Physics in Games

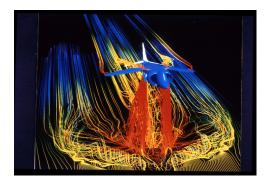
Matthias Müller

www.MatthiasMueller.info

Outline

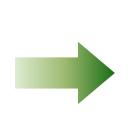
- Comparison
 - Physical simulations in engineering
 - Offline physics in graphics (mostly movies)
 - Interactive physics
 - Real time physics in games
- Position Based Dynamics
 - Algorithm
 - Examples: cloth, rigid bodies, fluids, unified solver
- Q&A

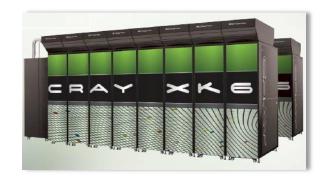
Simulations in Engineering



- Complement real experiments
- Extreme conditions, spatial scale, time scale
- Accuracy most important factor
- Low accuracy: Useless result!
- One central gigantic computer

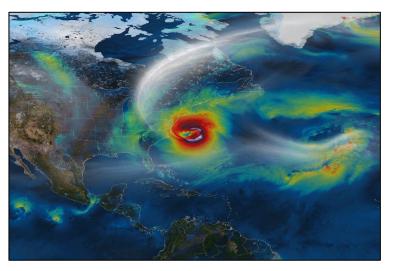
Evolution of Compute Power





Zuse's Z1 (1938) 0.2 ops Titan (currently number 2) using 18,000 nvidia GPUs ~27,000,000,000,000 flops!

Simulation of Hurricane Sandy



- National Center for Supercomputing Applications
- 9120 x 9216 x 48 cells (500 m)
- 13,680 nodes and 437,760 cores on Titan
- Sustained rate of 285 teraflops

Physics in Graphics

Re-inventing the Wheel?

- Since late 80's [Terzopoulos et al. 87, 88]
- Rediscoveries
 - Semi-Lagrangian advection, co-rotational FEM,
 X introduced Y to graphics (SPH, MPM, FLIP, ...)
- Goals of physics in graphics
 - Imitation of physical phenomena / effects
 - Plausible behavior (cheating possible)
 - Trade accuracy for speed, stability, simplicity
 - Control (by director / game developer)
- New goals require new methods!

Offline Methods

[Emmerich, Movie 2012]

- Main application: Movies
- >> 1 sec of computation for 1 sec of simulation allows:
 - High resolution (fluid grid, FEM mesh, time steps)
 - Re-runs and adaptive time steps
 - Time consuming shading

Interactive Physics

- Between offline and game physics
- Virtual surgery, virtual reality, demos
- All available compute power
- > 15 fps
- No adaptive time steps
- Robust
 - No re-runs
 - Unforeseeable situations

Water Demo (GTC 2012)

• First time real-time Eulerian water sim + ray tracing

2 x GTX 680 Multi-grid [Chentanez et al., 2011] OptiX

Dragon

• Eulerian fluid simulation + combustion model + volumetric rendering

Physics in Games

Game Requirements

- Cheap to compute
 - 30-60 fps of which physics only gets a small fraction
- Low memory consumption
 - Consoles, fit into graphics (local) memory
- Stable in extreme settings
 - 180 degree turns in one time step
- High level of control
- Challenge
 - Meet all these constraints
 - Get to offline results as close as possible

Speedup Tricks

- Reduce simulation resolution
 - Simple: Use same algorithms
 - Interesting details disappear
- Reduce dimension (e.g. $3d \rightarrow 2d$)
- Use different resolution for physics and appearance
- Simulate only in active regions (sleeping)
- Camera dependent level of detail (LOD)
- Invent new simulation methods!
- Use nvidia GPUs and CUDA! ③

Game Physics Methods

Animation

- Pros:
 - Can be and still is used for almost everything (3d movie playback)
 - Full control
 - What artists are used to do
- Cons
 - Time consuming manual work
 - Hard to handle complex phenomena
 - Repeating behavior

