load 
and store may access conflicting memory addresses:

st8 [r4]=r12 // Cycle 0: ambiguous store

ld8 r6=[r8] ;; // Cycle 0: load to advance

add r5=r6,r7 ;; // Cycle 2

st8 [r18]=r5 // Cycle 3

On the generic machine model, the code above would execute in four cycles, but it can be rewritten 
using an advanced load and check:

ld8.a r6=[r8] // Cycle -2 or earlier

// Other instructions

st8 [r4]=r12 // Cycle 0: ambiguous store

ld8.c r6=[r8] // Cycle 0: check load

add r5=r6,r7 ;; // Cycle 0 

st8 [r18]=r5 // Cycle 1

The original load has been turned into a check load, and an advanced load has been scheduled 
above the ambiguous store.  If the speculation succeeds, the execution time of the remaining 
non-speculative code is reduced because the latency of the advanced load is hidden.

9.4.2.2 Recovery Code Example

Consider again the non-speculative code from the last section:
st8 [r4]=r12 // Cycle 0: ambiguous store

ld8 r6=[r8] ;; // Cycle 0: load to advance

add r5=r6,r7 ;; // Cycle 2

st8 [r18]=r5 // Cycle 3
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The compiler could move up not only the load, but also one or more of its uses.  This 
transformation uses a chk.a rather than a ld.c instruction to validate the advanced load.  Using 
the same example code sequence but now advancing the add as well as the ld8 results in:

ld8.a r6=[r8] ;;// Cycle -3

// other instructions

add  r5=r6,r7 // Cycle -1: add that uses r6

// Other instructions

st8  [r4]=r12 // Cycle 0

chk.a r6,recover// Cycle 0: check

back: // Return point from jump to recover

st8  [r18]=r5 // Cycle 0

Recovery code must also be generated:
recover:

ld8 r6=[r8] ;;// Reload r6 from [r8]

add r5=r6,r7 // Re-execute the add 

br back // Jump back to main code

If the speculation fails, the check instruction branches to the label recover where the speculated 
code is re-executed.  If the speculation succeeds, execution time of the transformed code is three 
cycles less than the original code. 

9.4.2.3 Terminology Review

Terms related to speculation, such as advanced loads and check loads, have well-defined meanings 
in IA-64.  The terms below were introduced in the preceding sections:

Data speculative load A speculative load that is statically scheduled prior to one or more stores 
upon which it may be dependent.  The data speculative load instruction 
is ld.a.

Advanced load A data speculative load.

Check load An instruction that checks whether a corresponding advanced load needs 
to be re-executed and does so if required.  The check load instruction is 
ld.c.

Advanced load check An instruction that takes a register number and an offset to a set of 
compiler-generated instructions to re-execute speculated instructions 
when necessary.  The advanced load check instruction is chk.a.

Recovery code Program code that is branched to by a speculation check. Recovery code 
repeats a load and chain of dependent instructions to recover from a 
speculation failure.
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9.4.3 Using Control Speculation in IA-64

The check to determine if control speculation was successful is similar to that for data speculation.

9.4.3.1 The NaT Bit

The Not A Thing (NaT) bit is an extra bit on each of the general registers.  A register NaT bit 
indicates whether the content of a register is valid.  If the NaT bit is set to one, the register contains 
a deferred exception token due to an earlier speculation fault.  In a floating-point register, the 
presence of a special value called the NaTVal signals a deferred exception.

During a control speculative load, the NaT bit on the destination register of the load may be set if 
an exception occurs and it is deferred. The exact set of events and exceptions that cause an 
exception to be deferred (thus causing the NaT bit to be set), depends in part upon operating system 
policy. When a speculative instruction reads a source register that has its NaT bit set, NaT bits of 
the target registers of that instruction are also set. That is, NaT bits are propagated through 
dependent computations. 

9.4.3.2 Control Speculation Example

When a control speculative load is scheduled, the compiler must insert a speculative check, 
chk.s, along all paths on which results of the speculative load are consumed.  If a non-speculative 
instruction (other than a chk.s) reads a register with its NaT bit set, a NaT consumption fault 
occurs, and the operating system will terminate the program.

The code sequence below illustrates a basic use of IA-64 control speculation:
(p1)br.cond some_label// Cycle 0

ld8 r1=[r5] ;; // Cycle 1

add r2=r1,r3 // Cycle 3

This code can be rewritten using a control speculative load and check. The check can be placed in 
the same basic block as the original load:

ld8.s r1=[r5] ;; // Cycle -2

// Other instructions

(p1)br.cond some_label// Cycle 0

chk.s r1,recovery// Cycle 0

add  r2=r1,r3 // Cycle 0

Until a speculation check is reached dynamically, the results of the control speculative chain of 
instructions cannot be stored to memory or otherwise accessed non-speculatively without the 
possibility of a fault.  If a speculation check is executed and the NaT bit on the checked register is 
set, the processor will branch to recovery code pointed to by the check instruction.

It is also possible to test for the presence of set NaT bits and NaTVals using the test NaT (tnat) 
and floating-point class (fclass) instructions.
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Although every speculative computation needs to be checked, this does not mean that every 
speculative load requires its own chk.s. Speculative checks can be optimized by taking advantage 
of the propagation of NaT bits through registers as described in Section 9.5.6.

9.4.3.3 Spills, Fills and the UNAT Register

Saving and restoring of registers that may have set NaT bits is enabled by st8.spill and 
ld8.fill instructions and the User NaT Collection application register (UNAT).

The “spill general register and NaT” instruction, st8.spill, saves eight bytes of a general 
register to memory and writes its NaT bit into the UNAT. Bits 8:3 of the memory address of th
store determine which UNAT bit is written with the register NaT value. The “fill general regist
instruction, ld8.fill, reads eight bytes from memory into a general register and sets the reg
NaT bit according to the value in the UNAT. Software is responsible for saving and restoring 
UNAT contents to ensure correct spilling and filling of NaT bits.

The corresponding floating-point instructions, stf.spill and ldf.fill, save and restore 
floating-point registers in floating-point register format without surfacing exceptions due to 
NaTVals.

9.4.3.4 Terminology Review

The terms below are related to control speculation:

Control speculative load A speculative load that is scheduled prior to an earlier controlling branch.  
References to “speculative loads” without qualifiers generally refer t
control speculative loads and not data speculative loads.  Loads usin
ld.s instruction are control speculative loads.

Speculation check An instruction that checks whether a speculative instruction has de
an exception.  Speculation check instructions include labels that poin
compiler-generated recovery code.  The speculation check instructio
chk.s.

Recovery code Code executed to recover from a speculation failure.  Control specu
recovery code is analogous to data speculative recovery code.

9.4.4 Combining Data and Control Speculation

A load that is both data and control speculative is called a speculative advanced load. The ld.sa 
instruction performs all the operations of both a speculative load and an advanced load. An ALAT 
entry will not be allocated if this type of load generates a deferred exception token, so an advanced 
load check instruction (chk.a) is sufficient to check for both interference from subsequent stores 
and for deferred exceptions.
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9.5 Optimization of Memory References

Speculation can increase parallelism and help to hide latency by enabling more code motion than 
can be performed on traditional architectures.  Speculation can increase the application of 
traditional loop optimizations such as invariant code motion and common subexpression 
elimination.  IA-64 also offers post-increment loads and stores that improve instruction throughput 
without increasing code size.

Memory reference optimization should take several factors into account including:

• Difference between the execution costs of speculative and non-speculative code.

• Code size.

• Interference probabilities and properties of the ALAT (for data speculation).

The remainder of this chapter discusses these factors and optimizations relating to memory 
accesses.

9.5.1 Speculation Considerations

The use of data speculation requires more attention than the use of control speculation.  In part this 
is due to the fact that one control speculative load cannot inadvertently cause another control 
speculative load to fail.  Such an effect is possible with data speculative loads since the ALAT has 
limited capacity and the replacement policy of ALAT entries is implementation dependent.   For 
example, if an advanced load is issued and there are no unused ALAT entries, the hardware may 
choose to invalidate an existing entry to make room for a new one.

Moreover, exceptions associated with control speculative calculations are uncommon in correct 
code since they are related to events such as page faults and TLB misses. However, excessive 
control speculation can be expensive as associated instructions fill issue slots. 

Although the static critical path of a program may be reduced by the use of data speculation, the 
following factors contribute to the benefit/dynamic cost of data speculation:

• The probability that an intervening store will interfere with an advanced load.

• The cost of recovering from a failed advanced load.

• The specific microarchitectural implementation of the ALAT: its size, associativity, and 
matching algorithm.

Determining interference probabilities can be difficult, but dynamic memory profiling can help to 
predict how often ambiguous loads and stores will conflict.

When using advanced loads, there should be case-by-case consideration as to whether advancing 
only a load and using a ld.c might be preferable to advancing both a load and its uses, which 
would require the use of the potentially more expensive chk.a.

Even when recovery code is not executed, its presence extends the lifetimes of registers used in 
data and control speculation, thus increasing register pressure and possibly the cost of register 
movement by the Register Stack Engine (RSE). See Section 9.5.3 for information on 
considerations for recovery code placement.
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9.5.2 Data Interference

Data references with low interference probabilities and high path probabilities can make the best 
use of data speculation.  In the pseudo-code below, assume the probabilities that the stores to *p1 
and *p2 conflict with var are independent.

*p1 = /* Prob interference = 0.30 */

. . .

*p2 = /* Prob interference = 0.40 */

. . .

    = var /* Load to be advanced */

If the compiler advances the load from var above the stores to pointers p1 and p2, then:
Prob that stores to p1 or p2 interfere with var

= 1.0 - (Prob p1 will not interfere with var * 

Prob p2 will not interfere with var)

= 1.0 - (0.70 * 0.60) 

= 0.58 

Given the interference probabilities above, there is a 58% probability at least one of p1 and p2 will 
interfere with a load from var if it is advanced above both of them.  A compiler can use traditional 
heuristics concerning data interference and interprocedural memory access information to estimate 
these probabilities.

When advancing loads past function calls, the following should be considered:

• If a called function has many stores in it, it is more likely that actual or aliased ALAT conflicts 
will occur.

• If other advanced loads are executed during the function call, it is possible that their physical 
register numbers will either be identical or conflict with ALAT entries allocated from calls in 
parent functions.

• If it is unknown whether a large number of advanced loads will be executed by the called 
routines, then the possibility that the capacity of that ALAT may be exceeded must be 
considered.

9.5.3 Optimizing Code Size

Part of the decision of when to speculate should involve consideration of any possible increases in 
code size.  Such consideration is not particular to speculation, but to any transformations that 
cause code to be duplicated, such as loop unrolling, procedure inlining, or tail duplication. 
Techniques to minimize code growth are discussed later in this section.

In general, control speculation increases the dynamic code size of a program since some of the 
speculated instructions are executed and their results are never used.  Recovery code associated 
with control speculation primarily contributes to the static size of the binary since it is likely to be 
placed out-of-line and not brought into cache until a speculative computation fails (uncommon for 
control speculation).

Data speculation has a similar effect on code size except that it is less likely to compute values that 
are never used since most non-control speculative data speculative loads will have their results 
checked. Also, since control speculative loads only fail in uncommon situations such as deferred 
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data related faults (depending on operating system configuration), while data speculative loads can 
fail due to ALAT conflicts, actual memory conflicts, or aliasing in the ALAT, the decision as to 
where to place recovery code for advanced loads is more difficult than for control speculation and 
should be based on the expected conflict rate for each load.

As a general rule, efficient compilers will attempt to minimize code growth related to speculation. 
As an example, moving a load above the join of two paths may require duplication of speculative 
code on every path. The flow graph depicted in Figure 9-3 and the explanation shows how this 
could arise.

If the compiler or programmer advanced the load up to block B from its original non-speculative 
position, all speculative code would need to be duplicated in both blocks B and C. This duplicated 
code might be able to occupy NOP slots that already exist. But if space for the code is not already 
available, it might be preferable to advance the load to block A since only one copy would be 
required in this case.

9.5.4 Using Post-increment Loads and Stores

Post-increment loads and stores can improve performance by combining two operations in a single 
instruction.  Although the text in this section mentions only post-increment loads, most of the 
information applies to stores as well.

Post-increment loads are issued on M-units and can increment their address register by either an 
immediate value or by the contents of a general register. The following pseudo-code that performs 
two loads:

ld8 r2=[r1]

add r1=1,r1 ;;

ld8 r3=[r1]

can be rewritten using a post-increment load:
ld8 r2=[r1],1 ;;

ld8 r3=[r1]

Figure 9-3. Minimizing Code Size During Speculation

block A

 

block B block C

st
ld
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Post-increment loads may not offer direct savings in dependeny path height, but they are important 
when calculating addresses that feed subsequent loads: 

• A post-increment load avoids code size expansion by combining two instructions into one.

• Adds can be issued on either I-units or M-units.  When a program combines an add with a load, 
an I-unit or M-unit resource remains available that otherwise would have been consumed.  
Thus, throughput of dependent adds and loads can be doubled by using post-increment loads.

A disadvantage of post-increment loads is that they create new dependencies between 
post-increment loads and the operations that use the post-increment values. In some cases, the 
compiler may wish to separate post-increment loads into their component instructions to improve 
the overall schedule. Alternatively, the compiler could wait until after instruction scheduling and 
then opportunistically find places where post-increment loads could be substituted for separate load 
and add instructions.

9.5.5 Loop Optimization

In cyclic code, speculation can extend the use of classical loop optimizations like invariant code 
motion.  Examine this pseudo-code:

while (cond) {

    c = a + b; // Probably loop invariant

    *ptr++ = c;// May point to a or b

}

The variables a and b are probably loop invariant; however, the compiler must assume the stores to 
*ptr will overwrite the values of a and b unless analysis can guarantee that this can never happen.  
The use of advanced loads and checks allows code that is likely to be invariant to be removed from 
a loop, even when a pointer cannot be disambiguated:

ld4.a r1 = [&a]

ld4.a r2 = [&b]

add r3 = r1,r2// Move computation out of loop

while (cond) {

   chk.a.nc r1, recover1

L1: chk.a.nc r2, recover2

L2: *p++ = r3

}

At the end of the module:
recover1: // Recover from failed load of a

ld4.a r1 = [&a]

add  r3 = r1, r2

br.sptk L1// Unconditional branch

recover2: // Recover from failed load of b

ld4.a r2 = [&b]

add  r3 = r1, r2

br.sptk L2// Unconditional branch

Using speculation in this loop hides the latency of the calculation of c whenever the speculated 
code is successful.
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Since checks have both a clear (clr) and no clear (nc) form, the programmer must decide which to 
use.  This example shows that when checks are moved out of loops, the no clear version should be 
used.  This is because the clear (clr) version will cause the corresponding ALAT entry to be 
removed (which would cause the next check to that register to fail).

9.5.6 Minimizing Check Code

Checks of speculative loads can sometimes be combined to reduce code size.  The propagation of 
NaT bits and NaTVals via speculative instructions can permit a single check of a speculative result 
to replace multiple intermediate checks.  The code below demonstrates this optimization potential:

ld4.s r1=[r10]// Speculatively load to r1

ld4.s r2=[r20]// Speculatively load to r2

add  r3=r1,r2;;// Add two speculative values

// Other instructions

chk.s r3,imm21// Check for NaT bit in r3

st4 [r30]=r1 // Store r1

st4 [r40]=r2 // Store r2

st4 [r50]=r3 // Store r3

Only the result register, r3, needs to be checked before stores of any of r1, r2, or r3.  If a NaT bit 
were set at the time of the control speculative loads of r1 or r2, the NaT bit would have been 
propagated to r3 from r1 or r2 via the add instruction.

Another way to reduce the amount of check code is to use control flow analysis to avoid issuing 
extra ld.c or ld.a instructions. For example, the compiler can schedule a single check where it 
is known to be reached by all copies of the advanced load. The portion of a flow graph shown in 
Figure 9-4 demonstrates where this technique might be applied.

A single check in the lowermost block shown for all of the advanced loads is correct if both of these 
conditions are met:

• The lowermost block post-dominates all of the blocks with advanced loads from location 
addr.

• The lowermost block precedes any uses of the advanced loads from addr.

