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Abstract. Management, execution and maintenance of Service Level Agreements (SLAs) in 
the upcoming service oriented IT landscape need new levels of flexibility and automation not 
available with the current technology. In this paper we evolve a rule based approach to SLA 
representation and management which allows a clean separation of concerns, i.e. the contrac-
tual business logic are separated from the application logic. We make use of sophisticated, logic 
based knowledge representation (KR) concepts and combine adequate logical formalisms in 
one expressive logic based framework called ContractLog. ContractLog underpins a declara-
tive rule based SLA (RBSLA) language with which to describe SLAs in a generic way as ma-
chine readable and executable contract specifications. Based on ContractLog and the RBSLA 
we have implemented a high level architecture for the automation of electronic contracts - a 
rule-based Service Level Management tool (RBSLM) capable of maintaining, monitoring and 
managing large amounts of complex contract rules. 

1   Why declarative rule-based SLA representation? 

Our studies of a vast number of SLAs currently used throughout the industry have 
revealed that today’s prevailing contracts are plain natural language documents. Con-
sequently, they must be manually provisioned and monitored, which is very expen-
sive and slow, results in simplified SLA rules and is not applicable to a global dis-
tributed computing economy, where service providers will have to monitor and exe-
cute thousands of contracts. First basic automation approaches and recent commercial 
service management tools1 directly encode the contractual rules in the application 
logic using standard programming languages such as Java or C++. The procedural 
control flow must be completely implemented and business logic, data access and 
computation are mixed together, i.e. the contract rules are buried implicitly in the ap-
plication code. SLAs are therefore hard to maintain and can not be adapted to new 
requirements without extensive reimplementation efforts. Consequently, the upcom-
ing service orientation based on services that are loosely coupled across heterogene-
ous, dynamic environments needs new ways of knowledge representation with a high 
degree of flexibility in order to efficiently manage, measure and continuously monitor 
and enforce complex SLAs. Examples which illustrate this assertion are dynamic 
rules, dependent rules, graduated rules or normative rules with exceptions/violations 

                                                           
1 e.g. IBM Tivoli Service Level Advisor, HP OpenView, Remedy SLAs  



of rights and obligations, in order to pick up a few examples which frequently occur 
in SLAs: 

• Graduated rules are rule sets which e.g. specify graduated high/low ranges for certain SLA 
parameters so that it can be evaluated whether the measured values exceed, meet or fall be-
low the defined service levels. They are often applied to derive graduate penalties or bo-
nuses. Other examples are service intervals, e.g., “between 0 a.m. and 6 a.m. response time 
must be below 10 s, between 6 a.m. and 6 p.m. response time must be below 4 s …”  or ex-
ceptions such as maintenance intervals. 

• Dependent rules are used to adapt the quality of service levels. For example an reparation 
service level must hold, if a primary service level was missed (for the first time / for the 
umpteen times), e.g.: “If the average availability falls below 97 % then the mean time to re-
pair the service must be less than 10 minutes.” 

• Dynamic rules either already exist within the set of contract rules or are added dynamically 
at run time. They typically define special events or non regular changes in the contract envi-
ronment, e.g. a rule which states that there might be an unscheduled period of time which 
will be triggered by the customer. During this period the bandwidth must be doubled.  

• Normative rules with violations and exceptions define the rights and obligations each 
party has in the present contract state. Typically, these norms might change as a consequence 
of internal or external events / actions, e.g. an obligation which was not fulfilled in time and 
hence was violated, might raise another obligation or permission: “A service provider is 
obliged to repair an unavailable service within 2 hours. If she fails to do so the customer is 
permitted to cancel the contract.” 

The code of pure procedural programming languages representing this type of rules 
would be cumbersome to write and maintain and would not be considered helpful in 
situations when flexibility and code economy are required to represent contractual 
logic. In this paper we describe a declarative approach to SLA representation and 
management using sophisticated, logic based knowledge representation (KR) con-
cepts. We combine selected adequate logical formalisms in one expressive framework 
called ContractLog. It enables a clean separation of concerns by specifying contrac-
tual logic in a formal machine-readable and executable fashion and facilitates delegat-
ing service test details and computations to procedural object-oriented code (Java) 
and existing management and monitoring tools. ContractLog is extended by a de-
clarative rule based SLA language (RBSLA) in order to provide a compact and user-
friendly SLA related rule syntax which facilitates rule interchange, serialization and 
tool support. Based on ContractLog and the higher-level RBSLA we have imple-
mented a rule based service level management (RBSLM) prototype as a test bed and 
proof of concept implementation. The essential advantages of our approach are: 

1. Contract rules are separated from the service management application. This allows easier 
maintenance and management and facilitates contract arrangements which are adaptable to 
meet changes to service requirements dynamically with the indispensable minimum of ser-
vice execution disruption at runtime, even possibly permitting coexistence of differentiated 
contract variants.  