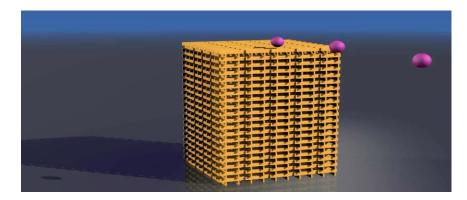
Particle Physics

- Simplest and very popular form of physics effect
 - droplets, smoke, fire, debris [Reeves, 1983]
- Effects physics vs. game play physics
 - does not influence game play, no path blocking
- Most expensive part:
 - collision detection with large environments
 - particle-particle interaction (often not needed)
 - Advection by incompressible velocity field (fluid solver)

- " "

Rigid Bodies

- Game physics engines
 rigid body engines
- Challenges
 - Stability (stacking)
 - Speed (solver and collision detection)
 - Continuous collision detection (fast moving objects)
- Rarely in-house
- Middleware popular (PhysX, havok, bullet)



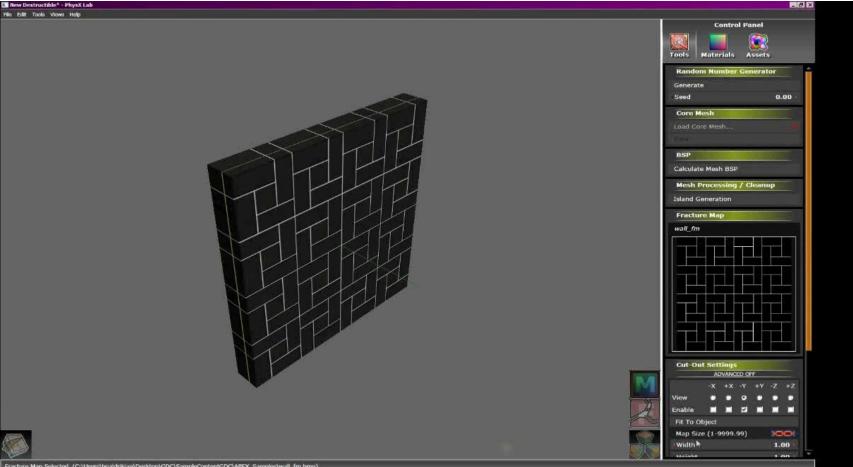
inthevif with blender & bullet

Destruction

- Traditional: static fracture
- Artists pre-fracture models
- Models are replaced by parts when collision forces exceed a threshold
- Pro:
 - High level of control
- Cons:
 - Tedious manual work
 - Independent of impact location

PhysX Destruction Tool

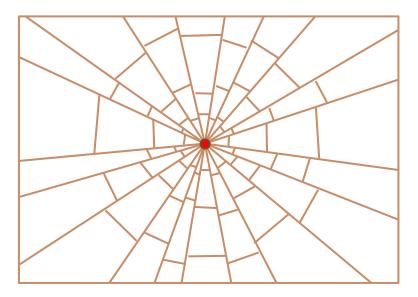
New Destructible* - PhysX Lab



Fracture Map Selected. (C:\Users\bgaldrikian\Desktop\GDC\SampleContentGDC\APEX_Samples\wall_fm.bmp)

Pattern Based Fracture

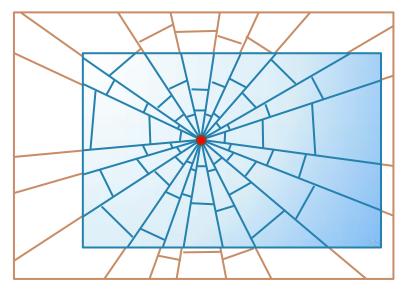
[Müller et al., 2013]