Figure 9-4. Using a Single Check for Three Advanced Loads

ld.a ld.a

ld.a

*p1 = *p2 = *p3 =

ld.c

Advanced loads from addr
to the same register, R

Stores

Single load check of
register R
Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 9-15



ost 
9.6 Summary

The examples in this chapter show where IA-64 can take advantage of existing techniques like 
dynamic profiling and disambiguation.  Special IA-64 support allows implementation of 
speculation in common scenarios in which it would normally not be allowed.  Speculation, in turn, 
increases ILP by making greater code motion possible, thus enhancing traditional optimizations 
such as those involving loops.

Even though IA-64’s speculation model can be applied in many different situations, careful c
and benefit analysis is needed to insure best performance.
9-16 Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0



ions 

iction at 

logic 
 limited 
otal 

e 

are 
icted 
lly, 
Predication, Control Flow, and 
Instruction Stream 10

10.1 Overview

This chapter is divided into three sections that describe optimizations related to predication, control 
flow, and branch hints as follows:

• The predication section describes if-conversion, predicate usage, and code scheduling to 
reduce the affects of branching.

• The control flow optimization section describes optimizations that collapse and converge 
control flow by using parallel compares, multiway branches, and multiple register writers 
under predicate.

• The branch and prefetch hints section describes how hints are used to improve branch and 
prefetch performance.

10.2 Predication

Predication allows the compiler to convert control dependencies into data dependencies. This 
section describes several sources of branch-related performance considerations, followed by a 
summary of IA-64’s predication mechanism, followed by a series of descriptions of optimizat
and techniques based on predication.

10.2.1 Performance Costs of Branches

Branches can decrease application performance by consuming hardware resources for pred
execution time and by restricting instruction scheduling freedom during compilation.

10.2.1.1 Prediction Resources

Branch prediction resources include branch target buffers, branch prediction tables, and the 
used to control these resources.  The number of branches that can accurately be predicted is
by the size of the buffers on the processor, and such buffers tend to be small relative to the t
number of branches executed in a program.

This limitation means that branch intensive code may have a large portion of its execution tim
spent due to contention for prediction resources.  Furthermore, even though the size of the 
predictors is a primary factor in determining branch prediction performance, some branches 
best predicted with different types of predictors.  For example, some branches are best pred
statically while others are more suitably predicted dynamically.  Of those predicted dynamica
some are of greater importance than others, such as loop branches.
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Since the cost of a misprediction is generally proportional to pipeline length, good branch 
prediction is essential for processors with long instruction pipelines.  Thus, optimizing the use of 
prediction resources can significantly improve the overall performance of an application.

Suppose, for instance, that the conditional in the code below is mispredicted 30% of the time and 
branch mispredictions incur a ten cycle penalty.  On average, the mispredicted branch will add 
three cycles to each execution of the code sequence (30% * 10 cycles):

if (r1) 

r2 = r3 + r4;

else

r7 = r6 - r5;

Equivalent IA-64 code that has not been optimized is shown below.  It requires five instructions 
including two branches and executes in two cycles, not including potential misprediction or 
taken-branch penalty cycles:

 cmp.eq p1,p2=r1,r0 // Cycle 0

(p1) br.cond else_clause // Cycle 0

 add  r2=r3,r4 // Cycle 1

 br   end_if // Cycle 1

else_clause:

 sub  r7=r6,r5 // Cycle 1

end_if:

Using the information above, this code will take five cycles to execute on average even thought the 
critical path is only two cycles long  (2 cycles + (30% * 10 cycles) = 5).  If  the branch 
misprediction penalty could be eliminated (either by reducing contention for resources or by 
removing the branch itself), performance of the code sequence would improve by a factor of two.

10.2.1.2 Instruction Scheduling

Branches limit the ability of the compiler to move instructions that alter memory state or that can 
raise exceptions,  because instructions in a program are control dependent on all lexically enclosing 
branches. In addition to the control dependencies, compound conditionals can take several cycles to 
compute and may themselves require intermediate branches in languages like C that require 
short-circuit evaluation.

Control speculation is the primary mechanism used to perform global code motion for IA-64 
compilers.  However, when an instruction does not have a speculative form or the instruction could 
potentially corrupt memory state, control speculation may be insufficient to allow code motion.  
Thus, techniques that allow greater freedom in code motion or eliminate branches can improve the 
compiler’s ability to schedule instructions.

10.2.2 Predication in IA-64

Now that the performance implications of branching have been described, this section overv
predication – the primary IA-64 mechanism used by optimizations described in this section.

Almost all IA-64 instructions can be tagged with a guarding predicate.   If the value of the gua
predicate is false at execution time, then the predicated instruction’s architectural updates ar
suppressed, and the instruction behaves like a nop. If the predicate is true, then the instructi
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behaves as if it were unpredicated. There are a small number of instructions such as unconditional 
compares and floating-point square-root and reciprocal approximate instructions whose qualifying 
predicate do not operate as described above. See Part I: IA-64 Application Architecture Guide for 
additional information.

The following sequence shows a set of predicated instructions:
(p1) add r1=r2,r3

(p2) ld8 r5=[r7]

(p3) chk.s r4,recovery

To set the value of a predict register, IA-64 provides compare and test instructions such as those as 
shown below.

cmp.eq p1,p2=r5,r6

tbit p3,p4=r6,5

Additionally, a predicate almost always requires a stop to separate its producing instruction and its 
use:

cmp.eq p1,p2=r1,r2 ;;

(p1)add r1=r2,r3

The only exception to this rule involves an integer compare or test instruction that sets a predicate 
that is used as the condition for a subsequent branch instruction:

cmp.eq  p1,p2=r1,r2   // No stop required

(p1)br.cond some_target

10.2.3 Optimizing Program Performance using Predication

This section describes predication-related optimizations, their use, and basic performance analysis 
techniques.  Following are descriptions of optimizations including if-conversion, misprediction 
elimination, off-path predication, upward code motion,  and downward code motion.

10.2.3.1 Applying if-Conversion

One of the most important optimizations enabled by predication is the complete removal of 
branches from some program sequences.  Without predication, the pseudo-code below would 
require a branch instruction to conditionally jump around the if-block code:

if (r4) {

add  r1=r2,r3

ld8  r6=[r5]

}

Using predication, the sequence can be written without a branch:
cmp.ne p1,p0=r4,0 ;;// Set predicate reg

(p1)add r1=r2,r3

(p1)ld8 r6=[r5]

The process of predicating instructions in conditional blocks and removing branches is referred to 
as if-conversion.  Once if-conversion has been performed, instructions can be scheduled more 
freely because there are fewer branches to limit code motion, and there are fewer branches 
competing for issue slots.
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In addition to removing branches, this transformation will make dynamic instruction fetching more 
efficient since there are fewer possibilities for control flow changes.  Under more complex 
circumstances, several branches can be removed.  The following C code sequence:

if (r1)

r2 = r3 + r4;

else

r7 = r6 - r5;

can be rewritten in IA-64 assembler without branches as:
 cmp.nep1,p2 = r1,0 ;;

(p1) add r2 = r3,r4

(p2) sub r7 = r6,r5

Since instructions from opposite sides of the conditional are predicated with complementary 
predicates they are guaranteed not to conflict, hence the compiler has more freedom when 
scheduling to make the best use of hardware resources.  The compiler could also try to schedule 
these statements with earlier or later code since several branches and labels have been removed as 
part of if-conversion.

Since the branches have been removed, no branch misprediction is possible and there will be no 
pipeline bubbles due to taken branches.  Such effects are significant in many large applications, and 
these transformations can greatly reduce branch-induced stalls or flushes in the pipeline.

Thus, comparing the cost of the code above with the non-predicated version above shows that:

• Non-predicated code consumes:  2 cycles + (30% * 10 cycles) = 5 cycles.

• Predicated code consumes:  2 cycles.

In this case, predication saves an average of three cycles.

10.2.3.2 Off-path Predication

If a compiler has dynamic profile information, it is possible to form an instruction schedule based 
on the control flow path that is most likely to execute – this path is called the main trace.  In s
cases, execution paths not on the main trace are still executed frequently, and thus it may be
beneficial to use predication to minimize their critical paths as well.

The main trace of a flow graph is highlighted in Figure 10-1.  Although blocks A and B are not on
the main trace, suppose they are executed a significant number of times.

Figure 10-1. Flow Graph Illustrating Opportunities for Off-path Predication

block A

block B
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If some of the instructions in block A or block B can be included in the main trace without 
increasing its critical path, then techniques of upward code motion can be applied to reduce the 
critical path through blocks A and B when they are taken.  An example of how to use predication to 
implement upward code motion is given in the next section.

10.2.3.3 Upward Code Motion

When traditional control speculation is inadequate, it may still be possible to predicate an 
instruction and move it up or down in the schedule to reduce dependency height.  This is possible 
because predicating an instruction replaces a control dependency with a data dependency.  If the 
data dependency is less constraining than the control dependency, such a transformation may 
improve the instruction schedule.

Given the IA-64 assembly sequence below, the store instruction cannot be moved above the 
enclosing conditional instruction because it could cause an address fault or other exception, 
depending upon the branch direction:
(p1)br.cond some_label // Cycle 0

st4 [r34] = r23 // Cycle 1

ld4 r5 = [r56] // Cycle 1

ld4 r6 = [r57] // Cycle 2:no cycle 1 M’s

One reason why it might be desirable to move the store instruction up is to allow loads below it to 
move up.

Note: Ambiguous stores are barriers beyond which normal loads cannot move.  In this case, 
moving the store also frees up an M-unit slot.  To rewrite the code so that the store comes 
before the branch, p2 has been assigned the complement of p1:

(p2)st4 [r34] = r23 // Cycle 0

(p2)ld4 r5 = [r56] // Cycle 0

(p1)br.cond some_label // Cycle 0

ld4 r6 = [r57] // Cycle 1

Since the store is now predicated, no faults or exceptions are possible when the branch is taken, and 
memory state is only updated if and when the original home block of the store is entered.  Once the 
store is moved, it is also possible to move the load instruction without having to use advanced or 
speculative loads (as long as r5 is not live on the taken branch path). 

10.2.3.4 Downward Code Motion

As with upward code motion, downward code motion is normally difficult in the presence of stores.  
The next example shows how code can be moved downward past a label, a transformation that is 
often unsafe without predication:

ld8 r56 = [r45] ;;// Cycle 0: load

st4 [r23] = r56 ;;// Cycle 2: store

label_A:

add ... // Cycle 3

add ...

add ...

add ... ;;
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In the code above, suppose the latency between the load and the store is two clocks.  Assuming the 
load instruction cannot be moved upward due to other dependencies, the only way to schedule the 
instructions so that the load latency is covered is to move the store downward past the label.

The following code demonstrates the overall idea of using predicates to enable downward code 
motion.  In actual compiler-generated code, the predicates that are explicitly computed in this 
example might already be available in predicate registers and not require extra instructions.

// Point which “dominates” label_A
cmp.ne p1,p0 = r0,r0// Initialize p1 to false

// Other instructions

cmp.eq p1,p0 = r0,r0// Initialize p1 to true
ld8 r56=[r45] ;; // Cycle 0 

label_A:
add ... // Cycle 1
add ...
add ...
add ... ;; 

(p1)st4     [r23]=r56 // Cycle 2

Here, downward code motion saves one cycle. There are examples of more sophisticated situations 
involving cyclic scheduling, other store-constrained code motion, or pulling code from outside 
loops into them, but they are not described here.

10.2.3.5 Cache Pollution Reduction

Loads and stores with predicates that are false at runtime are generally likely not to cause any cache 
lines to be removed,  replaced, or brought in.  Also, no extra instructions or recovery code are 
required as would be necessary for IA-64 control or data speculation.  Therefore, when the use of 
predication yields the same critical path length as IA-64 data or control speculation, it is almost 
always preferable to use predication.

10.2.4 Predication Considerations

Even though predication can have a variety of beneficial effects, there are several cases where the 
use of predication should be carefully considered.  Such cases are usually associated with execution 
paths that have unbalanced total latencies or over-usage of a particular resource such as those 
associated with memory operations.

10.2.4.1 Unbalanced Execution Paths

The simple conditional below has an unbalanced flow-dependency height.  Suppose that 
non-predicated assembly for this sequence takes two clocks for the if-block and approximately 
18 clocks if we assume a setf takes 8 clocks, a getf takes 2 clocks, and an xma takes 6 clocks:

if (r4) // 2 clocks
r3 = r2 + r1;

else // 18 clocks
r3 = r2 * r1;

f (r3); // An integer use of r3
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If-converted IA-64 code is shown below.  The cycle numbers shown depend upon the values of p1 
and p2 and assume the latencies shown:

// Issue cycle if p2 is:TrueFalse

cmp.ne p1,p2=r4,r0;; // 0 0

(p1)add r3=r2,r1 // 1 1

(p2)setf f1=r1 // 1 1

(p2)setf f2=r2 ;; // 1 1

(p2)xma.l f3=f1,f2,f0 ;;// 9 2

(p2)getf  r3=f3 ;; // 15 3

(p2)use of r3      // 17 4

This code takes 18 cycles to complete if p2 is true and five cycles if p2 is false.  When analyzing 
such cases, consider execution weights, branch misprediction probabilities, and prediction costs 
along each path.

In the three scenarios presented below, assume a branch misprediction costs ten cycles.  No 
instruction cache or taken-branch penalties are considered.

10.2.4.2 Case 1

Suppose the if-clause is executed 50% of the time and the branch is never mispredicted.  The 
average number of clocks for:

• Unpredicated code is:  (2 cycles * 50%) + (18 cycles * 50%) = 10 clocks

• Predicated code is:  (5 cycles * 50%) + (18 cycles * 50%) = 11.5 clocks

In this case, if-conversion would increase the cost of executing the code. 

10.2.4.3 Case 2

Suppose the if-clause is executed 70% of the time and the branch mispredicts 10% if the time with 
mispredicts costing 10 clocks.  The average number of clocks for:

• Unpredicated code is: 

(2 cycles * 70%) + (18 cycles * 30%) + (10 cycles * 10%) = 7.8 clocks

• Predicated code is: 

 (5 cycles * 70%) + (18 cycles * 30%) = 8.9 clocks

In this case, if-conversion still would increase the cost of executing the code.

10.2.4.4 Case 3

Suppose the if-clause is executed 30% of the time and the branch mispredicts 30% of the time.  The 
average number of clocks for: 

• Unpredicated code is:

 (2  cycles * 30%) + (18 cycles * 70%) + (10 cycles * 30%) = 16.2 clocks

• Predicated code is:

(5 cycles * 30%) + (18 cycles * 70%) = 14.1 clocks

In this case, if-conversion would decrease the execution cost by more than two clocks, on average.
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10.2.4.5 Overlapping Resource Usage

Before performing if-conversion, the programmer must consider the execution resources consumed 
by predicated blocks in addition to considering flow-dependency height.  The resource availability 
height of a set of instructions is the minimum number of cycles taken considering only the 
execution resources required to execute them.

The code below is derived from an if-then-else statement.  Given the generic machine model that 
has only two load/store (M) units.  If a compiler predicates and combines these two blocks, then the 
resource availability height through the block will be four clocks since that is the minimum amount 
of time necessary to issue eight memory operations:
then_clause:

ld r1=[r21] // Cycle 0

ld r2=[r22] // Cycle 0

st [r32]=r3 // Cycle 1

st [r33]=r4 ;;// Cycle 1

br end_if

else_clause:

ld r3=[r23] // Cycle 0

ld r4=[r24] // Cycle 0

st [r34]=r5 // Cycle 1

st [r35]=r6 ;;// Cycle 1

end_if:

As with the example in the previous section, assuming various misprediction rates and taken branch 
penalties changes the decision as to when to predicate and when not to predicate.  One case is 
illustrated below.

10.2.4.6 Case 1

Suppose the branch condition mispredicts 10% of the time and that the predicated code takes four 
clocks to execute.  The average number of clocks for:

• Non-predicated code is:  (10 cycles * 10%) + 2 cycles = 3 cycles

• Predicated code is:  4 cycles

Predicating this code would increase execution time even though the flow dependency heights of 
the branch paths are equal.