2. Rules can be automatically linked (rule chaining) and executed by rule engines in order to 
enforce complex business policies and individual contractual agreements. 

3. Test-driven validation and verification methods can be applied to determine the correctness 
and completeness of contract specifications against user requirements [1] and large rule sets 
can be automatically checked for consistency. Additionally, explanatory reasoning chains 
provide means for debugging and explanation. [2] 



4. Contract norms like rights and obligations can be enforced and contract/norm violations and 
exceptions can be (proactively) detected and treated via automated monitoring processes 
and hypothetical reasoning. [2] 

5. Existing tools, secondary data storages and (business) object implementations might be 
(re)used by an intelligent combination of declarative and procedural programming. 

The contribution of this paper is twofold. First it argues that in a dynamic service 
oriented business environment a declarative rule based representation of SLAs is su-
perior to pure procedural implementations as it is used in common contract manage-
ment tools and gives a proof of concept solution. Second it presents a multi-layered 
representation and management framework for SLAs based on adequate logical con-
cepts and rule languages. The paper is organised as follows. We give an overview on 
our approach in section 2 and describe its main components, in particular the expres-
sive logical ContractLog framework, the declarative XML based RBSLA language 
and the RBSLM tool in the sections 3 to 5. In section 6 we present a use case in order 
to illustrate the representation, monitoring and enforcement process. Finally, in sec-
tion 7 we conclude with a short summary and some final remarks on the performance 
and usability of the presented rule-based SLA management approach. 

2   Overview 

Fig. 1 shows the general architecture of our rule based service level management tool 
(RBSLM). The rule 
engine Mandarax (1) 
acts as execution 
component and infer-
ence engine for the 
formalized, logical 
contract rules. The 
rules are represented 
on basis of our ex-
pressive, logical Con-
tractLog framework 
(2) and are imported 
over the Prova lan-
guage extension into 
the internal know-
ledgebase of the rule 

engine. An additional declarative language format based on XML2, called the rule 
based SLA (RBSLA) language, is provided to facilitate machine-readability, reusabil-
ity, rule interchange, serialisation, tool based editing and verification. A mapping is 
defined which transforms the RBSLA into executable ContractLog rules. The graphi-
cal user interface - the Contract Manager (4) - is used to write, edit and maintain the 
SLAs which are persistently stored in the contract base (3). The repository (5) con-
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Fig. 1. Architecture of the Rule Based Service Level Management Tool (RBSLM) 



Fig. 2. Layered Model of the Rule Based Approach 

tains typical rule templates 
and predefined SLA domain 
specific objects, built-in met-
rics and contract vocabularies 
(ontologies) which can be 
reused in the SLA specifica-
tions. During the enforcement 
and monitoring of the SLAs 
existing external business 
object implementations, 
quality and system 
management tools and 
external databases can be 
integrated (6). Finally, the 
Service Dash Board (7) 

visualizes the monitoring results and supports further SLM processes, e.g. reports on 
violated services, metering and accounting functionalities, notification services etc. 
Figure 2 summarizes the components of our rule based SLM approach in a layered 
model. In the following three sections we give a more detailed insight into the differ-
ent layers described in figure 2 with a particular focus on the RBSLA serialization 
syntax.  

3   ContractLog Framework 

Table 1. Main logic concepts of ContractLog 
Logic Usage 

Derivation rules (horn rules with NaF) Deductive reasoning on contract rules. 
Event-Condition-Action rules (ECA) Active sensing and monitoring, event detection and 

“situative” behaviour by event-triggered actions. 
Event Calculus (temporal reasoning a la "transac-
tion logic") 

Temporal reasoning about dynamic systems, e.g. 
effects of events on the contract state (fluents).  

Defeasible / Courteous logic (priorities and con-
flicts) 

Default rules and priority relations of rules. Facili-
tates conflict detection and resolution as well as 
revision/updating and modularity of rules. 

Deontic Logic (contract norms) with norm viola-
tions and exceptions 

Rights and obligations modelled as deontic contract 
norms and norm violations (contrary-to-duty obliga-
tions) and exceptions (condit. defeasible obliga-
tions). 

Description logic (domain descriptions) / Des-
cription Logic Programs 

Semantic domain descriptions (e.g. contract ontolo-
gies) in order to hold rules domain independent. 
Facilitates exchangeability and interpretation. 