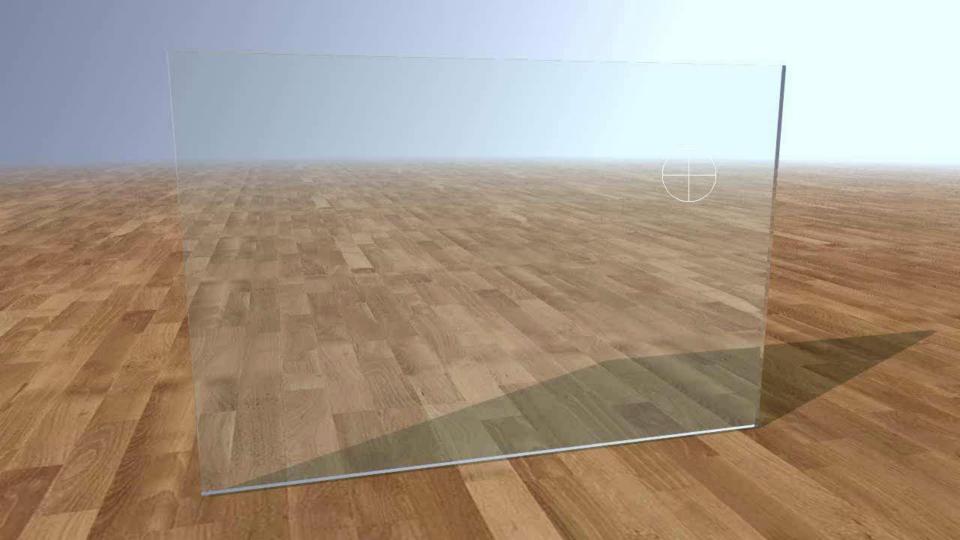
• Pre-designed fracture pattern

Pattern Based Fracture

[Müller et al., 2013]



- Pre-designed fracture pattern
- Align pattern with impact location at runtime
- Use pattern as stencil



Arena Destruction

(SG 2013 real time live)

- 500k faces at start
- GPU1: rigid body simulation
- GPU2: smoke, rendering
- CPU: dynamic fracturing

Deformable Objects

• 1d: Ropes, hair

• 2d: Cloth, clothing

• 3d: Fat guys, tires

Existing Methods

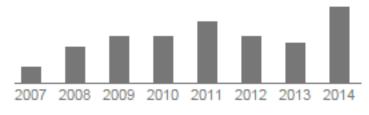
- Force based
- Mass-Spring Systems / FEM
- Explicit integration unstable
- Implicit integration
 - Expensive
 - Large time steps for real time simulation needed
 - Numerical damping

Position Based Dynamics

[Müller et al., 2006]

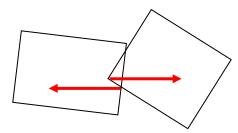
Position Based Dynamics

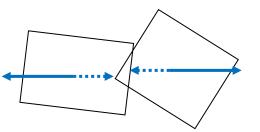
[Müller et al., 2006]

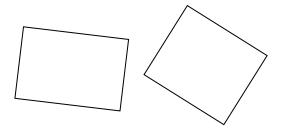


[google scholar]

Force Based Update





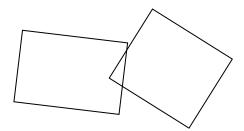


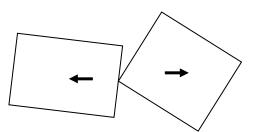
penetration causes forces

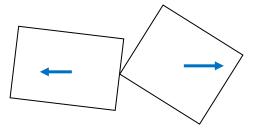
forces change velocities velocities change positions

- Reaction lag
- Small spring stiffness → squashy system
- Large spring stiffness → stiff system, overshooting

Position Based Update







penetration detection only

move objects so that they do not penetrate

update velocities!