10.2.5 Guidelines for Removing Branches

The following if-conversion guidelines apply to cases where only local behavior of the code and its 
execution profile are known:

1. The flow dependency and resource availability heights of both paths must be considered when 
deciding whether to predicate or not.

2. If if-conversion increases the length of any control path through the original code sequence, 
careful analysis using profile or misprediction data must be performed to ensure that execution 
time of the converted code is equivalent to or better than unpredicated code.
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3. If if-conversion removes a branch that is mispredicted a significant percentage of the time, the 
transformation frequently pays off even if the blocks are significantly unbalanced since 
mispredictions are very expensive.

4. If the flow-dependeny heights of the paths being if-converted are nearly equal and there are 
sufficient resources to execute both streams simultaneously, if-conversion is often 
advantageous.

Although these guidelines are useful for optimizing segments of code, the behavior of some 
programs is limited by non-local effects such as overall branch behavior, sensitivity to code size, 
percentage of time spent servicing branch mispredictions, etc. In these situations, the decision to 
use if-convert or perform other speculative transformation becomes more involved.

10.3 Control Flow Optimizations

A common occurrence in programs is for several control flows to converge at one point or for  
multiple control flows to start from one point.  In the first case, multiple flows of control are often 
computing the value of the same variable or register and the join point represents the point at which 
the program needs to select the correct value before proceeding.  In the second case, multiple flows 
may begin at a point where several independent paths are taken based on a set of conditions.

In addition to these multiway joins and branches, the computation of complex compound 
conditions normally requires a tree-like computation to reduce several conditions into one.  IA-64 
provides special instructions that allow such conditions to be computed in fewer tree levels.

A third control-flow related optimization uses predication to improve instruction fetching by 
if-conversion to generate straight-line sequences that can be efficiently fetched.  The use and 
optimization of these cases is described in the remainder of this section. 

10.3.1 Reducing Critical Path with Parallel Compares

The computation of the compound branch condition shown below requires several instructions on 
processors without special instructions:

if ( rA || rB || rC || rD ) {

/* If-block instructions */

}

/* after if-block */

The pseudo-code below, shows one possible solution uses a sequence of branches:
cmp.ne p1,p0 = rA,0

cmp.ne p2,p0 = rB,0

(p1)br.cond if_block

(p2)br.cond if_block

cmp.ne p3,p0 = rC,0

cmp.ne p4,p0 = rD,0

(p3)br.cond if_block

(p4)br.cond if_block

// after if-block 
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On many IA-64 implementations, this sequence is likely to require at least two cycles to execute if 
all the conditions are false,  plus the possibility of more cycles due to one or more branch 
mispredictions.  Another possible sequence computes an or-tree reduction:

or r1 = rA,rB

or r2 = rC,rD ;;

or r3 = r1,r2 ;;

cmp.ne p1,p2 = r3,0

(p1)br if_block

This solution requires three cycles to compute the branch condition which can then be used to 
branch to the if-block.

Note: It is also possible to predicate the if-block using p1 to avoid branch mispredictions.

To reduce the cost of compound conditionals, IA-64 has special parallel compare instructions to 
optimize expressions that have and and or operations.  These compare instructions are special in 
that multiple and/or compare instructions are allowed to target the same predicate within a single 
instruction group.   This feature allows the possibility that a compound conditional can be resolved 
in a single cycle.

For this usage model to work properly,  IA-64 requires that the programmer ensure that during any 
given execution of the code, that all instructions that target a given predicate register must either:

• Write the same value (0 or 1) or 

• Do not write the target register at all. 

This usage model means that sometimes a parallel compare may not update the value of its target 
registers and thus, unlike normal compares, the predicates used in parallel compares must be 
initialized prior to the parallel compare. Please see Part I: IA-64 Application Architecture Guide for 
full information on the operation of parallel compares.

Initialization code must be placed in an instruction group prior to the parallel compare.  However,  
since the initialization code has no dependencies on prior values, it can generally be scheduled 
without contributing to the critical path of the code.

The instructions below shows how to generate code for the example above using parallel compares:
cmp.ne p1,p0 = r0,r0 ;; // initialize p1 to 0

cmp.ne.or p1,p0 = rA,r0

cmp.ne.or p1,p0 = rB,r0

cmp.ne.or p1,p0 = rC,r0

cmp.ne.or p1,p0 = rD,r0

(p1)br.cond if_block

It is also possible to use p1 to predicate the if-block in-line to avoid a possible misprediction.  More 
complex conditional expressions can also be generated with parallel compares:

if ((rA < 0) && (rB == -15) && (rC > 0))

/* If-block instructions */

The assembly pseudo-code below shows a possible sequence for the C code above:
cmp.eq  p1,p0=r0,r0;; // initialize p1 to 1

cmp.ne.and p1,p0=rB,-15

cmp.ge.and p1,p0=rA,r0

cmp.le.and p1,p0=rC,r0
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When used correctly, and or compares write both target predicates with the same value or do not 
write the target predicate at all. Another variation on parallel compare usage is where both the if 
and else part of a complex conditional are needed:

if ( rA == 0 || rB == 10 )

r1 = r2 + r3;

else 

r4 = r5 -  r6;

Parallel compares have an andcm variant that computes both the predicate and its complement 
simultaneously.

cmp.ne p1,p2 = r0,r0 ;; // initialize p1,p2

cmp.eq.or.andcm p1,p2 = rA,r0

cmp.eq.or.andcm p1,p2 = rB,10 ;;

(p1)add r1=r2,r3

(p2)sub r4=r5,r6

Clearly, these instructions can be used in other combinations to create more complex conditions.

10.3.2 Reducing Critical Path with Multiway Branches

While there are no special instructions to support branches with multiple conditions and multiple 
targets, IA-64 has implicit support by allowing multiple consecutive B-slot instructions within an 
instruction group.

An example uses a basic block with four possible successors. The following IA-64 multi-target 
branch code uses a BBB bundle template and can branch to either block B, block C, block D, or fall 
through to block A:
label_AA:

... // Instructions in block AA

{ .bbb

(p1)br.cond label_B

(p2)br.cond label_C

(p3)br.cond label_D

}

// Fall through to A

label_A:

... // Instructions in block A

The ordering of branches is important for program correctness unless all branches are mutually 
exclusive, in which case the compiler can choose any ordering desired.

10.3.3 Selecting Multiple Values for One Variable or Register with 
Predication

A common occurrence in programs is for a set of paths that compute different values for the same 
variable to join and then continue. A variant of this is when separate paths need to compute 
separate results but could otherwise use the same registers since the paths are known to be 
complementary. The use of predication can optimize these cases.
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10.3.3.1 Selecting One of Several Values

When several control paths that each compute a different value of a single variable meet, a 
sequence of conditionals is usually required to select which value will be used to update the 
variable. The use of predication can efficiently implement this code without branches: 

switch (rW) 

case 1:

rA = rB + rC;

break;

case 2:

rA = rE + rF;

break;

case 3:

rA = rH - rI;

break;

The entire switch-block above can be executed in a single cycle using predication if all of the 
predicates have been computed earlier. Assume that if rW equals 1, 2, or 3, then one of p1, p2, or 
p3 is true, respectively:
(p1)add rA=rB,rC

(p2)add rA=rE,rF

(p3)sub rA=rH,rI ;;

Without this predication capability, numerous branches or conditional move operations would be 
needed to collapse these values.

IA-64 allows multiple instructions to target the same register in the same clock provided that only 
one of the instructions writing the target register is predicated true in that clock. Similar capabilities 
exist for writing predicate registers, as discussed in Section 10.3.1.

10.3.3.2 Reducing Register Usage

In some instances it is possible to use the same register for two separate computations in the 
presence of predication. This technique is similar to the technique for allowing multiple writers to 
store a value into the same register, although it is a register allocation optimization rather than a 
critical path issue.

After if-conversion, it is particularly common for sequences of instructions to be predicated with 
complementary predicates. The contrived sequence below shows instructions predicated by p1 and 
p2, which are known by the compiler to be complementary: 
(p1)add r1=r2,r3

(p2)sub r5=r4,r56

(p1)ld8 r7=[r2]

(p2)ld8 r9=[r6] ;;

(p1)a use of r1

(p2)a use of r5

(p1)a use of r7

(p2)a use of r9
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Assuming registers r1, r5, r7, and r9 are used for compiler temporaries, each of which is live 
only until its next use, the preceding code segment can be rewritten as:
(p1)add r1=r2,r3

(p2)sub r1=r4,r56// Reuse r1

(p1)ld8 r7=[r2]

(p2)ld8 r7=[r6] ;;// Reuse r7

(p1)a use of r1

(p2)a use of r1

(p1)a use of r7

(p2)a use of r7

The new sequence uses two fewer registers. With the 128 registers that IA-64 provides this may not 
seem essential, but reducing register use can still reduce program and register stack engine spills 
and fills that can be common in codes with high instruction-level parallelism.

10.3.4 Improving Instruction Stream Fetching

Instructions flow through the pipeline most efficiently when they are executed in large blocks with 
no taken branches. Whenever the instruction pointer needs to be changed, the hardware may have 
to insert bubbles into the pipeline either while the target prediction is taking place or because the 
target address is not computed until later in the pipeline.

By using predication to reduce the number of control flow changes, the fetching efficiency will 
generally improve. The only case where predication is likely to reduce instruction cache efficiency 
is when there is a large increase in the number of instructions fetched which are subsequently 
predicated off. Such a situation uses instruction cache space for instructions that compute no useful 
results.

10.3.4.1 Instruction Stream Alignment

For many processors, when a program branches to a new location, instruction fetching is performed 
on instruction cache lines. If the target of the branch does not start on a cache line boundary, then 
fetching from that target will likely not retrieve an entire cache line. This problem can be avoided if 
a programmer aligns instruction groups that cross more than one bundle so that the instruction 
groups do not span cache line boundaries. However, padding all labels would cause an 
unacceptable increase in code size. A more practical approach aligns only tops of loops and 
commonly entered basic blocks when the first instruction group extends across more than one 
bundle. That is, if both of the following conditions are true at some label L, then padding previous 
instruction groups so that L is aligned on a cache line boundary is recommended:

• The label is commonly branched to from out-of-line. Examples include tops of loops and 
commonly executed else clauses.

• The instruction group starting at label L extends across more than one bundle.
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To illustrate, assume code at label L in the segment below is not cache-aligned and that a cache 
boundary occurs between the two bundles. If a program were to branch to L, then execution may 
split issue after the third add instruction even though there are no resource oversubscriptions or 
stops:
L:

{ .mii

add     r1=r2,r3

add     r4=r5,r6

add     r7=r8,r9

}

{ .mfb

ld8     r14=[r56] ;;

nop.f

nop.b

}

On the other hand, if L were aligned on an even-numbered bundle, then all four instructions at L 
could issue in one cycle.

10.4 Branch and Prefetch Hints

Branch and prefetch hints are architecturally defined to allow the compiler or hand coder to provide 
extra information to the hardware. Compared to hardware, the compiler has more time, looks at a 
wider instruction window (including the source), and performs more analysis. Transfer of this 
knowledge to the processor can help to reduce penalties associated with I-cache accesses and 
branch prediction.

Two types of branch-related hints are defined by the IA-64 architecture: branch prediction hints and 
instruction prefetch hints. Branch prediction hints let the compiler recommend the resources (if 
any) that should be used to dynamically predict specific branches. With prefetch hints, the compiler 
can indicate the areas of the code that should be prefetched to reduce demand I-cache misses.

Hints can be specified as completers on branch (br) and move to branch register (abbreviated 
mov2br in this text since the actual mnemonic is mov br=xx).  The hints on branch instructions 
are the easiest to use since the instruction already exists and the hint completer just has to be 
specified. mov2br instructions are used for indirect branches. The exact interpretation of these hints 
is implementation specific although the general behavior of hints is expected to be similar between 
processor generations.

It is also possible to re-write the hint fields on branches later using a binary rewriting tools. This 
can occur statically or at execution time based on profile data without changing the correctness of 
the program. This technique allows IA-64 static hints to be tailored for usage patterns that may not 
be fully known at compilation time or when the binaries are first distributed.
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10.5 Summary

This chapter has presented a wide variety of topics related to optimizing control flow including 
predication, branch architecture, multiway branches, parallel compares, instruction stream 
alignment, and branch hints. Although such topics could have been presented in separate chapters, 
the interplay between the features is best understood by their effects on each other. 

Predication and its interplay on scheduling region formation is central to IA-64 performance. 
Unfortunately, discussion of compiler algorithms of this nature are far beyond the scope of this 
document.
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Software Pipelining and Loop
Support 11

11.1 Overview

IA-64 provides extensive support for software-pipelined loops, including register rotation, special 
loop branches, and application registers. When combined with predication and support for 
speculation, these features help to reduce code expansion, path length, and branch mispredictions 
for loops that can be software pipelined.

The beginning of this chapter reviews basic loop terminology and instructions, and describes the 
problems that arise when optimizing loops in the absence of architectural support. The IA-64 
specific loop support features are then introduced. The remainder of this chapter describes the 
programming and optimization of various type of loops using the IA-64 features.

11.2 Loop Terminology and Basic Loop Support

Loops can be categorized into two types: counted and while. In counted loops, the loop condition is 
based on the value of a loop counter and the trip count can be computed prior to starting the loop. In 
while loops, the loop condition is a more general calculation (not a simple count) and the trip count 
is unknown. Both types are directly supported in IA-64.

IA-64 improves the performance of conventional counted loops by providing a special counted 
loop branch (the br.cloop instruction) and the Loop Count application register (LC).   The 
br.cloop instruction does not have a branch predicate. Instead, the branching decision is based 
on the value of the LC register. If the LC register is greater than zero, it is decremented and the 
br.cloop branch is taken. 

11.3 Optimization of Loops

In many loops, there are not enough independent instructions within a single iteration to hide 
execution latency and make full use of the functional units. For example, in the loop body below, 
there is very little ILP:
L1: ld4 r4 = [r5],4 ;;// Cycle 0  load postinc 4

add r7 = r4,r9 ;; // Cycle 2

st4 [r6] = r7,4 // Cycle 3  store postinc 4

br.cloop L1 ;; // Cycle 3

In this code, all the instructions from iteration X are executed before iteration X+1 is started. 
Assuming that the store from iteration X and the load from iteration X+1 are independent memory 
references, utilization of the functional units could be improved by moving independent 
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instructions from iteration X+1 to iteration X, effectively overlapping iteration X with iteration 
X+1.

This section describes two general methods for overlapping loop iterations, both of which result in 
code expansion on traditional architectures.   The code expansion problem is addressed by IA-64 
loop support features that are explored later in this chapter. The loop above will be used as a 
running example in the next few sections.

11.3.1 Loop Unrolling

Loop unrolling is a technique that seeks to increase the available instruction level parallelism by 
making and scheduling multiple copies of the loop body together.   The registers in each copy of the 
loop body are given different names to avoid unnecessary WAW and WAR data dependencies. The 
code below shows the loop from our example on page 11-1 after unrolling twice (total of two 
copies of the original loop body) and instruction scheduling, assuming two memory ports and a two 
cycle latency for loads. For simplicity, assume that the loop trip count is a constant N that is a 
multiple of two, so that no exit branch is required after the first copy of the loop body:
L1: ld4 r4 = [r5],4 ;; // Cycle 0

ld4 r14 = [r5],4 ;; // Cycle 1

add r7 = r4,r9 ;; // Cycle 2

add r17 = r14,r9 // Cycle 3

st4 [r6] = r7,4 ;; // Cycle 3

st4 [r6] = r17,4 // Cycle 4

br.cloop L1 ;; // Cycle 4

The above code does not expose as much ILP as possible. The two loads are serialized because they 
both use and update r5. Similarly the two stores both use and update r6. A variable which is 
incremented (or decremented) once each iteration by the same amount is called an induction 
variable. The single induction variable r5 (and similarly r6) can be expanded into two registers as 
shown in the code below:

add r15 = 4,r5

add r16 = 4,r6 ;;

L1: ld4 r4 = [r5],8 // Cycle 0

ld4 r14 = [r15],8 ;; // Cycle 0

add r7 = r4,r9 // Cycle 2

add r17 = r14,r9 ;; // Cycle 2

st4 [r6] r7,8 // Cycle 3

st4 [r16] = r17,8 // Cycle 3

br.cloop L1 ;; // Cycle 3

Compared to the original loop on page 11-1, twice as many functional units are utilized and the 
code size is twice as large. However, no instructions are issued in cycle 1 and the functional units 
are still under utilized in the remaining cycles.   The utilization can be increased by unrolling the 
loop more times, but at the cost of further code expansion. The loop below is unrolled four times 
(assuming the trip count is multiple of four):

add r15 = 4,r5

add r25 = 8,r5

add r35 = 12,r5

add r16 = 4,r6
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add r26 = 8,r6

add r36 = 12,r6 ;;

L1: ld4 r4 = [r5],16 // Cycle 0

ld4 r14 = [r15],16 ;;// Cycle 0

ld4 r24 = [r25],16 // Cycle 1

ld4 r34 = [r35],16 ;;// Cycle 1

add r7 = r4,r9 // Cycle 2

add r17 = r14,r9 ;; // Cycle 2

st4 [r6] = r7,16 // Cycle 3

st4 [r16] = r17,16 // Cycle 3

add r27 = r24,r9 // Cycle 3

add r37 = r34,r9 ;; // Cycle 3

st4 [r26] = r27,16 // Cycle 4

st4 [r36] = r37,16 // Cycle 4

br.cloop L1 ;; // Cycle 4

The two memory ports are now utilized in every cycle except cycle 2. Four iterations are now 
executed in five cycles verses the two iterations in four cycles for the previous version of the loop.