Object-oriented typed logic and procedural at-
tachments  

Typed terms restrict the search space. Procedural 
attachments integrate object oriented programming 
into declarative rules.  

Table 1 summarizes the main concepts used in ContractLog. In the following we 
sketch the basic logical components. More details can be found in [2-4] and on our 
project site[5]. 

Typed Derivation Rules, Procedural Attachments and external Data Integration: 
Derivation rules based on horn logic supplemented with negation as failure (NaF) and 



rule chaining enable a compact representation and a high degree of flexibility in auto-
matically combining rules to form complex business policies and graduated dynamic 
contract rules. [6] On the other hand procedural logic as used in programming lan-
guages is highly optimized in solving computational problems and many existing 
business object implementations such as EJBs as well as existing system management 
and monitoring tools already provide useful functionalities which should be reused. 
Procedural attachments and the typed logic3 used in ContractLog offer a clean way of 
integrating external programs into logic based rule execution paving the way for intel-
ligently accessing or generating data for which the highest level of performance is 
needed and the logical component is minimal. This supports a smooth integration of 
facts managed by external systems (databases accessed via optimized query languages 
like SQL; systems, accessed using web services etc.) and avoids replication, because 
references are resolved at query time - which is crucial, as in SLA management we 
are facing a knowledge intensive domain which needs flexible data integration from 
multiple rapidly changing data sources, e.g. business data from data warehouses, sys-
tem data from system management tools, process data from work flows, domain data 
from ontologies etc. Additionally, the tight integration with Java enables (re-)using 
existing business objects implementations such as EJBs and system management tools 
and allows for active sensing/monitoring and effecting via triggered actions in ECA 
rules. 

ECA Rules: A key feature of a SLA monitoring system is its ability to actively detect 
and react to events. We implemented support for active ECA rules: eca(T,E,C,A). 
Each term T (time), E (event), C (condition) and A (action) references to a derivation 
rule which implements the respective functionality of the term. The additional term T 
(time) is introduced to define monitoring intervals or schedules in order to control 
monitoring costs for each rule and to define the validity periods. Example:  
 

eca(everyMinute,   serviceUnavailable,   notScheduledMaintanance ,  sendNotification) 
everyMinute(DT)  serviceUnavailable(DT)  notScheduledMaintanance(DT)  endNotification(DT)   

Rule chaining combining derivation rules offers maximum flexibility to build com-
plex functionalities, which can be referenced and reused in several ECA rules. More 
details on the ECA implementation can be found in [2-4].  

Event Calculus: The Event Calculus (EC) [7] defines a model of change in which 
events happen at time-points and initiate and/or terminate time-intervals over which 
some properties (time-varying fluents) of the world hold. We implemented the classi-
cal logic formulations using horn clauses and made some extensions to the core set of 
axioms to represent derived fluents, delayed effects (e.g. validity periods and dead-
lines of norms), continuous changes (e.g. time-based counter) and epistemic knowl-
edge (planned events for hypothetical reasoning) [2, 4]: 
 

Classical Domain independent predicates/axioms ContractLog Extensions 
happens(E,T)               event E happens at time point T 
initiates/terminates(E,F,T) E initiates/terminates fluent F  
holdsAt(F,T)   fluent F holds at time point T 

valueAt(P,T,X)       parameter P has value X at time point T 
planned(E,T) event E is believed to happen at time point T 
derivedFluent(F)             derived fluent F 

                                                           
3 ContractLog supports typed variables and constants based on the object-oriented type system of Java or other OO typed sys-

tems.  



The EC and ECA rules might be combined and used vice versa, e.g. fluents might be 
used in the condition parts of ECA rules or ECA rules might assert detected events to 
the EC knowledgebase. The EC models the effects of events on changeable SLA 
properties (e.g. deontic contract norms such as rights and obligations) and allows rea-
soning about the contract state at certain time points. Its rules define complex transac-
tion logics with state changes similar to workflows. This is very useful for the repre-
sentation of deontic contract norms and exceptions or violations of norms. 