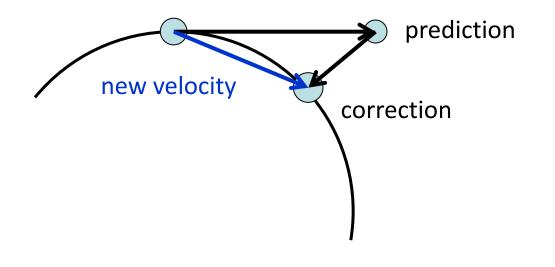
- Controlled position change
- Only as much as needed \rightarrow no overshooting
- Velocity update needed to get 2nd order system!

Position Based Integration

init x ₀ , v ₀ loop		$\mathbf{x}_n, \mathbf{v}_n, \mathbf{p}, \mathbf{u} \in \mathbb{R}^{3N}$
р	$\leftarrow \mathbf{x}_n + \Delta t \cdot \mathbf{v}_n$	prediction
\mathbf{x}_{n+1}	\leftarrow modify p	position correction
u	$\leftarrow (\mathbf{x}_{n+1} - \mathbf{x}_n) / \Delta t$	velocity update
\mathbf{v}_{n+1}	\leftarrow modify u	velocity correction
end loop		

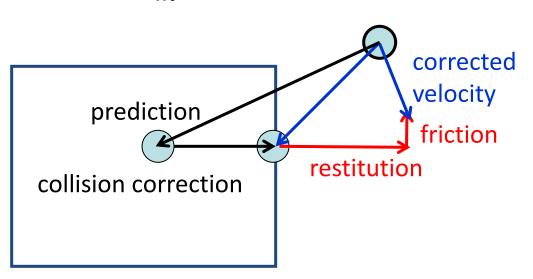
Position Correction

• Example: Particle on circle

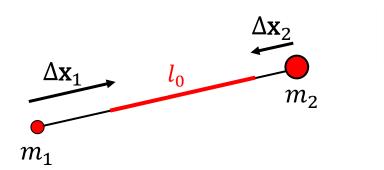


Velocity Correction

- External forces: $\mathbf{v}_{n+1} = \mathbf{u} + \Delta t \frac{\mathbf{g}}{m}$
- Internal damping
- Friction
- Restitution



Distance Constraint



$$\Delta \mathbf{x}_{1} = -\frac{w_{1}}{w_{1} + w_{2}} (|\mathbf{x}_{1} - \mathbf{x}_{2}| - l_{0}) \frac{\mathbf{x}_{1} - \mathbf{x}_{2}}{|\mathbf{x}_{1} - \mathbf{x}_{2}|}$$
$$\Delta \mathbf{x}_{2} = +\frac{w_{2}}{w_{1} + w_{2}} (|\mathbf{x}_{1} - \mathbf{x}_{2}| - l_{0}) \frac{\mathbf{x}_{1} - \mathbf{x}_{2}}{|\mathbf{x}_{1} - \mathbf{x}_{2}|}$$

- Conservation of momentum
- Stiffness: scale corrections by $k \in [0,1]$
 - Easy to tune
 - Effect dependent on time step size and iteration count
 - Often constant in games

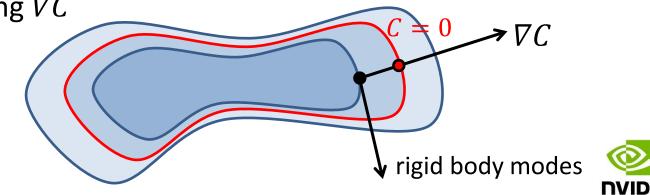
General Internal Constraint

• Define constraint via scalar function:

 $C_{dist}(\mathbf{x}_1, \mathbf{x}_2) = |\mathbf{x}_1 - \mathbf{x}_2| - l_0$

$$C_{volume}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4) = [(\mathbf{x}_2 - \mathbf{x}_1) \times (\mathbf{x}_3 - \mathbf{x}_1)] \cdot (\mathbf{x}_4 - \mathbf{x}_1) - 6v_0$$