11.3.2 Software Pipelining

Software pipelining is a technique that seeks to overlap loop iterations in a manner that is 
analogous to hardware pipelining of a functional unit. Each iteration is partitioned into stages with 
zero or more instructions in each stage. A conceptual view of a single pipelined iteration of the loop 
from page 11-1 in which each stage is one cycle long is shown below:
stage 1:ld4 r4 = [r5],4

stage 2:--- // empty stage

stage 3:add r7 = r4,r9

stage 4:st4 [r6] = r7,4

The following is a conceptual view of five pipelined iterations:
 1  2  3  4  5           Cycle

----------------------------------------------------

ld4 X

   ld4 X+1

add ld4 X+2

st4 add ld4 X+3

st4 add     ld4  X+4

st4 add X+5

st4 add  X+6

    st4  X+7

The number of cycles between the start of successive iterations is called the initiation interval (II). 
In the above example, the II is one. Each stage of a pipelined iteration is II cycles long.   Most of 
the examples in this chapter utilize modulo scheduling, which is a particular form of software 
pipelining in which the II is a constant and every iteration of the loop has the same schedule. It is 
likely that software pipelining algorithms other than modulo scheduling could benefit from the 
IA-64 loop support features. Therefore the examples in this chapter are discussed in terms of 
software pipelining rather than modulo scheduling.
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Software pipelined loops have three phases: prolog, kernel, and epilog, as shown below:
 1  2  3  4  5            Phase

----------------------------------------------------

ld4

   ld4               Prolog

add  ld4

----------------------------------------------------

st4 add ld4               Kernel

st4 add ld4

------------------------------------------------------    

st4 add

st4 add          Epilog

    st4

During the prolog phase, a new loop iteration is started every II cycles (every cycle for the above 
example) to fill the pipeline. During the first cycle of the prolog, stage 1 of the first iteration 
executes. During the second cycle, stage 1 of the second iteration and stage 2 of the first iteration 
execute, etc. By the start of the kernel phase, the pipeline is full. Stage 1 of the fourth iteration, 
stage 2 of the third iteration, stage 3 of the second iteration, and stage 4 of the first iteration 
execute. During the kernel phase, a new loop iteration is started, and another is completed every II 
cycles. During the epilog phase, no new iterations are started, but the iterations already in progress 
are completed, draining the pipeline. In the above example, iterations 3-5 are completed during the 
epilog phase.

The software pipeline is coded as a loop that is very different from the original source code loop. To 
avoid confusion when discussing loops and loop iterations, we use the term source loop and source 
iteration to refer back to the original source code loop, and the term kernel loop and kernel 
iteration to refer to the loop that implements the software pipeline.

In the above example, the load from the second source iteration is issued before result of the first 
load is consumed.   Thus, in many cases, loads from successive iterations of the loop must target 
different registers to avoid overwriting existing live values.   In traditional architectures, this 
requires unrolling of the kernel loop and software renaming of the registers, resulting in code 
expansion.    Furthermore, in traditional architectures, separate blocks of code are generated for the 
prolog, kernel, and epilog phases, resulting in additional code expansion.

11.4 IA-64 Loop Support Features

The code expansion that results from loop optimizations (such as software pipelining and loop 
unrolling) on traditional architectures can increase the number of instruction cache misses, thus 
reducing overall performance. The IA-64 loop support features allow some loops to be software 
pipelined without code expansion. Register rotation provides a renaming mechanism that reduces 
the need for loop unrolling and software renaming of registers.   Special software pipelined loop 
branches support register rotation and, combined with predication, reduce the need to generate 
separate blocks of code for the prolog and epilog phases.
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11.4.1 Register Rotation

Register rotation renames registers by adding the register number to the value of a register rename 
base (rrb) register contained in the CFM. The rrb register is decremented when certain special 
software pipelined loop branches are executed at the end of each kernel iteration. Decrementing the 
rrb register makes the value in register X appear to move to register X+1. If X is the highest 
numbered rotating register, its value wraps to the lowest numbered rotating register. 

A fixed-sized area of the predicate and floating-point register files (p16-p63 and f32-f127), and 
a programmable-sized area of the general register file are defined to rotate. The size of the rotating 
area in the general register file is determined by an immediate in the alloc instruction and must 
be either zero or a multiple of 8, up to a maximum of 96 registers. The lowest numbered rotating 
register in the general register file is r32. An rrb register is provided for each of the three rotating 
register files: CFM.rrb.gr for the general registers; CFM.rrb.fr for the floating-point 
registers; CFM.rrb.pr for the predicate registers. The software pipelined loop branches 
decrement all the rrb registers simultaneously.

Below is an example of register rotation. The swp_branch pseudo-instruction represents a 
software pipelined loop branch:
L1: ld4 r35 = [r4],4 // post increment by 4

st4 [r5] = r37,4 // post increment by 4
swp_branch  L1 ;;

The value that the load writes to r35 is read by the store two kernel iterations (and two rotations) 
later as r37.   In the meantime, two more instances of the load are executed. Because of register 
rotation, those instances write their result to different registers and do not modify the value needed 
by the store. 

The rotation of predicate registers serves two purposes.   The first is to avoid overwriting a 
predicate value that is still needed. The second purpose is to control the filling and draining of the 
pipeline. To do this, a programmer assigns a predicate to each stage of the software pipeline to 
control the execution of the instructions in that stage. This predicate is called the stage predicate.   
For counted loops, p16 is architecturally defined to be the predicate for the first stage, p17 is 
defined to be the predicate for the second stage, etc. A conceptual view of a pipelined source 
iteration of the example counted loop on page 11-1 is shown below.   Each stage is one cycle long 
and the stage predicates are shown:
stage 1:(p16) ld4 r4 = [r5],4
stage 2:(p17) --- // empty stage
stage 3:(p18) add r7 = r4,r9
stage 4:(p19) st4 [r6] = r7,4

A register rotation takes place at the end of each stage (when the software-pipelined loop branch is 
executed in the kernel loop).   Thus a 1 written to p16 enables the first stage and then is rotated to 
p17 at the end of the first stage to enable the second stage for the same source iteration.   Each 1 
written to p16 sequentially enables all the stages for a new source iteration. This behavior is used 
to enable or disable the execution of the stages of the pipelined loop during the prolog, kernel, and 
epilog phases as described in the next section.
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11.4.2 Note on Initializing Rotating Predicates

In this chapter, the instruction mov pr.rot = immed is used to initialize rotating predicates. 
This instruction ignores the value of CFM.rrb.pr. Thus, the examples in this chapter are written 
assuming that CFM.rrb.pr is always zero prior to the initialization of predicate registers using mov 
pr.rot = immed.

11.4.3 Software-pipelined Loop Branches

The special software-pipelined loop branches allow the compiler to generate very compact code for 
software-pipelined loops by supporting register rotation and by controlling the filling and draining 
of the software pipeline during the prolog and epilog phases.   Generally speaking, each time a 
software-pipelined loop branch is executed, the following actions take place:

1. A decision is made on whether or not to continue kernel loop execution.

2. p16 is set to a value to control execution of the stages of the software pipeline (p63 is written 
by the branch, and after rotation this value will be in p16).

3. The registers are rotated (rrb registers are decremented).

4. The Loop Count (LC) and/or the Epilog Count (EC) application registers are selectively 
decremented.

There are two types of software-pipelined loop branches: counted and while. 

11.4.3.1 Counted Loop Branches

Figure 11-1 shows a flowchart for modulo-scheduled counted loop branches.

During the prolog and kernel phase, a decision to continue kernel loop execution means that a new 
source iteration is started. Register rotation must occur so that the new source iteration does not 
overwrite registers that are in use by prior source iterations that are still in the pipeline.   p16 is set 
to 1 to enable the stages of the new source iteration. LC is decremented to update the count of 
remaining source iterations. EC is not modified.

During the epilog phase, the decision to continue loop execution means that the software pipeline 
has not yet been fully drained and execution of the source iterations in progress must continue. 
Register rotation must continue because the remaining source iterations are still writing results and 
the consumers of the results expect rotation to occur. p16 is now set to 0 because there are no more 
new source iterations and the instructions that correspond to non-existent source iterations must be 
disabled. EC contains the count of the remaining execution stages for the last source iteration and is 
decremented during the epilog. For most loops, when a software pipelined loop branch is executed 
with EC equal to 1, it indicates that the pipeline has been drained and a decision is made to exit the 
loop. The special case in which a software-pipelined loop branch is executed with EC equal to 0 can 
occur in unrolled software-pipelined loops if the target of the cexit branch is set to the next 
sequential bundle.
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There are two types of software-pipelined loop branches for counted loops. br.ctop is taken 
when a decision to continue kernel loop execution is made, and is not taken otherwise. It is used 
when the loop execution decision is located at the bottom of the loop. br.cexit is not taken 
when a decision to continue kernel loop execution is made, and is taken otherwise. It is used when 
the loop execution decision is located somewhere other than the bottom of the loop.

11.4.3.2 Counted Loop Example

A conceptual view of a pipelined iteration of the example counted loop on page 11-1 with II equal 
to one is shown below:
stage 1:(p16) ld4 r4 = [r5],4

stage 2:(p17) --- // empty stage

stage 3:(p18) add r7 = r4,r9

stage 4:(p19) st4 [r6] = r7,4

To generate an efficient pipeline, the compiler must take into account the latencies of instructions 
and the available functional units. For this example, the load latency is two and the load and add are 
scheduled two cycles apart. The pipeline below is coded assuming there are two memory ports and 
the loop count is 200.

Note: Rotating GRs have now been included in the code (the code directly preceding did not). 
Also, induction variables that are post incremented must be allocated to the static portion 
of the register file:
 mov lc = 199 // LC =loop count - 1

 mov ec = 4 // EC =epilog stages + 1

 mov pr.rot = 1<<16 ;;// PR16 = 1, rest = 0

Figure 11-1. ctop and cexit Execution Flow
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L1:

(p16)ld4 r32 = [r5],4// Cycle 0

(p18)add r35 = r34,r9// Cycle 0

(p19)st4 [r6] = r36,4// Cycle 0

 br.ctop L1 ;; // Cycle 0

The memory ports are fully utilized. Table 11-1 shows a trace of the execution of this loop.

In cycle 3, the kernel phase is entered and the fourth iteration of the kernel loop executes the ld4, 
add, and st4 from the fourth, second, and first source iterations respectively. By cycle 200, all 
200 loads have been executed, and the epilog phase is entered. When the br.ctop is executed in 
cycle 202, EC is equal to 1. EC is decremented, the registers are rotated one last time, and execution 
falls out of the kernel loop.

Note: After this final rotation, EC and the stage predicates (p16 – p19) are 0.

It is desirable to allocate variables that are loop variant to the rotating portion of the register 
whenever possible to preserve space in the static portion for loop invariant variables. Inducti
variables that are post incremented must be allocated to the static portion of the register file.

11.4.3.3 While Loop Branches

Figure 11-2 shows the flowchart for while loop branches.

There are a few differences in the operation of the while loop branch compared to the counte
branch. The while loop branch does not access LC — a branch predicate determines the behavior 
this branch instead. During the kernel and epilog phases, the branch predicate is one and ze
respectively. During the prolog phase, the branch predicate may be either zero or one depend
the scheme used to program the while loop.   Also, p16 is always set to zero after rotation. The 
reasons for these differences are related to the nature of while loops and will be explained in
depth with an example in a later section.

Table 11-1. ctop Loop Trace

Cycle Port/Instructions State before br.ctop

M I M B p16 p17 p18 p19 LC EC

0 ld4 br.ctop 1 0 0 0 199 4

1 ld4 br.ctop 1 1 0 0 198 4

2 ld4 add br.ctop 1 1 1 0 197 4

3 ld4 add st4 br.ctop 1 1 1 1 196 4

… … … … … … … … … … …

100 ld4 add st4 br.ctop 1 1 1 1 99 4

… … … … … … … … … … …

199 ld4 add st4 br.ctop 1 1 1 1 0 4

200 add st4 br.ctop 0 1 1 1 0 3

201 add st4 br.ctop 0 0 1 1 0 2

202 st4 br.ctop 0 0 0 1 0 1

... 0 0 0 0 0 0
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11.4.4 Terminology Review

The terms below were introduced in the preceding sections:

Initiation Interval (II) The number of cycles between the start of successive source iterations in a 
software pipelined loop. Each stage of the pipeline is II cycles long.

Prolog The first phase of a software-pipelined loop, in which the pipeline is filled.

Kernel The second phase of a software-pipelined loop, in which the pipeline is full. 

Epilog The third phase of a software-pipelined loop, in which the pipeline is 
drained. 

Source Iteration An iteration of the original source code loop. 

Kernel Iteration An iteration of the loop that implements the software pipeline.

Register Rotation A form of register renaming that is visible to software. Registers are 
renamed with respect to a register rename base that is decremented. 

Induction Variable Value that is incremented (or decremented) once per source iteration by the 
same amount.

11.5 Optimization of Loops in IA-64

Register rotation, predication, and the software pipelined loop branches allow the generation of 
compact, yet highly parallel code. Speculation can further increase loop performance by removing 
dependency barriers that limit the throughput of software pipelined loops. Register rotation 
removes the requirement that kernel loops be unrolled to allow software renaming of the registers. 

Figure 11-2. wtop and wexit Execution Flow

000916

EC?

PR[qp]?

EC = EC EC - -EC - - EC = EC

PR[63] = 0 PR[63] = 0 PR[63] = 0 PR[63] = 0

RRB - - RRB - - RRB - - RRB = RRB

wtop, wexit

 == 0 (prolog / epilog)

== 1

> 1  == 0

==1

(prolog /
kernel) (special unrolled loops)

wtop: branch
wexit: fall-thru

wtop: fall-thru
wexit: branch

(prolog /
epilog) ( epilog)
Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 11-9



However in some cases performance can be increased by unrolling the source loop prior to 
software pipelining, or by generating explicit prolog and/or epilog blocks. The remainder of this 
chapter discusses loop optimizations.