Deontic Logic with Norm Violations and Exceptions: Deontic Logic (DL) studies 
the logic of normative concepts such as obligation (O), permission (P) and prohibition 
(F). However, classical standard deontic logic (SDL) offers only a static picture of the 
relationships between co-existing norms and does not take into account the effects of 
events on the given norms, temporal notions and dependencies between norms, e.g. 
violations of norms or exceptions. Another limitation is the inability to express per-
sonalized statements. In real world applications deontic norms refer to an explicit con-
cept of an agent. We extended the concepts of DL with a role-based model and inte-
grated it in the Event Calculus implementation in order to model the effects of 
events/actions on deontic norms [2]. This enables the definition of institutional power 
assignment rules (e.g. empowerment rules) for creating institutional facts which are 
initiated by a certain event and hold until another event terminates them. Further, we 
can define complex dependencies between norms in workflow like settings which ex-
actly define the actual contract state and all possible state transitions and which allow 
representing norm violations and their conditional secondary norms, e.g. contry-to-
duty (CTD) obligations as well as exceptions of (defeasible prima facie) norms.. A 
deontic norm consists of the normative concept (norm N), the subject (S) to which the 
norm pertains, the object (O) on which the action is performed and the action (A) it-
self. We represent a role based deontic norm Ns,oA as an EC fluent: norm(S, O, A), e.g. 
inititates(e1, permit(s,o,a), t1). We implemented typical DL inference axioms in Con-
tractLog such as Os,oA  Ps,oA or Fs,oA  Ws,oA etc. and further rules to deal with deon-
tic conflicts (e.g. Ps,oA ٨ Fs,oA), exceptions (E) (E  Os,o¬A), violations (V) of deontic 
norms (e.g. Os,oA ٨ ¬A) and contrary-to-duty (CTD) obligations (V  Os,oCTD) or other 
“reparational” norms. In particular derived fluents and delayed effects (with trajecto-
ries and parameters [2]) offer the possibility to define norms with deadline-based va-
lidity periods, (time-based) violations of contract norms and conditional secondary 
norms e.g., contrary-to-duty (CTD) obligations. A typical example which can be 
found in many SLAs is a primary obligation which must be fulfilled in a certain pe-
riod, but if it is not fulfilled in time, then the norm is violated and a certain “repara-
tional” norm is in force, e.g., a secondary obligation to pay a penalty or a permission 
to cancel the contract etc. [2-4] 

Remark. DL is plagued by a large number of paradoxes. We are aware of this. How-
ever, because our solution is based on temporal event logic we often can avoid such 
conflicts, e.g. a situation where a violated obligation and a CTD obligation of the vio-
lated obligation are true at the same time is avoided by terminating the violated obli-
gation so that only the consequences of the violation (CTD obligation) are in effect. 
Other examples are defeasible prima facie obligations (Os,oA) which are subject to 
exceptions (E  Os,o¬A) and lead to contradictions, i.e. Os,o¬A and Os,oA can be derived 
at the same time. We terminate the general obligations in case of an exception and ini-



tiate the conditional more specific obligation till the end of the exceptional situation. 
After this point the exception norm is terminated and we re-initiate the initial “de-
fault” obligation. Note that we can also represent norms which hold initially via the 
initially axiom in order to simulate “non-temporal” norms. A third way is to represent 
conflicts as defeasible deontic rules with defined priorities (overrides) between con-
flicting norms, i.e. we weaken the notion of implication in such a way that the coun-
terintuitive sentences are no longer derived (see. defeasible logic). 

Defeasible Logic: We adapt two basic concepts in ContractLog to solve conflicting 
rules (e.g. conflicting positive and negative information) and to represent rule prece-
dences: Nute’s defeasible logic (DfL) [8] and Grosof´s Generalized Courteous Logic 
Programs (GCLP) .  There are four kinds of knowledge in DfL: strict rules, defeasible 
rules, defeaters and priority relations. We base our implementation on a meta-
program [9] to translate defeasible theories into logic programs and extended it to 
support priority relations r1>r2 : overrides(r1,r2) and conflict relations in order to define 
conflicting rules not just between positive and negative literals, but also between arbi-
trary conflicting literals. Example:   

Rule1 “discount”: All gold customers get 10 percent discount.”  
Rule2 “nodiscount”: Customers who have not paid get no discount.”  
ContractLog DfL: … overrides(discount, nodiscount) … // rule 1 overrides rule 2 

GCLP is based on concepts from DfL. It additionally implements a so called Mutex to 
handle arbitrary conflicting literals. We use DfL to handle conflicting and incomplete 
knowledge and GLCP for prioritisation of rules. A detailed formulation of our imple-
mentation can be found in [4]. 

Description Logics: Inspired by recent approaches to combine description logics and 
logic programming [10] we have implemented support for RDF/RDFS/OWL descrip-
tions to be used in ContractLog rules. At the core of our approach is a mapping from 
RDF triples (constructed from RDF/XML files via a parser) to logical facts: RDF tri-
ple:subject predicate object   LP Fact: predicate(subject, object), e.g.:  

Ca : , i.e., the individual a is an instance of the class C: type(a,C) 
Pba :, >< , i.e., the individual a is related to the individual b via the property P: property(P,a,b) 

On top of these facts we have implemented a rule-based inference layer and a class 
and instance mapping4 to answer typical DL queries (RDFS and OWL Lite/DL infer-
ence) such as class-instance membership queries, class subsumption queries, class hi-
erarchy queries etc. This enables reasoning over large scale DL ontologies and it pro-
vides access to ontological definitions for vocabulary primitives (e.g. properties, class 
variables and individual constants) to be used in LP rules. In addition to the existing 
Java type system, we allow domain independent logical objects in rules to be typed 
with external ontologies (taxonomical class hierarchies) represented in RDF, RDFS or 
OWL. 