- Find configuration for which C = 0
- Search along ∇C



Constraint Projection

$$C(\mathbf{x} + \Delta \mathbf{x}) = 0$$

- Linearization (equal for distance constraint) $C(\mathbf{x} + \Delta \mathbf{x}) \approx C(\mathbf{x}) + \nabla C(\mathbf{x})^T \Delta \mathbf{x} = 0$
- Correction vectors

$$\Delta \mathbf{x} = \lambda \, \nabla C(\mathbf{x}) \qquad \qquad \Delta \mathbf{x} = \lambda \, \mathrm{M}^{-1} \nabla C(\mathbf{x})$$

$$\lambda = -\frac{C(\mathbf{x})}{\nabla C(\mathbf{x})^T \nabla C(\mathbf{x})}$$

$$\lambda = -\frac{C(\mathbf{x})}{\nabla C(\mathbf{x})^T \mathbf{M}^{-1} \nabla C(\mathbf{x})}$$

$$\mathbf{M} = diag(m_1, m_2, \dots, m_n)$$

Constraint Solver

- Gauss-Seidel
 - Iterate through all constraints and apply projection
 - Perform multiple iterations
 - Simple to implement
 - Atomic operations required for parallelization
- Modified Jacobi
 - Process all constraints in parallel
 - Accumulate corrections
 - After each iteration, average corrections [Bridson et al., 2002]
- Both known for slow convergence

Global Solver [Goldenthal et al., 2007]

• Constraint vector

$$C(\mathbf{x}) = \begin{bmatrix} C_1(\mathbf{x}) \\ \cdots \\ C_M(\mathbf{x}) \end{bmatrix} \qquad \nabla C(\mathbf{x}) = \begin{bmatrix} \nabla C_1(\mathbf{x})^T \\ \cdots \\ \nabla C_M(\mathbf{x})^T \end{bmatrix} \qquad \lambda = \begin{bmatrix} \lambda_1 \\ \cdots \\ \lambda_M \end{bmatrix}$$

$$\Delta \mathbf{x} = \mathbf{M}^{-1} \nabla C(\mathbf{x}) \lambda \qquad \qquad \lambda = -\frac{C(\mathbf{x})}{\nabla C(\mathbf{x})^T \mathbf{M}^{-1} \nabla C(\mathbf{x})}$$

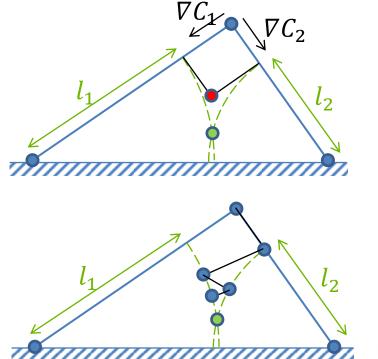
$$\mathbf{\nabla}$$

$$\Delta \mathbf{x} = \mathbf{M}^{-1} \nabla \mathbf{C}(\mathbf{x})^T \boldsymbol{\lambda}$$

$$\left[\nabla C(\mathbf{x}) \mathbf{M}^{-1} \nabla \mathbf{C}(\mathbf{x})^T\right] \mathbf{\lambda} = -\mathbf{C}(\mathbf{x})$$

Global vs. Gauss-Seidel

- Gradients fixed
- Linear solution ≠ true solution
- Multiple Newton steps necessary
- Current gradients at each constraint projection
- Solver converges to the true solution



Other Speedup Tricks

- Use as smoother in a multi-grid method
- Long range distance constraints (LRA)
- Shape matching
- Hierarchy of meshes

Amazing Gauss-Seidel!