11.5.1 While Loops

The programming scheme for while loops depends upon the structure of the loop. This section 
discusses do-while loops, in which the loop condition is computed at the bottom of the loop. 
Optimizing compilers often transform while loops (where the condition is computed at the top of 
the loop) into do-while loops by moving the condition computation to the bottom of the loop and 
placing a copy of the condition computation prior to the loop to reduce the number of branches in 
the loop. The remainder of this section refers to such loops simply as while loops. Below is a 
simple while loop:
L1: ld4 r4 = [r5],4 ;; // Cycle 0

st4 [r6] = r4,4 // Cycle 2

cmp.ne p1,p0 = r4,r0 // Cycle 2

(p1)br L1 ;; // Cycle 2

A conceptual view of a pipelined iteration of this loop with II equal to one is shown below:
stage 1: ld4  r4 = [r5],4

stage 2: --- // empty stage

stage 3: st4  [r6]= r4,4

cmp.ne.unc p1,p0 = r4,r0

(p1) br  L1

The following is a conceptual view of four overlapped source iterations assuming the load and store 
are independent memory references.   The store, compare, and branch instructions in stage two are 
represented by the pseudo-instruction scb:

 1  2  3  4   Cycle

----------------------------------------------------

ld4 X

   ld4.s X+1

scb ld4.s X+2

scb ld4.s X+3

scb X+4

scb X+5

Notice that the load for the second source iteration is executed before the compare and branch of 
the first source iteration. That is, the load (and the update of r5) is speculative. The loop condition 
is not computed until cycle X+2, but in order to maximize the use of resources, it is desirable to 
start the second source iteration at cycle X+1.   Without the support for control speculation in 
IA-64, the second source iteration could not be started until cycle X+3. 

The computation of the loop condition for while loops is very different from that of counted loops. 
In counted loops, it is possible to compute the loop condition in one cycle using a counted loop 
branch. This is what a br.ctop instruction does when it sets p16. In while loops, a compare must 
compute the loop condition and set the stage predicates. The stages prior to the one containing the 
compare are called the speculative stages of the pipeline, because it is not possible for the compare 
to completely control the execution of these stages. Therefore, the stage predicate set by the 
compare is used (after rotation) to control the first non-speculative stage of the pipeline.
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The pipelined version of the while loop on page 11-10 is shown below.   A check for the speculative 
load is included:

 mov ec = 2

 mov pr.rot = 1 << 16 ;; // PR16 = 1, rest = 0

L1:

 ld4.s r32 = [r5],4 // Cycle 0

(p18) chk.s r34, recovery // Cycle 0

(p18) cmp.ne p17,p0 = r34,r0 // Cycle 0

(p18) st4 [r6] = r34,4 // Cycle 0

(p17) br.wtop.sptk L1 ;; // Cycle 0

L2:

To explain why the kernel loop is programmed the way it is, it is helpful to examine a trace of the 
execution of the loop (assume there are 200 source iterations) shown in Table 11-2.

There is no stage predicate assigned to the load because it is speculative. The compare sets p17. 
This is the branch predicate for the current iteration and, after rotation, the stage predicate for the 
first non-speculative stage (stage three) of the next source iteration. During the prolog, the compare 
cannot produce its first valid result until cycle two. The initialization of the predicates provides a 
pipeline that disables the compare until the first source iteration reaches stage two in cycle two.   At 
that point the compare starts generating stage predicates to control the non-speculative stages of the 
pipeline. Notice that the compare is conditional. If it were unconditional, it would always write a 
zero to p17 and the pipeline would not get started correctly.

The executions of br.wtop in the first two cycles of the prolog do not correspond to any of the 
source iterations. Their purpose is simply to continue the kernel loop until the first valid loop 
condition can be produced.   In cycle one, the branch predicate p17 is one. For this programming 
scheme, the branch predicate of the br.wtop is always a one during the last speculative stage of 
the first source iteration. During all the prior stages, the branch predicate is zero. If the branch 
predicate is zero, the br.wtop continues the kernel loop only if EC is greater than one. It also 
decrements EC. Thus EC must be initialized to (# epilog stages + # speculative pipeline stages).   In 
the above example, this is 0 + 2 = 2.

Table 11-2. wtop Loop Trace

Cycle
Port/Instructions State before br.wtop

M I I M B p16 p17 p18 EC

0 ld4.s br.wtop 1 0 0 2

1 ld4.s br.wtop 0 1 0 1

2 ld4.s cmp chk st4 br.wtop 0 1 1 1

3 ld4.s cmp chk st4 br.wtop 0 1 1 1

… … … … … … … … …

100 ld4.s cmp chk st4 br.wtop 0 1 1 1

… … … … … … … … …

199 ld4.s cmp chk st4 br.wtop 0 1 1 1

200 ld4.s cmp chk st4 br.wtop 0 1 1 1

201 ld4.s cmp chk st4 br.wtop 0 0 1 1

0 0 0 0
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In cycle 201, the compare for the 200th source iteration is executed.   Since this is the final source 
iteration, the result of the compare is a zero and p17 is unmodified. The zero that was rotated into 
p17 from p16 causes the br.wtop to fall through to the loop exit. EC is decremented and the 
registers are rotated one last time.

In the above example, there are no epilog stages. As soon as the branch predicate becomes zero, the 
kernel loop is exited.

11.5.2 Loops with Predicated Instructions

Instructions that already have predicates in the source loop are not assigned stage predicates. They 
continue to be controlled by compare instructions in the loop body. For example, the following loop 
contains predicated instructions:
L1: ldfs f4 = [r5],4

ldfs f9 = [r8],4 ;;

fcmp.ge.unc p1,p2 = f4,f9 ;;

(p1)stfs [r9] = f4, 4

(p2)stfs [r9] = f9, 4

br.cloop L1 ;;

Below is a possible pipeline with an II of 2, assuming a floating-point load latency of 9 cycles:
stage 1:(p16) ldfs f4 = [r5],4

(p16) ldfs f9 = [r8],4 ;;

  --- // empty cycle

stage 2-4:  --- // empty stages

stage 5:   --- // empty cycle

(p20) fcmp.ge.unc p1,p2 = f4,f9 ;;

stage 6:  --- // empty cycle

(p1) stfs [r9] = f4, 4

(p2) stfs [r9] = f9, 4

The following is the code to implement the pipeline:
mov lc = 199 // LC = loop count - 1

mov ec = 6 // EC = epilog stages + 1

mov pr.rot=1<<16;; // PR16 = 1, rest = 0

L1:

(p16) ldfs f32 = [r5],4

(p16) ldfs f38 = [r8],4 ;;

(p32) stfs [r9] = f37, 4

(p20) fcmp.ge.unc p31,p32 = f36,f42

(p33) stfs [r9] = f43, 4

L2: br.ctop.sptk L1 ;;
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11.5.3 Multiple-exit Loops

All of the example loops discussed so far have a single exit at the bottom of the loop. The loop 
below contains multiple exits — an exit at the bottom associated with the loop closing branch
an early exit in the middle:
L1: ld4 r4 = [r5],4 ;;

ld4 r9 = [r4] ;;

cmp.eq.unc p1,p0 = r9,r7

(p1) br.cond exit // early exit

add r8 = -1,r8 ;;

cmp.ge.unc p3,p0 = r8,r0

(p3) br.cond L1 ;;

Loops with multiple exits require special care to ensure that the pipeline is correctly drained 
the early exit is taken.There are two ways to generate a pipelined version of the above loop: 
(1) convert it to a single exit loop, or (2) pipeline it with the multiple exits explicitly present. 

11.5.3.1 Converting Multiple Exit Loops to Single Exit Loops

The first is to transform the multiple exit loop into a single exit loop. In the source loop, execu
of the add, the second compare and the second branch is guarded by the first branch. The lo
be transformed into a single exit loop by using predicates to guard the execution of these 
instructions and moving the early exit branch out of the loop as shown below:
L1: ld4 r4 = [r5],4 ;;

ld4 r9 = [r4] ;;

cmp.eq.unc p1,p2 = r9,r7

add r8 = -1,r8 ;;

(p2) cmp.ge.unc p3,p0 = r8,r0

(p3) br.cond L1 ;;

(p1) br.cond exit // early exit if p1 is 1

The computation of p3 determines if either exit of the source loop would have been taken. If p3 is 
zero, the loop is exited and p1 is used to determine which exit was actually taken. The add is 
executed speculatively (it is not guarded by p2) to keep the dependency from the cmp.eq to the 
add from limiting the II. It is assumed that either r8 is not live out at the early exit or that 
compensation code is added at the target of the early exit. The pipeline for this loop is shown
with the stage predicate assignments but no other rotating register allocation. The compare a
branch at the end of stage 4 are not assigned stage predicates because they already have q
predicates in the source loop:
stage 1: ld4.s r4 = [r5],4 ;;// II = 2

--- // empty cycle

stage 2: --- // empty cycle

ld4.s r9 = [r4] ;;

stage 3: --- // empty stage

stage 4:

(p19) add  r8 = -1,r8

(p19) cmp.eq.unc p1,p2 = r9,r7 ;;

(p2) cmp.ge.unc p3,p0 = r8,r0

(p3) br.cond L1 ;;
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The code to implement this pipeline is shown below complete with the chk instruction:
mov ec = 3

mov pr.rot = 1 << 16 ;; // PR16 = 1, rest = 0

L1: ld4.s r32 = [r5],4 // Cycle 0

(p19) chk.s r36, recovery // Cycle 0

(p19) add r8 = -1,r8 // Cycle 0

(p19) cmp.eq.unc p31,p32 = r36,r7 ;;// Cycle 0

ld4.s r34 = [r33] // Cycle 1

(p32) cmp.ge p18,p0 = r8,r0 // Cycle 1

L2:

(p18) br.wtop.sptk L1 ;; // Cycle 1

(p32) br.cond exit // early exit if p32 is 1

Note: When the loop is exited, one final rotation occurs, rotating the value in p31 to p32. Thus, 
p32 is used as the branch predicate for the early exit branch.

11.5.3.2 Pipelining with Explicit Multiple Exits

The second approach is to combine the last three instructions in the loop into a br.cloop 
instruction and then pipeline the loop.   The pipeline using this approach is shown below:
stage 1:ld4.s r4 = [r5],4 ;; // II = 1

stage 4:ld4.s r9 = [r4] ;;

stage 6:cmp.eq.unc p1,p0 = r9,r7

(p1)br.cond  exit

br.cloop L1 ;;

There are five speculative stages in this pipeline because a non-speculative decision to initiate 
another loop iteration cannot be made until the br.cond and br.cloop are executed in stage 6. 
The code to implement this pipeline is shown below assuming a trip count of 200:

mov lc = 204

mov ec = 1

mov pr.rot = 1 << 16 ;; // PR16 = 1, rest = 0

L1:

ld4.s r32 = [r5],4 // Cycle 0

(p21) chk.s r38, recovery // Cycle 0

(p21) cmp.eq.unc p1,p0 = r38,r7 // Cycle 0

ld4.s r36 = [r35] // Cycle 0

(p1) br.cond exit // Cycle 0

L2: br.ctop.sptk L1; // Cycle 0

When the kernel loop is exited at either the br.cond or the br.ctop, the last source iteration is 
complete. Thus, EC is initialized to 1 and there is no explicit epilog block generated for the early 
exit.   The LC register is initialized to five more than 199 because there are five speculative stages. 
The purpose of the first five executions of br.ctop is simply to keep the loop going until the first 
valid branch predicate is generated for the br.cond. During each of these executions, LC is 
decremented, so five must be added to the LC initialization amount to compensate.

A smaller II is achieved with the second approach. This pipelined code will also work if LC is 
initialized to 199 and EC is initialized to 6. However, if the early exit is taken, LC will have been 
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decremented too many times and will need to be adjusted if it is used at the target of the early exit. 
If there is any epilog when the early exit is taken, that epilog must be explicit.

11.5.4 Software Pipelining Considerations

There may be instances where it may not be desirable to pipeline a loop. Software pipelining 
increases the throughput of iterations, but may increase the time required to complete a single 
iteration. As a result, loops with very small trip counts may experience decreased performance 
when pipelined. For example, consider the following loop:
L1: ld4 r4 = [r5],4 // Cycle 0

ld4 r7 = [r8],4 ;; // Cycle 0

st4 [r6] = r4,4 // Cycle 2

st4 [r9] = r7,4 // Cycle 2

br.cloop L1 ;; // Cycle 2

The following is a possible pipeline with an II of 2:
stage 1:ld4 r4 = [r5],4 // Cycle 0

ld4  r7 = [r8],4 ;; // Cycle 0

--- // empty cycle

stage 2:--- // empty cycle

st4 [r6] = r4,4 // Cycle 3

st4 [r9] = r7,4 ;; // Cycle 3

In the source loop, one iteration is completed every three cycles. In the software pipelined loop, it 
takes four cycles to complete the first iteration. Thereafter, iterations are completed every two 
cycles. If the trip count is two, the execution time of both versions of the loop is the same, six 
cycles. If the average trip count of the loop is less than two, the software pipelined version of the 
loop is slower than the source loop.

In addition, it may not be desirable to pipeline a floating-point loop that contains a function call. 
The number of floating-point registers used by the loop is not known until after the loop is 
pipelined. After pipelining, it may be difficult to find empty slots for the instructions needed to save 
and restore the caller-saved floating-point registers across the function call.

11.5.5 Software Pipelining and Advanced Loads

Advanced loads allow some code that is likely to be invariant to be removed from loops, thus 
reducing the resource requirements of the loop. Use of advanced loads also can reduce the critical 
path through the iterations, allowing a smaller II to be achieved. See Chapter 9, “Memory 
Reference” for more information on advanced loads. However, caution must be exercised wh
using advanced loads with register rotation. For this discussion, we assume an ALAT with 32
entries.
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11.5.5.1 Capacity Limitations

An advanced load with a destination that is a rotating register targets a different physical register 
and allocates a new ALAT entry for each kernel iteration.   For example, the simple loop below 
replaces 32 ALAT entries in 32 iterations:
L1: (p16) ld4.a r32 = [r8]

(p47) ld4.c r63 = [r8]

br.ctop L1 ;;

To avoid unnecessary ALAT misses, the check load or advanced load check must be executed 
before a later advanced load causes a replacement of the entry being checked. In the simple loop 
above, the unnecessary ALAT misses do not occur because the check load is done within 31 
iterations of the advanced load. In the example below, an ALAT miss is encountered for every 
check load because the advanced load replaces an entry just before the corresponding check load is 
executed:
L1: (p16) ld4.a r32 = [r8]

(p48) ld4.c r64 = [r8]

br.ctop L1 ;;

11.5.5.2 Conflicts in the ALAT

Using an advanced load to remove a likely invariant load from a loop while advancing another load 
inside the loop results in poor performance if the latter load targets a rotating register. The advanced 
load that targets the rotating register will eventually invalidate the ALAT entry for the loop 
invariant load. Thereafter, every execution of the check load for the loop invariant load will cause 
an ALAT miss.

When more than one advanced load in the loop targets a rotating register, the registers must be 
assigned and the register lifetimes controlled so that the check load for a particular advanced load X 
is executed before any of the other advanced loads can invalidate the entry allocated by load X. For 
example, the following loop successfully targets rotating registers with two advanced loads without 
any ALAT misses because the two advanced load – check load pairs never create more than
simultaneously live ALAT entries:
L1: (p16) ld4.a r32 = [r8]

(p31) ld4.c r47 = [r8]

(p16) ld4.a r48 = [r9]

(p31) ld4.c r63 = [r9]

 br.ctop L1 ;;

When the code cannot be arranged to avoid ALAT misses, it may be best to assign static regi
the destinations of the advanced loads and unroll the loop to explicitly rename the destinatio
the advanced loads where necessary.   The following example shows how to unroll the loop 
avoid the use of rotating registers. The loop has an II equal to 1 and the check load is execu
cycle (and one rotation) after the advanced load:
L1: (p16) ld4.a r33 = [r8]

(p17) ld4.c r34 = [r8]

br.ctop L1 ;;
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Static registers can be assigned to the destinations of the loads if the loop is unrolled twice:
L1: (p16) ld4.a r3 = [r8]

(p17) ld4.c r4 = [r8]

br.cexit L2 ;;

(p16) ld4.a r4 = [r8]

(p17) ld4.c r3 = [r8]

br.ctop L1 ;;

L2: //

Rotating registers could still be used for the values that are not generated by advanced loads. The 
effect of this unrolling on instruction cache performance must be considered as part of the cost of 
advancing a load.

