#include "stdlib.h" #include "stdio.h" #include "math.h" #include "texture.h" #include #ifndef __sgi /* Most math.h's do not define float versions of the trig functions. */ #define sinf sin #define cosf cos #define atan2f atan2 #endif /* Some files do not define M_PI... */ #ifndef M_PI #define M_PI 3.14159265358979323846 #endif static int billboard = 1, texture = 1; static float scale = 1.; static float transx = 1.0, transy, rotx, roty; static int ox = -1, oy = -1; static int mot = 0; #define PAN 1 #define ROT 2 void pan(const int x, const int y) { transx += (x-ox)/500.; transy -= (y-oy)/500.; ox = x; oy = y; glutPostRedisplay(); } void rotate(const int x, const int y) { rotx += x-ox; if (rotx > 360.) rotx -= 360.; else if (rotx < -360.) rotx += 360.; roty += y-oy; if (roty > 360.) roty -= 360.; else if (roty < -360.) roty += 360.; ox = x; oy = y; glutPostRedisplay(); } void motion(int x, int y) { if (mot == PAN) pan(x, y); else if (mot == ROT) rotate(x,y); } void mouse(int button, int state, int x, int y) { if(state == GLUT_DOWN) { switch(button) { case GLUT_LEFT_BUTTON: mot = PAN; motion(ox = x, oy = y); break; case GLUT_MIDDLE_BUTTON: break; case GLUT_RIGHT_BUTTON: mot = ROT; motion(ox = x, oy = y); break; } } else if (state == GLUT_UP) { mot = 0; } } void afunc(void) { static int state; if (state ^= 1) { glAlphaFunc(GL_GREATER, .01); glEnable(GL_ALPHA_TEST); } else { glDisable(GL_ALPHA_TEST); } } void demofunc(void) { static float deltax = -.03; static float deltay = 2.; transx += deltax; if (transx > 2.0 || transx < -2.0) deltax = -deltax; rotx += deltay; if (rotx > 360.f || rotx < 0.f) deltay = -deltay; glutPostRedisplay(); } void dfunc(void) { static int demo; if (demo ^= 1) { glutIdleFunc(demofunc); } else { glutIdleFunc(0); } } void bfunc(void) { static int state; if (state ^= 1) { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_BLEND); } else { glDisable(GL_BLEND); } } void ffunc(void) { billboard ^= 1; } void tfunc(void) { texture ^= 1; } void up(void) { scale += .1; } void down(void) { scale -= .1; } void help(void) { printf("Usage: billboard [image]\n"); printf("'h' - help\n"); printf("'a' - toggle alpha test\n"); printf("'b' - toggle blend\n"); printf("'d' - toggle demo mode\n"); printf("'f' - toggle fixed mode\n"); printf("'t' - toggle texturing\n"); printf("'UP' - scale up\n"); printf("'DOWN' - scale down\n"); printf("left mouse - pan\n"); printf("right mouse - rotate\n"); } void init(char *filename) { static unsigned *image; static int width, height, components; if (filename) { image = read_texture(filename, &width, &height, &components); if (image == NULL) { fprintf(stderr, "Error: Can't load image file \"%s\".\n", filename); exit(EXIT_FAILURE); } else { printf("%d x %d image loaded\n", width, height); } if (components != 4) { printf("must be an RGBA image\n"); exit(EXIT_FAILURE); } } else { int i, j; unsigned char *img; components = 4; width = height = 256; image = (unsigned *) malloc(width*height*sizeof(unsigned)); img = (unsigned char *)image; for (j = 0; j < height; j++) for (i = 0; i < width; i++) { int w2 = width/2, h2 = height/2; if ((i & 32) ^ (j & 32)) { img[4*(i+j*width)+0] = 0xff; img[4*(i+j*width)+1] = 0xff; img[4*(i+j*width)+2] = 0xff; } else { img[4*(i+j*width)+0] = 0x0; img[4*(i+j*width)+1] = 0x0; img[4*(i+j*width)+2] = 0x0; } if ((i-w2)*(i-w2) + (j-h2)*(j-h2) > 64*64 && (i-w2)*(i-w2) + (j-h2)*(j-h2) < 300*300) img[4*(i+j*width)+3] = 0xff; } } glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexImage2D(GL_TEXTURE_2D, 0, components, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, image); glEnable(GL_TEXTURE_2D); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(50.,1.,.1,10.); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glTranslatef(0.,0.,-5.5); glClearColor(.25f, .25f, .25f, .25f); glEnable(GL_DEPTH_TEST); } static void calcMatrix(void); void display(void) { #if NATE float mat[16]; #endif glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); glLoadIdentity(); #define RAD(x) (((x)*M_PI)/180.) gluLookAt(-sinf(RAD(rotx))*5.5,transy,cosf(RAD(rotx))*5.5, 0.,0.,0., 0.,1.,0.); #if NATE glGetFloatv(GL_MODELVIEW_MATRIX, mat); #endif /* floor */ glDisable(GL_TEXTURE_2D); glColor4f(0.2, 0.8, 0.2, 1.); glBegin(GL_POLYGON); glVertex3f(-2.0, -1.0, -2.0); glVertex3f( 2.0, -1.0, -2.0); glVertex3f( 2.0, -1.0, 2.0); glVertex3f(-2.0, -1.0, 2.0); glEnd(); glPushMatrix(); #if 0 glTranslatef(transx, transy, 0.f); glRotatef(rotx, 0., 1., 0.); glRotatef(roty, 1., 0., 0.); #endif glTranslatef(0.f, 0.f, -transx); if (billboard) calcMatrix(); glScalef(scale,scale,1.); if (texture) glEnable(GL_TEXTURE_2D); glColor4f(1.f, 1.f, 1.f, 1.f); glBegin(GL_POLYGON); glTexCoord2f(0.0, 0.0); glVertex2f(-1.0, -1.0); glTexCoord2f(1.0, 0.0); glVertex2f(1.0, -1.0); glTexCoord2f(1.0, 1.0); glVertex2f(1.0, 1.0); glTexCoord2f(0.0, 1.0); glVertex2f(-1.0, 1.0); glEnd(); glPopMatrix(); glutSwapBuffers(); } void reshape(int w, int h) { glViewport(0, 0, w, h); } /*ARGSUSED*/ void key(unsigned char key, int x, int y) { switch(key) { case 'a': afunc(); break; case 'd': dfunc(); break; case 'b': bfunc(); break; case 'f': ffunc(); break; case 't': tfunc(); break; case 'h': help(); break; case '\033': exit(EXIT_SUCCESS); break; default: break; } glutPostRedisplay(); } /*ARGSUSED*/ void special(int key, int x, int y) { switch(key) { case GLUT_KEY_UP: up(); break; case GLUT_KEY_DOWN: down(); break; } glutPostRedisplay(); } int main(int argc, char** argv) { glutInitWindowSize(512, 512); glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGBA|GLUT_DOUBLE|GLUT_DEPTH); (void)glutCreateWindow("billboard"); init(argv[1]); glutDisplayFunc(display); glutKeyboardFunc(key); glutSpecialFunc(special); glutReshapeFunc(reshape); glutMouseFunc(mouse); glutMotionFunc(motion); glutMainLoop(); return 0; } void buildRot(float theta, float x, float y, float z, float m[16]) { float d = x*x + y*y + z*z; float ct = cosf(RAD(theta)), st = sinf(RAD(theta)); /* normalize */ if (d > 0) { d = 1/d; x *= d; y *= d; z *= d; } m[ 0] = 1; m[ 1] = 0; m[ 2] = 0; m[ 3] = 0; m[ 4] = 0; m[ 5] = 1; m[ 6] = 0; m[ 7] = 0; m[ 8] = 0; m[ 9] = 0; m[10] = 1; m[11] = 0; m[12] = 0; m[13] = 0; m[14] = 0; m[15] = 1; /* R = uu' + cos(theta)*(I-uu') + sin(theta)*S * * S = 0 -z y u' = (x, y, z) * z 0 -x * -y x 0 */ m[0] = x*x + ct*(1-x*x) + st*0; m[4] = x*y + ct*(0-x*y) + st*-z; m[8] = x*z + ct*(0-x*z) + st*y; m[1] = y*x + ct*(0-y*x) + st*z; m[5] = y*y + ct*(1-y*y) + st*0; m[9] = y*z + ct*(0-y*z) + st*-x; m[2] = z*x + ct*(0-z*x) + st*-y; m[6] = z*y + ct*(0-z*y) + st*x; m[10]= z*z + ct*(1-z*z) + st*0; } static void calcMatrix(void) { float mat[16]; glGetFloatv(GL_MODELVIEW_MATRIX, mat); buildRot(-180*atan2f(mat[8], mat[10])/M_PI, 0, 1, 0, mat); glMultMatrixf(mat); }