- Can handle unilateral (inequality) constraints (LCPs, QPs)!
 - Fluids: separating boundary conditions [Chentanez at al., 2012]
 - Rigid bodies: LCP solver [Tonge et al., 2012]
 - Deformable objects: Long range attachments [Kim et al., 2012]
- Works on non-linear problem directly
- Handles under and over-constrained problems
- GS + PBD: garbage in, simulation out (almost \bigcirc)
- Fine grained interleaved solver trivial
- Easy to implement and parallelize

Analysis of PBD

Correction = Acceleration

• Predicted position

$$\mathbf{p} = \mathbf{x}_n + \Delta t \mathbf{v}_n = \mathbf{x}_n + \Delta t \frac{(\mathbf{x}_n - \mathbf{x}_{n-1})}{\Delta t} = 2\mathbf{x}_n - \mathbf{x}_{n-1}$$

• Projection

 $\mathbf{x}_{n+1} = \mathbf{p} + \Delta \mathbf{x}$

$$\Delta \mathbf{x} = \mathbf{x}_{n+1} - 2\mathbf{x}_n + \mathbf{x}_{n-1}$$

Implicit Euler

$$M \frac{\mathbf{x}_{n+1} - 2\mathbf{x}_n + \mathbf{x}_{n-1}}{\Delta t^2} = \mathbf{f}(\mathbf{x}_{n+1})$$

 $M\Delta \mathbf{x} = \Delta t^2 \mathbf{f}(\mathbf{x}_{n+1})$

Formulation as an optimization problem for Δx :

$$\min\left(\frac{1}{2}\Delta \mathbf{x}^{T} \mathbf{M} \Delta \mathbf{x} + \Delta t^{2} E(\mathbf{x}_{n+1})\right)$$

inertia term energy term

$\textbf{Stiffness} \rightarrow \textbf{Infinity}$

$$\min\left(\frac{1}{2}\Delta \mathbf{x}^T \mathbf{M} \Delta \mathbf{x} + \Delta t^2 \frac{1}{2}kC^2(\mathbf{x}_{n+1})\right) // E(\mathbf{x}) = \frac{1}{2}kC^2(\mathbf{x})$$

PBD

Now let $k \to \infty$

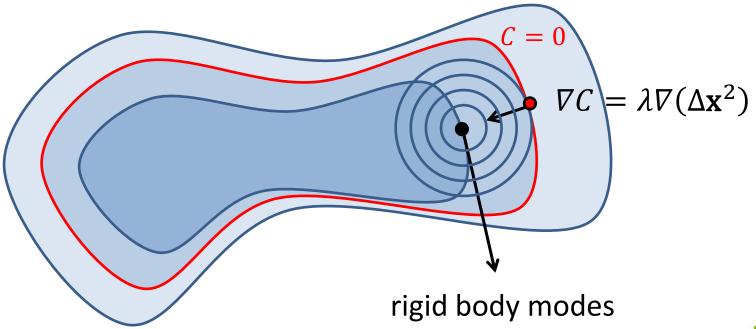
$$\min\left(\frac{1}{2}\Delta x^T M \Delta x\right) \text{ subject to } C(x_{n+1}) = 0$$

•
$$C(\mathbf{x}_{n+1}) = 0$$

•
$$M\Delta \mathbf{x} = \lambda \nabla C(\mathbf{x}_{n+1})$$

$$\Delta \mathbf{x} = \lambda \, \mathrm{M}^{-1} \nabla C(\mathbf{x}_{n+1})$$

Two Interpretations



Constraint Solver

• PBD solves a non-linear optimization problem

$$\min\left(\frac{1}{2}\Delta \mathbf{x}^T \mathbf{M} \Delta \mathbf{x}\right) \text{ subject to } C_i(\mathbf{x}_{n+1}) = 0, \ i \in [1, ..., m]$$

by solving a sequence of QPs:

$$\min\left(\frac{1}{2}\Delta \mathbf{x}^T \mathbf{M} \Delta \mathbf{x}\right) \text{ subject to } C_i(\mathbf{x}_{n+1}) = 0$$