11.5.6 Loop Unrolling Prior to Software Pipelining

In some cases, higher performance can be achieved by unrolling the loop prior to software 
pipelining. Loops that are resource constrained can be improved by unrolling such that the limiting 
resource is more fully utilized. In the following example if we assume the target processor has only 
two memory units, the loop performance is bound by the number of memory units:
L1: ld4  r4 = [r5],4 // Cycle 0

ld4  r9 = [r8],4 ;; // Cycle 0

add  r7 = r4,r9 ;; // Cycle 2

st4  [r6] = r7,4 // Cycle 3

br.cloop L1 ;; // Cycle 3

A pipelined version of this loop must have an II of at least two because there are three memory 
instructions, but only two memory units.   If the loop is unrolled twice prior to software pipelining 
and assuming the store is independent of the loads, an II of 3 can be achieved for the new loop. This 
is an effective II of 1.5 for the original source loop. Below is a possible pipeline for the unrolled 
loop:
stage 1:(p16) ld4 r4 = [r5],8 // odd iteration

(p16) ld4  r9 = [r8],8 ;; // odd iteration

stage 2:(p16) ld4 r14 = [r15],8 // even iteration

(p16) ld4 r19 = [r18],8 ;; // even iteration

 // --- empty cycle

stage 3:(p18) add r7 = r4,r9 // odd iteration

(p17) add  r17 = r14,r19;; // even iteration

stage 4:  // --- empty cycle

(p19) st4  [r6] = r7,8 // odd iteration

(p18) st4  [r16] = r17,8 ;; // even iteration

The unrolled loop contains two copies of the source loop body, one that corresponds to the odd 
source iterations and one that corresponds to the even source iterations.   The assignment of stage 
predicates must take this into account. Recall that each 1 written to p16 sequentially enables all the 
stages for a new source iteration.   During stage one of the above pipeline, the stage predicate for 
the odd iteration is in p16.   The stage predicate for the even iteration does not exist yet. During 
stage two of the above pipeline, the stage predicate for the odd iteration is in p17 and the new stage 
predicate for the even iteration is in p16.   Thus within the same pipeline stage, if the stage 
predicate for the odd iteration is in predicate register X, the stage predicate for the even iteration is 
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in predicate register X-1. The pseudo-code to implement this pipeline assuming an unknown trip 
count is shown below:

add r15 = r5,4

add r18 = r8,4

mov lc = r2 // LC = loop count - 1

mov ec = 4 // EC = epilog stages + 1

mov pr.rot=1<<16;; // PR16 = 1, rest = 0

L1:

(p16) ld4 r33 = [r5],8 // Cycle 0 odd iteration

(p18) add r39 = r35,r38 // Cycle 0 odd iteration

(p17) add r38 = r34,r37 // Cycle 0 even iteration

(p16) ld4 r36 = [r8],8 // Cycle 0 odd iteration

br.cexit.spnt L3 ;; // Cycle 0

(p16) ld4 r33 = [r15],8 // Cycle 1 even iteration

(p16) ld4 r36 = [r18],8 ;; // Cycle 1 even iteration

(p19) st4 [r6] = r40,8 // Cycle 2 odd iteration

(p18) st4 [r16] = r39,8 // Cycle 2 even iteration

L2: br.ctop.sptk L1 ;; // Cycle 2

L3:

Notice that the stages are not equal in length. Stages 1 and 3 are one cycle each, and stages 2 and 4 
are two cycles each. Also, the length of the epilog phase varies with the trip count.   If the trip count 
is odd, the number of epilog stages is three, starting after the br.cexit and ending at the br.ctop. 
If the trip count is even, the number of epilog stages is two, starting after the br.ctop and ending 
at the br.ctop. The EC must be set to account for the maximum number of epilog stages. Thus 
for this example, EC is initialized to four. When the trip count is even, one extra epilog stage is 
executed and br.exit L3 is taken. All of the stage predicates used during the extra epilog 
stages are equal to 0, so nothing is executed.

The extra epilog stage for even trip counts can be eliminated by setting the target of the br.cexit 
branch to the next sequential bundle and initializing EC to three as shown below:

add r15 = r5,4

add r18 = r8,4

mov lc = r2 // LC = loop count - 1

mov ec = 3 // EC = epilog stages + 1

mov pr.rot=1<<16;; // PR16 = 1, rest = 0

L1:

(p16) ld4 r33 = [r5],8 // Cycle 0 odd iteration

(p18) add r39 = r35,r38 // Cycle 0 odd iteration

(p17) add r38 = r34,r37 // Cycle 0 even iteration

(p16) ld4 r36 = [r8],8 // Cycle 0 odd iteration

br.cexit.spnt L4 ;; // Cycle 0

L4:

(p16) ld4 r33 = [r15],8 // Cycle 1 even iteration

(p16) ld4 r36 = [r18],8 ;; // Cycle 1 even iteration

(p19) st4 [r6] = r40,8 // Cycle 2 odd iteration

(p18) st4 [r16] = r39,8 // Cycle 2 even iteration

L2: br.ctop.sptk L1 ;; // Cycle 2

L3:
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If the loop trip count is even, two epilog stages are executed and the kernel loop is exited at the 
br.ctop. If the trip count is odd, the first two epilog stages are executed and then the br.cexit 
branch is taken. Because the target of the br.cexit branch is the next sequential bundle (L4), a 
third epilog stage is executed before the kernel loop is exited at the br.ctop. This optimization 
saves one stage at the end of the loop when the trip count is even, and is beneficial for short trip 
count loops.

Although unrolling can be beneficial, there are a few considerations before trying to unroll and 
software pipeline. Unrolling reduces the trip count of the loop that is given to the pipeliner, and thus 
may make pipelining of the loop undesirable since low trip count loops sometimes run faster 
unpipelined. Unrolling also increases the code size, which may adversely affect instruction cache 
performance. Unrolling is most beneficial for small loops because the potential performance 
degradation due to under utilized resources is greater and the effect of unrolling on the instruction 
cache performance is smaller compared to large loops.

11.5.7 Implementing Reductions

In the following example, a sum of products is accumulated in register f7:
mov f7 = 0 ;; // initialize sum

L1: ldfs f4 = [r5],4

ldfs f9 = [r8],4 ;;

fma f7 = f4,f9,f7 ;; // accumulate

br.cloop L1 ;;

The performance is bound by the latency of the fma instruction which we assume is 5 cycles for 
these examples. A pipelined version of this loop must have an II of at least five because the fma 
latency is five.   By making use of register rotation, the loop can be transformed into the one below. 

Note that the loop has not yet been pipelined. The register rotation and special loop branches are 
being used to enable an optimization prior to software pipelining.

mov lc = 199 // LC = loop count - 1

mov ec = 1 // Not pipelined, so no epilog

mov f33 = 0 // initialize 5 sums

mov f34 = 0

mov f35 = 0

mov f36 = 0

mov f37 = 0 ;;

L1: ldfs f4 = [r5],4

ldfs f9 = [r8],4 ;;

fma f32 = f4,f9,f37 ;;// accumulate

br.ctop L1 ;;

fadd f10 = f33,f34 // add sums

fadd f11 = f35,f36 ;;

fadd f12 = f10,f11 ;;

fadd f7 = f12,f37

This loop maintains five independent sums in registers f33-f37.   The fma instruction in iteration 
X produces a result that is used by the fma instruction in iteration X+5. Iterations X through X+4 
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are independent, allowing an II of one to be achieved.   The code for a pipelined version of the loop 
assuming two memory ports and a nine cycle latency for a floating-point load is shown below:

mov lc = 199 // LC = loop count - 1

mov ec = 10 // EC = epilog stages + 1

mov pr.rot=1<<16 // PR16 = 1, rest = 0

mov f33 = 0 // initialize sums

mov f34 = 0

mov f35 = 0

mov f36 = 0

mov f37 = 0

L1:

(p16)ldfs f50 = [r5],4 // Cycle 0

(p16)ldfs f60 = [r8],4 // Cycle 0

(p25)fma f41 = f59,f69,f46// Cycle 0

br.ctop.sptk L1 ;; // Cycle 0

fadd  f10 = f42,f43 // add sums

fadd f11 = f44,f45 ;;

fadd f12 = f10,f11 ;;

fadd f7 = f12,f46

11.5.8 Explicit Prolog and Epilog

In some cases, an explicit prolog is necessary for code correctness. This can occur in cases where a 
speculative instruction generates a value that is live across source iterations. Consider the following 
loop:

ld4 r3 = [r5] ;;

L1: ld4 r6 = [r8],4 // Cycle 0

ld4 r5 = [r9],4 ;; // Cycle 0

add r7 = r3,r6 ;; // Cycle 2

ld4 r3 = [r5] // Cycle 3

and r10 = 3,r7;; // Cycle 3

cmp.ne p1,p0=r10,r11 // Cycle 4

(p1)br.cond L1 ;; // Cycle 4

The following is a possible pipeline for the loop:
stage 1: ld4.s r6 = [r8],4 // II = 2

ld4.s r5 = [r9],4 ;;

--- // empty cycle

stage 2: --- // empty cycle

ld4.s r36 = [r5]

add r7 = r37,r6 ;;

stage 3:(p18) and  r10 = 3,r7 ;;

(p18) cmp.ne p1,p0 = r10,r11

(p1) br.wtop L1 ;;
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Note that, in the code above, the ld4 and the add instructions in stage 2 have been reordered. 
Register rotation has been used to eliminate the WAR register dependency from the add to the 
ld4. The first two stages are speculative. The code to implement the pipeline is shown below:

ld4 r36 = [r5]

mov ec = 2

mov pr.rot = 1 << 16 ;; // PR16 = 1, rest = 0

L1: ld4.s r32 = [r8],4 // Cycle 0

ld4.s r34 = [r9],4 // Cycle 0

(p18) and r40 = 3,r39 ;; // Cycle 0

ld4.s r36 = [r35] // Cycle 1

add r38 = r37,r33 // Cycle 1

(p18) chk.s r40, recovery // Cycle 1

(p18) cmp.ne  p17,p0 = r40,r11 // Cycle 1

(p17) br.wtop L1 ;; // Cycle 1

The problem with this pipelined loop is that the value written to r36 prior to the loop is 
overwritten before it is used by the add.   The value is overwritten by the load into r36 in the first 
kernel iteration. This load is in the second stage of the pipeline, but cannot be controlled during the 
first kernel iteration because it is speculative and does not have a stage predicate. This problem can 
be solved by peeling off one iteration of the kernel and excluding from that copy any instructions 
that are not in the first stage of the pipeline as shown below.

Note that the destination register numbers for the instructions in the explicit prolog have been 
increased by one. This is to account for the fact that there is no rotation at the end of the peeled 
kernel iteration.

ld4 r37 = [r5]

mov ec = 1

mov pr.rot = 1<<17 ;; // PR17 = 1, rest = 0

ld4 r33 = [r8],4

ld4 r35 = [r9],4

L1: ld4.s r32 = [r8],4 // Cycle 0

ld4.s r34 = [r9],4 // Cycle 0

(p18)and r40 = 3,r39;; // Cycle 0

ld4.s r36 = [r35] // Cycle 1

add r38 = r37,r33 // Cycle 1

(p18)chk.sr40, recovery // Cycle 1

(p18)cmp.ne p17,p0 = r40,r11 // Cycle 1

(p17)br.wtop L1 ;; -// Cycle 1

In some cases, higher performance can be achieved by generating separate blocks of code for all or 
part of the prolog and/or epilog phase.   It is clear from the execution trace of the pipelined counted 
loop from page 11-7 that the functional units are under-utilized during the prolog and epilog 
phases.   Part of the prolog and epilog could be peeled off and merged with the code preceding and 
following the loop.   The following is a pipelined version of that counted loop with an explicit 
prolog and epilog:

mov lc = 196

mov ec = 1

prolog:

ld4 r35 = [r5],4 ;; // Cycle 0

 ld4 r34 = [r5],4 ;; // Cycle 1
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 ld4 r33 = [r5],4 // Cycle 2

 add r36 = r35,r9 ;; // Cycle 2

L1:

ld4 r32 = [r5],4

add r35 = r34,r9

st4 [r6] = r36,4

L2: br.ctop L1 ;;

epilog:

add r35 = r34,r9 // Cycle 0

st4 [r6] = r36,4 ;; // Cycle 0

add r34 = r33,r9 // Cycle 1

st4 [r6] = r35,4 ;; // Cycle 1

st4 [r6] = r34,4 // Cycle 2

The entire prolog (first three iterations of the kernel loop) and epilog (last three iterations) have 
been peeled off. No attempt has been made to reschedule the peeled instructions. The stage 
predicates have been removed from the instructions since they are not required for controlling the 
prolog and epilog phases. Removing them from the prolog makes the prolog instructions 
independent of the rotating predicates and eliminates the need for software-pipelined loop branches 
between prolog stages. Thus the entire prolog is independent of the initialization of LC and EC that 
precede it. The register numbers in the prolog and epilog have been adjusted to account for the lack 
of rotation between stages during those phases.

Note: This code assumes that the trip count of the source loop is at least four. If the minimum 
trip count is unknown at compile time, then a runtime check of the trip count must be 
added before the prolog. If the trip count is less than four, then control branches to a copy 
of the original loop.

If this pipelined loop is nested inside an outer loop, there exists a further optimization opportunity.   
The outer  loop could be rotated such that the kernel loop is at the top followed by the epilog for the 
current outer loop iteration and the prolog for the next outer loop iteration. A copy of the prolog 
would also be added prior to the outer loop.

Note: From the earlier trace of the counted loop execution, the functional unit usage of the pro-
log and epilog are complimentary such that they could be very nicely overlapped.

The drawback of creating an explicit prolog or epilog is code expansion.

11.5.9 Redundant Load Elimination in Loops

Unrolling of a loop is sometimes necessary to remove copy operations created by loop 
optimizations. The following is an example of redundant load elimination. In the code below, each 
iteration loads two values, one of which has already been loaded by the previous source iteration:

add r8 = r5,4 ;;

L1: ld4 r4 = [r5],4 // a[i]

ld4 r9 = [r8],4 ;; // a[i+1]

add r7 = r4,r9 ;;

st4 [r6] = r7,4

br.cloop L1 ;;
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The redundant load can be eliminated by adding a copy of the first load prior to the loop and 
changing the load to a copy (mov):

add r8 = r5,4 

ld4 r9 = [r5],4;; // a[i]

L1: mov r4 = r9 // a[i] = previous a[i+1]

ld4 r9 = [r8],4 ;; // a[i+1]

add r7 = r4,r9 ;;

st4 [r6] = r7,4

br.cloop L1 ;;

In traditional architectures, the mov instruction can only be removed by unrolling the loop twice.   
One instruction is removed from the loop at the cost of two times code expansion. The IA-64 
register rotation feature can be used to eliminate the mov instruction without unrolling the loop:

add r8 = r5,4 

ld4 r33 = [r5],4;; // a[i]

L1: ld4 r32 = [r8],4 ;; // a[i+1]

add r7 = r33,r32 ;;

st4 [r6] = r7,4

br.ctopL1 ;;

11.6 Summary

The examples in this chapter show how IA-64 features can be used to optimize loops without the 
code expansion required with traditional architectures. Register rotation, predication, and the 
software-pipelined loop branches all contribute to this capability.   Control speculation increases 
the overlap of the iterations of while loops. Data speculation increases the overlap of iterations of 
loops that have loads and stores that cannot be disambiguated.
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Floating-point Applications 12

12.1 Overview

The IA-64 floating-point architecture is fully ANSI/IEEE-754 standard compliant. IA-64 provides 
performance enhancing features such as the fused multiply accumulate instruction, the large 
floating-point register file (with static and rotating sections), the extended range register file data 
representation, the multiple independent floating-point status fields, and the high bandwidth 
memory access instructions that enable the creation of compact, high performance, floating-point 
application code.

The beginning of this chapter reviews some specific performance limitations that are common in 
floating-point intensive application codes. Later, IA-64 features that address these limitations are 
presented with illustrative code examples. The remainder of this chapter highlights the optimization 
of some commonly used kernels using the IA-64 features.

12.2 FP Application Performance Limiters

Floating-point applications are characterized by a predominance of loops. Some loops compute 
complex calculations on regularly structured data, others simply copy data from one place to 
another, while others perform gather/scatter-type operations that simultaneously compute and 
rearrange data. The following sections describe code characteristics that limit performance and how 
they affect these different kinds of loops.

12.2.1 Execution Latency

Loops often contain recurrence relationships. Consider the tri-diagonal elimination kernel from the 
Livermore Fortran Kernel suite.