                                                           
4 to avoid backward-reasoning loops in the inference algorithms 



4   RBSLA language 

Real usage of a formal representation language which is usable by others than its in-
ventors immediately makes rigorous demands on the syntax: declarative syntax, com-
prehension, readability and usability of the language by users, compact representa-
tion, exchangeability with other formats, means for serialization, tool support in writ-
ing and parsing rules etc. The rule based SLA language (RBSLA) tries to address 
these issues. It stays close to the emerging XML-based Rule Markup language 
(RuleML) in order to address interoperability with other rule languages and tool sup-
port. Therefore, it adapts and extends RuleML to the needs of the SLA domain. 

RuleML is a standardization initiative with the goal of creating an open, vendor 
neutral XML/RDF-based rule language. The initiative develops a modular specifica-
tion and transformations via XSLT from and to other rule standards/systems. RuleML 
arranges rule types in a hierarchical structure comprising reaction rules, transforma-
tion rules, derivation rules, integrity constraints, facts and queries. Since the object 
oriented RuleML (OO RuleML) specification 0.85 it adds further concepts from the 
object-oriented knowledge representation domain namely user-level roles, URI 
grounding and term typing and offers first ideas to prioritise rules with quantitative or 
qualitative priorities. However, the latest version 0.88 is still mostly limited to deduc-
tion rules, facts and queries. Currently, reaction rules have not been specified in 
RuleML and other key components needed to efficiently represent SLAs such as pro-
cedural attachments on external programs, complex event processing and state 
changes as well as normative concepts and violations to norms are missing; in order 
to pick up a few examples. As such improvements must be made. RBSLA therefore 
adds the following aspects to RuleML:  

- Typed Logic and Procedural Attachments 
- External Data Integration 
- Event Condition Action Rules with Sensing, Monitoring and Effecting 
- (Situated) Update Primitives 
- Complex Event Processing and State Changes (Fluents) 
- Deontic Norms and Norm Violations and Exceptions 
- Defeasible Rules and Rule Priorities 
- Built-Ins, Aggregate and Compare Operators, Lists 
- If-Then-Else-Syntax and SLA Domain Specific Syntax 

It is very important to note, that serialization of RBSLA in XML using RuleML 
does not require any new constructs, i.e., it can be done by using existing RuleML 
features. However, for the reason of brevity and readability RBSLA introduces appo-
site abbreviations for the prime constructs needed in SLA representation. A XSLT 
transformation might be applied normalizing the syntax into the usual RuleML syn-
tax. We first present the abbreviated, compact RBSLA syntax and we will give an ex-
ample of the normalization afterwards. Lack of space prevents us from giving an ex-
tensive description of the XML Schema representation of the RBSLA model. More 
details can be found in [11] and the latest version can be downloaded from our web-
site [5]. Here, we blind out some details such as optional “oids” etc. and sometimes 
use a more compact DTD notation to present the concrete syntax. 



Typed Logic: Logical terms (variables (Var), individuals (Ind) and complex terms 
(Cterm)) are either un-typed or typed. RBSLA supports the following type systems 
and data types: java:type , rdf:type , rdfs:type , owl:type , xsi:type , sql:type.  

Example:  <Var java:type=”java.lang.Integer">1234</Var> 
<Ind xsi:type=”xs:nonNegativeInteger”>12</Ind> 
<Var rdfs:type=”rbsla#Provider>Service Provider</Var> 

Values of primitive data types such as integer, string, decimal, float, date, time 
etc. can be interchanged between the different type systems, i.e. they are unified and 
evaluated against each other. We therefore extend the unification process so that the 
following rules apply: 
Untyped-Typed Unification: 
1. The un-typed query variable assumes the type of the typed target variable or constant (individual) 
Variable-Variable Unification: 
2. If the query and the target variable are not assignable, the unification fails otherwise it succeeds 
3. If the query variable belongs to a subclass of the class of the target variable, the query variable 

assumes the type of the target variable. 
4. If the query variable belongs to a superclass of the class of the target variable or is of the same 

class, the query variable retains its class 
Variable-Constant Unification: 
5. If a variable is unified with a constant (individual) of its superclass, the unification fails otherwise 

if the type of the constant is the same or a sub-type of the variable it succeeds and the variable be-
comes instantiated. 