Clothing Demo

Nurien

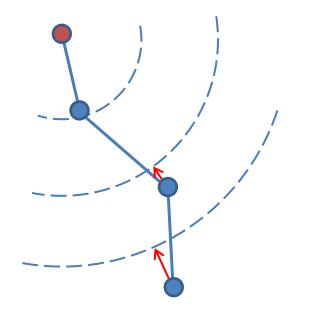
Cloth

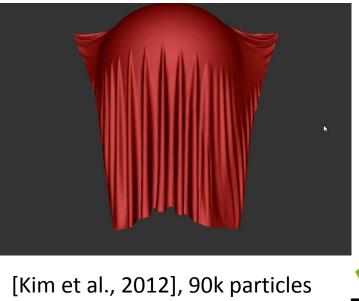
- Slow error propagation → stretchy cloth
- Low resolution: no detailed wrinkles

- Solutions
 - Use hierarchy of meshes (complicated)
 - Has been an open problem for us
 - Found an embarrassingly simple solution

Long Range Attachments (LRA)

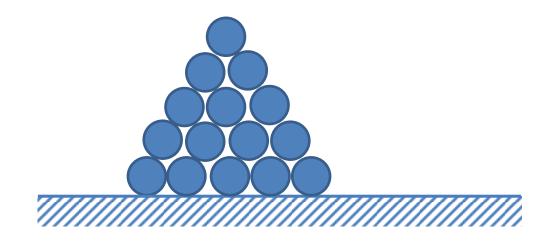
- Upper distance constraint to closest attachment point
- Unilateral: project only if distance too big



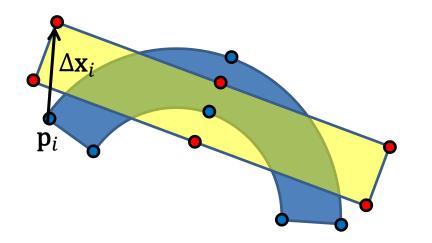


Challenge

- Similar idea for compression?
- Long range distance constraint to the ground?



Rigid Objects



- Optimally match un-deformed with deformed shape
- Only allow translation and rotation
- Global correction, no propagation needed
- No mesh needed!

Position Based Fluids

[Macklin et al. 2013]

- Particle based
- Pair-wise lower distance constraints
 → granular behavior
- Move particles in local neighborhood such that density = rest density
- Density constraint

$$C(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \rho_{SPH}(\mathbf{x}_1,\ldots,\mathbf{x}_n) - \rho_0$$

Mesh Independent Deformations

[Müller et al, 2014]

• For each triangle:

$$C(\mathbf{x}_1,\ldots,\mathbf{x}_3) = \mathbf{G}_{ij}(\mathbf{x}_1,\ldots,\mathbf{x}_3)$$

$$\mathbf{G} = \mathbf{F}^{\mathrm{T}}\mathbf{F} - \mathbf{I}$$

FEM

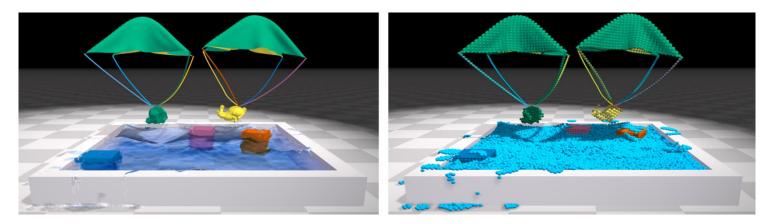
[Bender et al, 2014]

• For each tetrahedron:

$$C(\mathbf{x}_1,\ldots,\mathbf{x}_4)=E_{FEM}(\mathbf{x}_1,\ldots,\mathbf{x}_4)$$

Unified Solver

[Macklin et al., 2014]



- Putting it all together
- Plus
 - Static friction
 - Stiff stacks via mass modifications
 - Two-way fluid solid coupling

Acknowledgements

• PhysX Research Group

Kim

Nuttapong Chentanez

Miles Macklin

• PhysX Group

Thanks!

Questions?