DO 5 i = 2, N

   5 X[i] = Z[i] * (Y[i] - X[i-1])

The dependency between X[i] and X[i-1] limits the iteration time of the loop to be the sum of 
the latency of the subtract and the multiply. The available parallelism can be increased by unrolling 
the loop and can be exploited by replicating computation, however the fundamental limitation of 
the data dependency remains.

Sometimes, even if the loop is vectorizable and can be software pipelined, the iteration time of the 
loop is limited by the execution latency of the hardware that executes the code. A simple vector 
divide (shown below) is a typical example:

DO 1 I = 1, N

   1 X[i] = Y[i] / Z[i]
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Since typical modern microprocessors contain a non-pipelined floating-point unit, the iteration time 
of the loop is the latency of the divide which can be tens of clocks.

12.2.2 Execution Bandwidth

When sufficient ILP exists and can be exploited, the performance limitation is the availability of 
the execution resources – or the execution bandwidth of the machine. Consider the dense m
multiply kernel from the BLAS3 library.

DO 1 i = 1, N

DO 1 j = 1, P

DO 1 k = 1, M

   1 C[i,j] = C[i,j] + A[i,k]*B[k,j]

Common techniques of loop interchange, loop unrolling, and unroll-and-jam, can be used to 
increase the available ILP in the inner loop. When this is done, the inner loop contains an 
abundance of independent floating-point computations with a relatively small number of mem
operations. The performance constraint is then largely the floating-point execution bandwidth
the machine (assuming sufficient registers are available to hold the accumulators – C[i,j] and 
the intermediate computations).

12.2.3 Memory Latency

While cycle time disparity between the processor and memory creates a general memory lat
problem for most codes, there are a few special conditions in floating-point codes that exace
its impact. 

One such condition is the use of indirect addressing. Gather/scatter codes in general and sp
matrix vector multiply code (below) in particular are good examples.

DO 1 ROW = 1, N

R[ROW] = 0.0d0

DO 1 I = ROWEND(ROW-1)+1, ROWEND(ROW)

   1 R[ROW] = R[ROW] + A[I] * X[COL[I]]

The memory latency of the access of COL[I] is exposed, since it is used to index into the vector X. 
The access of the element of X, the computation of the product, and the summation of the produ
on R[ROW] are all dependent on the memory latency of the access of COL[I].

Another common condition in floating-point codes where memory latency impact is exacerba
the presence of ambiguous memory dependencies. Consider the incomplete Cholesky conju
gradient excerpt kernel, again from the Livermore Fortran Kernel suite.

II = n

IPNTP = 0

222 IPNT = IPNTP

IPNTP = IPNTP + II

II = II/2

I = IPNTP + 1

cdir$ ivdep

DO 2 K = IPNT+2, IPNTP, 2
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   I = I+1

   2   X[I]= X[K] - V[K] * X[K-1] - V[K-1] * X[K+1]

IF (II .GT. 1) GO TO 222

The DO-loop involves an update of X at the index I using X at the indices K, K+1, K-1. Since it is 
difficult for the compiler to establish whether these indices overlap, the loads of X[K], X[K+1] or 
X[K-1] for the next iteration cannot be scheduled until the store of X[I] of the current iteration. 
This exposes the memory latency of access of these operands.

12.2.4 Memory Bandwidth

Floating-point loops are often limited by the rate at which the machine can deliver the operands of 
the computation. The DAXPY kernel from the BLAS1 library is a typical example:

DO 1 I = 1, N

   1   Y[I] = Y[I] + A * X[I]

The computation requires loading two operands (X[I] and Y[I]) and storing one result (Y[I]) 
for each floating-point multiply and add operation. If the data arrays (X and Y) are not in cache, 
then the performance of this loop on most modern microprocessors would be limited by the 
available memory bandwidth on the machine.

12.3 IA-64 Floating-point Features

This section highlights IA-64 features that reduce the impact of the performance limiters described 
in Section 12.2 using illustrative examples.

12.3.1 Large and Wide Floating-point Register Set

As machine cycle times are reduced, the latency in cycles of the execution units generally 
increases. As latency increases, register pressure due to multiple operations in-flight also increases. 
Furthermore as multiple execution units are added, the register pressure increases similarly since 
even more instructions can be in-flight at any one time.

IA-64 provides 128 directly addressable floating-point registers to enable data reuse and to reduce 
the number of load/store operations required due to an insufficient number of registers. This 
reduction in the number of loads and stores can increase performance by changing a computation 
from being memory operation (MOP) limited to being floating-point operation (FLOP) limited. 
Consider the dense matrix multiply code below:

DO 1 i = 1, N

DO 1 j = 1, P

DO 1 k = 1, M

   1 C[i,j] = C[i,j] + A[i,k]*B[k,j]
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In the inner loop (k), 2 loads are required for every multiply and add operation. The MOP:FLOP 
ratio is therefore 1:1. 
L1: ldfd f5 = [r5], 8 // Load A[i,k]

ldfd f6 = [r6], 8 // Load B[k,j]

fma.d.s0 f7= f5, f6, f7 // *,+ to C[i,j]

br.cloop L1

Here, three registers are required to hold the operands (f5, f6) and the accumulator (f7). By 
recognizing the reuse of A[i,k] for different B[k,j] as j is varied, and the reuse of B[k,j] 
for different A[i,k] as i is varied, the computation can be restructured as:

DO 1 i = 1, N, 2

DO 1 j = 1, P, 2

DO 1 k = 1, M

C[i  ,j  ] = C[i  ,j  ] 

+ A[i  ,k]*B[k,j  ]

C[i+1,j  ] = C[i+1,j  ] 

+ A[i+1,k]*B[k,j  ]

C[i  ,j+1] = C[i  ,j+1] 

+ A[i  ,k]*B[k,j+1]

   1 C[i+1,j+1] = C[i+1,j+1] 

+ A[i+1,k]*B[k,j+1]

Now, for every 4 loads, 4 multiplies and adds can be performed, thus changing the MOP:FLOP 
ratio to 1:2. However, 8 registers are now required: 4 for the accumulators and 4 for the operands. 

add r6 = r5, 8

add r8 = r7, 8

L1: ldfd f5 = [r5], 16 // Load A[i,k]

ldfd f6 = [r6], 16 // Load A[i+1,k]

ldfd f7 = [r7], 16 // Load B[k,j]

ldfd f8 = [r8], 16 // Load B[k,j+1]

fma.s0  f9  = f5, f7, f9 // *,+ on C[i,j]

fma.s0 f10 f6, f7, f10 // *,+ on C[i+1,j]

fma.s0 f11 = f5, f8, f11// *,+ on C[i,j+1]

fma.s0 f12 = f6, f8, f12 // *,+ on C[i+1,j+1]

br.cloop L1

With 128 available registers, the outer loops of i and j could be unrolled by 8 each so that 64 
multiplies and adds can be performed by loading just 16 operands. 

The floating-point register file is divided into two regions: a static region (f0-f31) and a rotating 
region (f32-f127). The register rotation provides the automatic register renaming required to 
create compact kernel-only software-pipelined code. Register rotation also enables scheduling 
software pipelined code with an initiation interval that is less than the longest latency operation. For 
e.g. consider the simple vector add loop shown below:

DO 1 i = 1, N

   1 A[i] = B[i] + C[i]
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The basic inner loop is:
L1: ldf f5 = [r5], 8 // Load B[i]

ldf f6 = [r6], 8 // Load C[i]

fadd f7 = f5, f6 // Add operands

stf [r7]= f7, 8 // Store A[i]

br.cloop L1

If we suppose the minimum floating-point load latency is 9 clocks, and 2 memory operations can 
be issued per clock, the above loop has to be unrolled by at least six if there is no register rotation.

add  r8  = r7, 8

L1: (p18) stf  [r7] = f25, 16 // Cycle 17,26 ...

(p18) stf  [r8] = f26, 16 // Cycle 17,26 ...

(p17) fadd f25  = f5, f15 // Cycle 8,17,26 ...

(p16) ldf  f5 = [r5], 8 // Cycle 0,9,18 ...

(p16) ldf  f15 = [r6], 8 // Cycle 0,9,18 ...

(p17) fadd f26  = f6, f16 ;; // Cycle 9,18,27 ...

(p16) ldf  f6 = [r5], 8 // Cycle 1,10,19 ...

(p16) ldf  f16  = [r6], 8 // Cycle 1,10,19 ...

(p18) stf  [r7] = f27, 16 // Cycle 20,29 ...

(p18) stf  [r8] = f28, 16 // Cycle 20,29 ...

(p17) fadd f27 = f7, f17 ;; // Cycle 11,20 ...

(p16) ldf  f7 = [r5], 8 // Cycle 3,12,21 ...

(p16) ldf  f17  = [r6], 8 // Cycle 3,12,21 ...

(p17) fadd f28  = f8, f18 ;; // Cycle 12,21 ...

(p16) ldf  f8  = [r5], 8 // Cycle 4,13,22 ...

(p16) ldf  f18  = [r6], 8 // Cycle 4,13,22 ...

(p18) stf  [r7] = f29, 16 // Cycle 23,32 ...

(p18) stf  [r8] = f30, 16 // Cycle 23,32 ...

(p16) fadd f29  = f9, f19 ;; // Cycle 14,23 ...

(p16) ldf  f9 = [r5], 8 // Cycle 6,15,24 ...

(p16) ldf  f19  = [r6], 8 // Cycle 6,15,24 ...

(p16) fadd f30  = f10, f20 ;;// Cycle 15,24 ...

(p16) ldf  f10  = [r5], 8 // Cycle 7,16,25 ...

(p16) ldf  f20  = [r6], 8 // Cycle 7,16,25 ...

br.ctop L1 ;;

However, with register rotation, the same loop can be scheduled with an initiation interval of just 
2 clocks without unrolling (and 1.5 clocks if unrolled by 2):
L1: (p24) stf [r7] = f57, 8 // Cycle 15,17 ...

(p21) fadd f57  = f37, f47 // Cycle 9,11,13 ...

(p16) ldf f32  = [r5], 8 // Cycle 0,2,4,6 ...

(p16) ldf f42  = [r6], 8 // Cycle 0,2,4,6 ...

 br.ctop L1 ;;

It is thus often advantageous to modulo schedule and then unroll (if required). Please see 
Chapter 11, “Software Pipelining and Loop Support” for details on how to rewrite loops using this
transformation.
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12.3.1.1 Notes on FP Precision

The floating-point registers are 82 bits wide with 17 bits for exponent range, 64 bits for significand 
precision and 1 sign bit. During computation, the result range and precision is determined by the 
computational model chosen by the user. The computational model is indicated either statically in 
the instruction encoding, or dynamically via the precision control (PC) and widest-range-exponent 
(WRE) bits in the floating-point status register. Using an appropriate computational model, the user 
can minimize the error accumulation in the computation. In the above matrix multiply example, if 
the multiply and add computations are performed in full register file range and precision, the results 
(in accumulators) can hold 64 bits of precision and up to 17 bits of range for inputs that might be 
single precision numbers. With the rounding performed at the 64th precision bit (instead of the 24th 
for single precision) a smaller error is accumulated with each multiply and add. Furthermore, with 
17 bits of range (instead of 8 bits for single precision) large positive and negative products can be 
added to the accumulator without overflow or underflow. In addition to providing more accurate 
results the extra range and precision can often enhance the performance of iterative computations 
that are required to be performed until convergence (as indicated by an error bound) is reached.

12.3.2 Multiply-Add Instruction

IA-64 defines the fused multiply-add (fma) as the basic floating-point computation, since it forms 
the core of many computations (linear algebra, series expansion, etc.) and its latency in hardware is 
typically less than the sum of the latencies of an individual multiply operation (with rounding) 
implementation and an individual add operation (with rounding) implementation. 

In computational loops that have a loop carried dependency and whose speed is often determined 
by the latency of the floating-point computation rather than the peak computational rate, the 
multiply-add operation can often be used advantageously. Consider the Livermore FORTRAN 
Kernel 9 – General Linear Recurrence Equations:

DO 191 k= 1,n

B5(k+KB5I)= SA(k) + STB5 * SB(k)

STB5= B5(k+KB5I) - STB5

 191CONTINUE

Since there is a true data dependency between the two statements on variable B5(k+KB5I)) and 
a loop-carried dependency on variable STB5, the loop number of clocks per iteration is entirely 
determined by the latency of the floating-point operations. In the absence of an fma type operation, 
and assuming that the individual multiply and add latencies are 5 clocks each and the loads 
8 cycles, the loop would be:
L1: (p16) ldf f32 = [r5], 8 // Load SA(k)

(p16) ldf f42  = [r6], 8 // Load SB(k)

(p17) fmul f5 = f7, f43;; // tmp,Clk 0,15 ...

(p17) fadd f6 = f33, f5 ;; // B5,Clk 5,20 ...

(p17) stf [r7] = f6, 8 // Store B5

(p17) fsub f7 = f6, f7 // STB5,Clk 10,25 ..

br.ctop L1 ;;
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With an fma, the overall latency of the chain of operations decreases and assuming a 5 cycle fma, 
the loop iteration speed is now 10 clocks (as opposed to 15 clocks above).
L1: (p16) ldf f32  = [r5], 8 // Load SA(k)

(p16) ldf f42 = [r6], 8 // Load SB(k)

(p17) fma f6 = f7, f43, f33;; // B5,Clk 0,10 ...

(p17) stf [r7] = f6, 8 // Store B5

(p17) fsub f7 = f6, f7 // STB5,Clk 5,15 ..

br.ctop L1 ;;

The fused multiply-add operation also offers the advantage of a single rounding error for the pair of 
computations which is valuable when trying to compute small differences of large numbers.

12.3.3 Software Divide/Square Root Sequence

To perform division or square root operations on IA-64, a software based sequence of operations is 
used. The sequence consists of obtaining an initial guess (using frcpa/frsqrta instruction) and 
then refining the guess by performing Newton-Raphson iterations until the error is sufficiently 
small so that it may not affect the rounding of the result. Examples of double precision divide and 
square root sequences, optimized for latency and throughput, are provided below.

Note: For reduced precision, square and divide sequences can be completed with even fewer 
instructions.

12.3.3.1 Double Precision – Divide

Divide (Max Throughput)
(10 Instructions, 8 Groups)

Divide (Min Latency)
(13 Instructions, 7 Groups)

frcpa.s0 f8,p6 = f6,f7 ;;

(p6) fnma.s1 f9 = f7,f8,f1 ;;

(p6) fma.s1 f8 = f9,f8,f8

(p6) fma.s1 f9 = f9,f9,f0 ;;

(p6) fma.s1  f8 = f9 ,f8,f8

(p6) fma.s1 f9 = f9,f9,f0 ;;

(p6) fma.s1 f8 = f9,f8,f8 ;;

(p6) fma.d.s1 f9 = f6,f8,f0 ;;

(p6) fnma.d.s1 f6 = f7,f9,f6 ;;

(p6) fma.d.s0 f8 = f6,f8,f9

frcpa.s0 f8,p6 = f6,f7 ;;

(p6) fma.s1 f9 = f6,f8,f0

(p6) fnma.s1 f10 = f7,f8,f1 ;;

(p6) fma.s1 f9 = f10,f9,f9

(p6) fma.s1 f11 = f10,f10,f0

(p6) fma.s1 f8 = f10,f8,f8 ;;

(p6) fma.s1 f9 = f11,f9,f9

(p6) fma.s1 f10 = f11,f11,f0

(p6) fma.s1 f8 = f11,f8,f8 ;;

(p6) fma.d.s1 f9 = f10,f9,f9

(p6) fma.s1 f8 = f10,f8,f8 ;;

(p6) fnma.d.s1 f6 = f7,f9,f6 ;;

(p6) fma.d.s0 f8 = f6,f8,f9
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12.3.3.2 Double Precision – Square Root

For divide, the first instruction (frcpa) provides an approximation (good to 8 bits) of the 
reciprocal of f7 and sets the predicate (p6) to 1, if the ratio f6/f7 can be obtained using the 
prescribed Newton-Raphson iterations. If, however, the ratio f6/f7 is special (finite/0, finite/
infinite, etc) the final result of f6/f7 is provided in f8 and the predicate (p6) is cleared. For 
certain boundary conditions (when the operand values (f6 and f7) are well outside the single 
precision, double precision and even double-extended precision ranges) frcpa will cause a software 
assist fault and the software handler will produce the ratio f6/f7 and return it in f8 and clear the 
predicate (p6).