Constant-Constant Unification: 
6. The type of term from the head of the fact or rule is the same as or inherits from the type of term 

from the body of the rule or query 

Procedural Attachments:  Om[p1..pn]  [r1..rn]. Here, O denotes an object or a class 
which is also an object, m denotes a method invocation, p1..pn the parameters and 
r1..rn the list of result objects which might also be a Boolean true or false value. The 
serialization in RuleML extends complex terms: Cterm(Ctor | Attachment). The first 
element of an <Attachment> is either a link on a qualified Java class, a variable 
bound to a Java object/class instance or a nested complex term which itself con-
structs/returns an object. The second element specifies the method call: Attach-
ment((Ind|Var|Cterm), Ind). The parameters for the method invocation are the subsequent 
elements under the Cterm element, which are defined after an attachment. RBSLA 
supports Java (via reflection), e.g.: java.lang.IntegerparseInt[1234] Integer(1234)  
<Cterm java:type=”java.lang.Integer”>    // (types are optional) 
 <Attachment> 

<Ind java:type=”java.lang.Class”>java.lang.Integer</Ind> 
<Ind java:type=”java.lang.reflect.Method”>parseInt</Ind> 

 </Attachment> 
 <Ind java:type="java.lang.String">1234</Ind> 

</Cterm> 

The result of a method invocation finally replaces the complex term and is used in the 
further derivation process. Results can be bound to variables via the Equal element: 
<Equal> 

<Var> Varible </Var> 
 <Cterm> … Attachment … </Cterm> 
</Equal> 



External Data Integration: RBSLA supports a smooth integration of facts managed 
by external databases in particular SQL databases or XML/RDF files. It therefore 
provides different built-in predicates such as <Location> (database location with user-
name and password), <Select> (SQL select query), <XML> (construct a DOM tree 
from a XML file) etc. to access and query the database in order to reuse the result as 
facts in a knowledge system. 

Event Condition Action Rules: An ECA rule <Eca> is a rule with four terms: 
<(Time?,Event?,Condition?,Action)>. Each term defines a reference <Ref> on a derivation 
rule (or a fact) which implements the respective functionality of the ECA term. This 
offers maximum flexibility. Logical rule chaining between derivation rules facilitates 
the implementation of complex functionalities which can be referenced and reused in 
several ECA rules and procedural attachments might be applied for active sensing, 
monitoring and triggering actions. A reference is semantically interpreted as a 
RuleML query (conclusion less derivation rule). Therefore, the only semantics we 
add is that of the ECA paradigm, which executes the ECA rule in a forward direc-
tional manner, i.e., it proceeds with the next rule term iff the query on the currently 
referenced derivation rule succeeds.  
Example:  <Eca> 
  <Time><Ref><Ind>everyMinute</Ind></Ref></Time> 
  <Event><Ref><Ind>serviceUnavailable</Ind></Ref></Event> 
  <Condition><Ref><Ind>notMaintenance</Ind></Ref></Condition> 
  <Action><Ref><Ind>sendNotification</Ind></Ref></Action> 
   </Eca> 
 <Implies>    // referenced time derivation rule 

<Atom><Rel>… respective time function … </Rel></Atom> //body 
<Atom><Rel>everyMinute</Rel></Atom   //head 

</Implies> 
 <Implies>    // referenced event derivation rule 
        […] 

Situated Update Primitives: Update primitives change the state of a knowledge sys-
tem. RBSLA supports primitives to add (<Assert>) and delete (<Retract>; <Retrac-
tAll>) facts and rules. Typically, these primitives are applied in ECA rules (a la trans-
action logic). 

Complex Event Processing and State Changes (Fluents): RBSLA supports com-
plex event processing and temporal reasoning about events/actions and their effects 
on the internal state of the knowledge system (a la event calculus). Therefore, it de-
fines the following elements: 

• Fluent: <!Element Fluent(Ind|Var|Cterm)> 
• Parameters: <!Element Parameter(Ind|Var|Cterm)> 
• Persistent Events: <!Element Happens((Event|Action),Time)> 
• Believed/Planned Events: <!Element Planned((Event|Action),Time)> 
• Effects of events:  

o <!Element Initially(Fluent)> 
o <!Element Initiates((Event|Action), Fluent, Time)> 
o <!Element Terminates((Event|Action), Fluent, Time)> 

• Queries:  
o <!Element HoldsAt(Fluent, Time)> 
o <!Element ValueAt(Parameter, Time, (Ind|Var|Cterm))> 



Fluents or parameters might be used in addition to individuals, variables or complex 
terms in rules: (Ind|Var|Cterm|Plex|Fluent|Parameter). By default fluents do not hold, but can 
be defined as initially true.  

Deontic Norms and Norm Violations:  Deontic Norms such as obligations, permis-
sions or prohibitions are defined as personalized, time-varying fluents: norm(S,O,A) 

<Oblige><Ind>Subject</><Ind>Object</><Action><Ind>Action</></></Oblige> 
<Permit><Ind>Subject</><Ind>Object</><Action><Ind>Action</></></Permit> 
<Forbid><Ind>Subject</><Ind>Object</><Action><Ind>Action</></></Forbid> 
<Waived><Ind>Subject</><Ind>Object</><Action><Ind>Action</></></Waived> 

RBSLA defines a special violation event which happens if a norm is violated, e.g. an 
obligation which is not fulfilled in time: <Violation><Ind>Violation</></Violation> 

Defeasible Rules and Rule Priorities: Beside strict rules which a represented as 
normal derivation rules “head  body” (<Implies>) RBSLA supports defeasible 
rules “body => head” and therefore introduces the new rule element <Defeasible>. 
Although, incompatible and conflicting literals between rules in general can be ex-
pressed as specializations of RuleML integrity constraints, RBSLA introduces a new 
<Mutex> element (for mutually exclusive, derived von GCLP), e.g.: 
<Mutex> 

<Atom> <Rel>discount</Rel> <Var>X</Var> </Atom> 
<Atom> <Rel>discount</Rel> <Var>Y</Var> </Atom> 
<Atom><Cond> 
 <Neg><Equal> <Var>X</Var> <Var>Y</Var> </Equal></Neg> 
</Cond></Atom> 

</Mutex>  

An <Overrides> element defines the priority of rules or rule sets / modules: 
<Overrides> 

<Ref><Ind>rule1</Ind></Ref> 
<Ref><Ind>rule2</Ind></Ref> 

</Overrides> 

Built-Ins, Aggregate and Compare Operators, Lists: RBSLA provides different 
useful built-in functions and predicates to effectively work with variables, numbers, 
strings, date and time values, lists etc. Here we can only list the interesting ones: 
Variables: 
• <Bound>, <Free>: Given an input variable, test whether it is instantiated or not 
• <Type>: Given an input variable, return the type name. 
Numbers: 
• <Add|Sub|Mult|Div|Mod|Max|Min|Abs>: Compute two numeric values and return the result. 
Strings: 
• “\” : separator “\” to allow special characters in string such as \n \r \t etc. 
• <Concat>, <Parse>, <Tokenize> etc. 
Date and Time: 
• <Date> <Ind>Year</><Ind>Month</><Ind>Day</> </Date> 
• <Time><Ind>Hour</>, <Ind>Min</>, <Ind>Sec</> </Time> 
• <DateTime> ((<Date>,<Time>) | (<Ind> Epoch Value in millis </Ind>))</DateTime>  
• <TimeSpan>, <Intervall> 
• <Compare>, <Less>, <Equal>, <More>, <Add>, <Sub> etc. 
Lists: 



• <Plex><Var1/><Var2/>…<VarN/></Plex>: List of the form [Var1 .. VarN] 
• <Plex><Var>Head</Var><repo><Var>Rest</Var></repo></Plex>: List of the form [Head|Rest] 
• <Member>: Test whether an object is member of a list 
• <Element_At>: Return the object at position X in a list 
• <Append>,<Delete>: Add/Delete an element/list. The result is the concatenated list. 
• <Head>, <Tail>: Return the head / the tail of a list 
• <First>, <Last>: Return the first / last element of a list 
• <Size>: Return the size of a list 
Aggregations: 
• <Sum>,<Max>,<Min>,<Mean>: Calculate the aggregation of a list and return the result. 
Comparison: 
• <Equal>, <LessEqual>, <Less>, <More>, <MoreEqual>, <Between>  

If-Then-Else-Syntax and SLA Domain Specific Syntax:  In order to make pro-
gramming in RBSLA and specification of SLAs more efficient and easier, RBSLA 
provides an additional If-Then-Else Syntax for rules: 

<If> <Atom> … Body … </Atom> </If> 
<Then> <Atom>Head</Atom> </Then> 
<Else> <Atom>Head of corresponding Naf rule </Atom> </Else> 