The multiple status fields provided in the FPSR are used in these sequences. S0 is the main 
(architectural) status field and it is written to by the first operation (frcpa) to signal any faults (V, 
Z, D), and by the last operation to signal any traps. The conditions of all intermediate operations are 
ignored by writing them to S1. Thus these sequences not only obtain the correct IEEE 754 specified 
result (in f8) but the flags are also set (in S0) as per the standard’s requirements. If the divid
part of a speculative chain of operations that is using S2 as its status field, then S0 should be
replaced with S2 in these sequences. S1 can still be used by the intermediate operations of 
divide sequences (i.e. those that target S0, S2, or S3) since its flags are all discarded.

When divide and square-root operations appear in vectorizable loops, it is often very advanta
to have these operations be performed in software rather than hardware. In software, these 
operations can be pipelined and the overall throughput be improved, whereas in hardware th
operations are typically not pipelineable.

Square Root (Max Throughput)a

(14 Instructions, 10 Groups)

a. The following value is assumed preset: f10=1/2.

Square Root (Min Latency)b

(17 Instructions, 9 Groups)

b. The following values are assumed preset: f9=1/2, f10=3/2, f11=5/2, f12=63/8, f13=231/16, 
f14=35/8.

frsqrta.s0 f7,p6=f6 ;;

  (p6) fma.s1 f8=f10,f7,f0

  (p6) fma.s1 f7=f6,f7,f0 ;;

  (p6) fnma.s1 f9=f7,f8,f10 ;;

  (p6) fma.s1 f8=f9,f8,f8

  (p6) fma.s1 f7=f9,f7,f7 ;;

  (p6) fnma.s1 f9=f7,f8,f10 ;;

  (p6) fma.s1 f8=f9,f8,f8

  (p6) fma.s1 f7=f9,f7,f7 ;;

  (p6) fnma.s1 f9=f7,f8,f10 ;;

  (p6) fma.s1 f8=f9,f8,f8

  (p6) fma.d.s1 f7=f9,f7,f7 ;;

  (p6) fnma.s1 f9=f7,f7,f6 ;;

  (p6) fma.d.s0 f7=f9,f8,f7 ;;

frsqrta.s0 f7,p6=f6 ;;

  (p6) fma.s1 f8=f9,f7,f0

  (p6) fma.s1 f7=f6,f7,f0 ;;

  (p6) fnma.s1 f9=f7,f8,f9 ;;

  (p6) fma.s1 f10=f11,f9,f10

  (p6) fma.s1 f11=f9,f9,f0

  (p6) fma.s1 f12=f13,f9,f12 ;;

  (p6) fma.s1 f10=f11,f10,f9

  (p6) fma.s1 f11=f11,f11,f0

  (p6) fma.s1 f9=f9,f12,f14 ;;

  (p6) fma.s1 f12=f10,f7,f7

  (p6) fma.s1 f7=f7,f11,f0

  (p6) fma.s1 f10=f11,f9,f10 ;;

  (p6) fma.d.s1 f7=f9,f7,f12

  (p6) fma.s1 f8=f10,f8,f8 ;;

  (p6) fnma.s1 f9=f7,f7,f6 ;;

  (p6) fma.d.s0 f7=f9,f8,f7 ;;
12-8 Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0



t’s 
g the 
th.

ta type 
 from 
s are 

gister 
 can 
ting 
n 
uble 
 to 
lso 

elds. 

 
t. In 

d these 

ulated 
mitted 
elds 2 
Another significant advantage of the software based divide/square-root computations is that the 
accuracy of the result can be controlled by the user and can be traded off for speed. This trade-off is 
often used in graphics codes where the divide accuracy of about 14-bits suffices and the sequence 
can be shorter than that used for single or double precision.

12.3.4 Computational Models

IA-64 offers complete user control of the computational model. The user can select the resul
precision and range, the rounding mode, and the IEEE trap response. Appropriately selectin
computational model can result in code that has greater accuracy, higher performance, or bo

The register file format is uniform for the 3 memory data types – single, double and 
double-extended. Since all the computations are performed on registers (regardless of the da
of its content) operands of different types can be easily combined. Also since the conversion
the memory type to the register file format is done on loads automatically no extra operation
required to perform the format conversion.

The C syntax semantics is also easily emulated. Loads convert all input operands into the re
file format automatically. Data operands of different types, now residing in register file format
be operated upon and all intermediate results coerced to double precision by statically indica
the result precision in the instruction encoding. The computation leading to the final result ca
specify the result precision and range (statically in the instruction encoding for single and do
precision, and dynamically in the status field bits for double-extended precision). Compliance
the IA-32 FP computational style (range=extended, precision=single/double/extended) can a
achieved using the status field bits. 

12.3.5 Multiple Status Fields

The FPSR is divided into 1 main (architectural) status field and 3 additional identical status fi
These additional status fields could be used to performance advantage.

First, divide and square-root sequences (described in Section 12.3.3) contain operations that might
cause intermediate results to overflow/underflow or be inexact even if the final result may no
order to maintain correct IEEE flag status the status flags of these computations need to be 
discarded. One of these additional status fields (typically status field 1) can be used to discar
flags.

Second, speculating floating-point operations requires maintaining the status flags of the spec
operations distinct from the architectural status flags until the speculated operations are com
to architectural state (if they ever are). One of these additional status fields (typically status fi
or 3) can be used for this purpose. 

Consider the Livermore FORTRAN kernel 16 – Monte Carlo Search
DO 470 k= 1,n

k2= k2+1

j4= j2+k+k

j5= ZONE(j4)

IF( j5-n      ) 420,475,450

  415 IF( j5-n+II   ) 430,425,425
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  420 IF( j5-n+LB   ) 435,415,415

  425 IF( PLAN(j5)-R) 445,480,440

  430 IF( PLAN(j5)-S) 445,480,440

  435 IF( PLAN(j5)-T) 445,480,440

  440 IF( ZONE(j4-1)) 455,485,470

  445 IF( ZONE(j4-1)) 470,485,455

  450 k3= k3+1

IF( D(j5)-(D(j5-1)*(T-D(j5-2))**2

     , +(S-D(j5-3))**2

     ,        +(R-D(j5-4))**2)) 445,480,440

  455 m= m+1

IF( m-ZONE(1) ) 465,465,460

  460 m= 1

  465 IF( i1-m) 410,480,410

  470 CONTINUE

  475 CONTINUE

  480 CONTINUE

  485 CONTINUE

Profiling indicates that the conditional after statement 450 is most frequently executed. It is 
therefore advantageous to speculatively execute the computation in the conditional while the 
conditionals in 415...445 are being evaluated. In the event that any of the conditionals in 415...445 
cause the control to be moved on beyond 450 the results (and flags) of the speculatively computed 
operations (of the conditional after statement 450) can be discarded.

The availability of multiple additional status fields can allow a user to maintain multiple 
computational environments and to dynamically select among them on an operation by operation 
basis. One such use is in the implementation of interval arithmetic code where each primitive 
operation is required to be computed in two different rounding modes to determine the interval of 
the result.

12.3.6 Other Features

IA-64 offers a number of other architectural constructs to enhance the performance of different 
computational situations.

12.3.6.1 Operand Screening Support

Operand screening is often a required or useful step prior to a computation. The operand may be 
screened to ensure that it is in a valid range (e.g. finite positive or zero input to square-root; 
non-zero divisor for divide) or it may be screened to take an early out – the result of the 
computation is predetermined or could be computed more efficiently in another way. The fclass 
instruction can be used to classify the input operand to either be or not be a part of a set of c
Consider the following code used for screening invalid operands for square-root computation

IF (A .EQ. NATVAL OR 
A .EQ. SNAN OR A .EQ. QNAN OR 
A .EQ. NEG_INF OR A .EQ. POS_INF OR
A .LT. 0.0D0) THEN

WRITE (*, “INVALID INPUT OPERAND”)
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ELSE

WRITE (*, “SQUARE-ROOT = “, SQRT(A))

ENDIF

The above conditional can be determined by two fclass instructions as indicated below:
fclass.m p1, p2 = f2, 0x1E3 ;;// Detect NaTVal, NaN, +Inf or -Inf

(p2)fclass.m p1, p2 = f2, 0x01A // Detect -Norm or -Unorm

The resultant complimentary predicates (p1 and p2) can be used to control the ELSE and THEN 
statements respectively.

12.3.6.2 Min/Max/AMin/AMax

IA-64 provides direct instruction level support for the FORTRAN intrinsic MIN(a,b) or the 
equivalent C idiom: a<b ? a : b and the FORTRAN intrinsic MAX(b, a) or the equivalent 
C idiom: a<b ? b : a. These instructions can enhance performance by avoiding the function 
call overhead in FORTRAN, and by reducing the critical path in C. The instructions are designed to 
mimic the C statement behavior so that they can be generated by the compiler. They are also not 
commutative. By appropriately selecting the input operand order, the user can either ignore or catch 
NaNs.

Consider the problem of finding the minimum value in an array (similar to the Livermore 
FORTRAN kernel 24):

XMIN = X(1)

DO 24  k= 2,n

 24 IF(X(k) .LT. XMIN)  XMIN = X(k)

Since NaNs are unordered, comparison with NaNs (including LT) will return false. Hence if the 
above code is implemented as:

ldf f5 = [r5], 8 ;;

L1: ldf f6 = [r5], 8

fmin f5 = f6, f5

br.cloop L1 ;;

NaNs in the array (X) will be ignored.

If the value in the array X (loaded in f6) is a NaN, the new minimum value (in f5) will remain 
unchanged, since the NaN will fail the .LT. comparison and fmin will return the second 
argument – in this case the old minimum value in f5.

However, if the code is implemented as:
ldf f5 = [r5], 8 ;;

L1: ldf f6 = [r5], 8

fmin f5 = f5, f6

br.cloop L1 ;;

NaNs in the array (X) will reset the minimum value.
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Now, if the value in the array X (loaded in f6) is a NaN, the new minimum value (in f5) will be set 
to the NaN, since the NaN will fail the .LT. comparison and fmin will return the second argument 
– in this case the NaN in f6. In the next iteration, the new array value (loaded in f6) will becom
the new minimum.

famin/famax perform the comparison on the absolute value of the input operands (i.e. they
ignore the sign bit) but otherwise operate in the same (non-commutative) way as the fmin/fmax 
instructions.

12.3.6.3 Integer/Floating-point Conversion

Unsigned integers are converted to their equivalently valued floating-point representations b
simply moving the integer to the significand field of the floating-point register using the setf.s
instruction. The resulting floating-point value would be in its unnormal representation (unless
unsigned integer was greater than 263). 

Conversions from signed integers to floating-point and from floating-point to signed or unsign
integers are accomplished by fcvt.xf and fcvt.fx/fcvt.fxu instructions respectively. 
However, since signed integers are converted directly to their canonical floating-point 
representations, they do not need to be normalized after conversion.

12.3.6.4 FP Subfield Handling

It is sometimes useful to assemble a floating-point value from its constituent fields. Multiplica
and division of floating-point values by powers of two, for example, can be easily accomplishe
appropriately adjusting the exponent. IA-64 provides instructions that allow moving floating-p
fields between the integer and floating-point register files. Division of a floating-point number
2.0 is accomplished as follows:

getf.exp r5 = f5 // Move S+Exp to int

add r5 = r5, -1 // Sub 1 from Exp

setf.exp f6 = r5 // Move S+Exp to FP

fmerge.se f5 = f6, f5 // Merge S+E w/ Mant

Floating-point values can also be constructed from fields from different floating-point register

12.3.7 Memory Access Control

Recognizing the trend of growing memory access latency, and the implementation costs of h
bandwidth, IA-64 incorporates many architectural features to help manage the memory hiera
and increase performance. As described in Section 12.2, memory latency and bandwidth are 
significant performance limiters in floating-point applications. IA-64 offers features to address
these limitations.

In order to enhance the core bandwidth to the floating-point register file, IA-64 defines load-p
instructions. In order to mitigate the memory latency, IA-64 defines explicit and implicit data 
prefetch instructions. In order to maximize the utilization of caches, IA-64 defines locality 
attributes as part of memory access instructions to help control the allocation (and de-allocat
data in the caches. For instances where the instruction bandwidth may become a performan
limiter, IA-64 defines machine hints to trigger relevant instruction prefetches.
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12.3.7.1 Load-pair Instructions

The floating-point load pair instructions enable loading two contiguous values in memory to two 
independent floating-point registers. The target registers are required to be odd and even physical 
registers so that the machine can utilize just one access port to accomplish the register update. 

Note: The odd/even pair restriction is on physical register numbers, not logical register numbers. 
A programming violation of this rule will cause an illegal operation fault.

For example, suppose a machine that can issue 2 FP instructions per cycle, provides sufficient 
bandwidth from the second level cache (L2) to sustain 2 load-pairs every cycle. Then loops that 
require up to 2 data elements (of 8 bytes each) per floating-point instruction can run at peak speeds 
when the data is resident in L2. A common example of such a case is a simple double precision dot 
product – DDOT:

DO 1 I = 1, N

  1 C = C + A(I) * B(I)

The inner loop consists of two loads (for A and B) and a multiply-add (to accumulate the product o
C). The loop would run at the latency of the fma due to the recurrence on C. In order to brea
recurrence on C, the loop is typically unrolled and multiple partial accumulators are used.

DO 1 I = 1, N, 8

C1 = C1 + A[I] * B[I]

C2 = C2 + A[I+1] * B[I+1]

C3 = C3 + A[I+2] * B[I+2]

C4 = C4 + A[I+3] * B[I+3]

C5 = C5 + A[I+4] * B[I+4]

C6 = C6 + A[I+5] * B[I+5]

C7 = C7 + A[I+6] * B[I+6]

  1 C8 = C8 + A[I+7] * B[I+7]

C = C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8

If normal (non-double pair) loads are used, the inner loop would consist of 16 loads and 8 fm
we assume the machine has two memory ports, this loop would be limited by the availability
slots and run at a peak rate of 1 clock per iteration. However, if this loop is rewritten using 8 
load-pairs (for A[I], A[I+1] and B[I], B[I+1] and A[I+2], A[I+3] and B[I+2], 
B[I+3] and so on) and 8 fmas this loop could run at a peak rate of 2 iterations per clock (or
0.5 clocks per iteration) with just two M-units.

12.3.7.2 Data Prefetch

lfetch allows the advance prefetching of a line (defined as 32 bytes or more) of data into th
cache from memory. Allocation hints can be used to indicate the nature of the locality of the 
subsequent accesses on that data and to indicate which level of cache that data needs to be
promoted to.

While regular loads can also be used to achieve the effect of data prefetching, (if the load tar
never used) lfetches can more effectively reduce the memory latency without using floating-p
registers as targets of the data being prefetched. Furthermore lfetch allows prefetching the data 
to different levels of caches.
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12.3.7.3 Allocation Control

Since data accesses have different locality attributes (temporal/non-temporal, spatial/non-spatial), 
IA-64 allows annotating the data accesses (loads/stores) to reflect these attributes. Based on these 
annotations, the implementation can better manage the storage of the data in the caches.

Temporal and Non-temporal hints are defined. These attributes are applicable to the various cache 
levels. (Only two cache levels are architecturally identified). The non-temporal hint is best used for 
data that typically has no reuse with respect to that level of cache. The temporal hint is used for all 
other data (that has reuse).

12.4 Summary

This chapter describes the limiting factors for many scientific and floating-point applications: 
memory latency and bandwidth, functional unit latency, and number of available functional units. It 
also describes the important features of IA-64 floating-point support beyond the 
software-pipelining support described in Chapter 11, “Software Pipelining and Loop Support” that 
help to overcome some of these performance limiters. Architectural support for speculation, 
rounding, and precision control are also described.

Examples in the chapter include how to implement floating-point division and square root, 
common scientific computations such as reductions, use of features such as the fma instruction, 
and various Livermore kernels.
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