Whilst the if-then part of such a rule maps to a normal RuleML derivation rule (<Im-
plies>) the else part maps to a corresponding negated (with Negation as Failure NaF) 
rule. RBSLA provides direct serialization of reusable SLA metrics <Metric>. SLA 
metrics are used to measure the performance characteristics. They are either retrieved 
directly from the managed resources such as servers, middleware or instrumented ap-
plications or are created by aggregating such direct metrics into higher level compos-
ite metrics. Typical examples of direct metrics are the MIB variables of the IETF SMI 
such as number of invocations, system uptime, outage period etc. which are collected 
via measurement directives such as management interfaces, protocol messages, URIs 
etc. Composite metrics use a specific function averaging one or more metrics over a 
specific amount of time, e.g. average availability, or breaking them down according 
to certain criteria, e.g. minimum throughput, maximum response time, etc. Direct met-
rics contain measurement directives implemented as attachments: 

<Metric type=”rbsla#DirectMetric”> 
 <Rel><Ind>Metric Name</Ind></Rel> 
 <Cterm><Attachment> […] </Attachment> </Cterm> 
</Metric> 

Composite metrics use the built-in RBSLA aggregate operators over list structures 
which temporarily store the measurement results of direct metrics or they shift these 
expensive computations to highly optimized query languages such as SQL. Metrics 
might be (re)used in rules, e.g. in the event declaration of an ECA rule: 

<Event><Ref><Ind>serviceUnavailable</Ind></Ref></Event> 
<Implies>    // referenced rule 

<Less><Metric>…AverageAvailability …</Metric><Ind >0.98</Ind></Less> 
<Atom><Rel>serviceUnavailable</Rel></Atom> 

</Implies> 

As mentioned before the presented RBSLA syntax can be normalized to the usual 
RuleML syntax via XSLT, for example:  



<Oblige> 
 <Ind>Service Provider</Ind> 
 <Ind>Service Consumer</Ind> 
 <Action><Ind>payPenalty</Ind></Atom> 
</Oblige> 
Maps to: <Cterm rdfs:type=”rbsla#Obligation”>  (type are optional) 

<Ctor>oblige</Ctor> 
<Ind rdfs:type=”rbsla#Provider”>Service Provider</Ind> 
<Ind rdfs:type=”rbsla#Consumer”>Service Consumer</Ind> 
<Ind rds:type=”rbsla#Action>payPenalty</Ind> 

</Cterm> 

RBSLA comprises an additional ontology (based on RDFS) which describes the SLA 
domain vocabulary and can be used to semantically annotate and type used objects. 
This restricts search space to clauses where the type restrictions are fulfilled and 
makes the derivation process more efficient.  

We have implemented a transformation process based on Java which maps the 
RBSLA rules into the basic logical ContractLog rules (Prova/Prolog syntax). During 
the transformation process we apply automated “refactorings” on the rules in order to 
improve the execution efficiency: loops, order of rules / order of prerequisites in rules 
might matter or performance critical issues like extensive use of negation as failure or 
cuts might be applied. For example we do some narrowing on multiple rules which 
share the same set of prerequisites in order to reduce redundancies (A1,..,AN.→B and 
A1,..,AN.→C becomes A1,.., AN.→A ; A..→B; A..→C). Other examples are removing dis-
junctions in the prerequisites (replacing A∨B → C by two new rules A → C and B → 
C), remove conjunctions from rule heads (transform B → (H ٨ H´) via Lloyd-Topor 
transformation into two rules B → H and B → H`), remove function symbols from rule 
heads or reducing typing information in rule chains etc. 

To sum up the additional RBSLA layer solves the demands stated at the beginning 
of this section, in particular compatibility with other languages via transformations 
and a declarative, compact and readable rule representation. Additionally it provides 
means for refactoring and validation of rules during transformation into ContractLog. 

5   RBSLM tool 

The RBSLM tool splits into the Contract Manager (CM) and the Service 
Dashboard (SD). The CM is used to manage, write, maintain and update SLA rules. 
The SD visualizes the monitoring and enforcement process in the contract life cycle 
and supports further SLM processes. We first describe the CM. 

The CM provides a basic editor for ContractLog rules and a repository approach 
which represents the structure and meta-data of a knowledge base. It supports two 
roles: the business practitioner and the rule experts. The rule experts have a back-
ground in logic and are therefore responsible for the basic design of contract rules. 
They fill the repository with needed and reusable domain specific measurement, 
monitoring and computing functions, interface implementations to existing databases 
or system tools, references on existing business objects (e.g. EJBs) as well as rule 
templates and other domain specific concepts (e.g. contract vocabularies). Addition-



ally, they specify test cases together with certain test data to be used for verification 
and validation of contract rules in order to ensure the correct usage and a high-quality 
of SLA rule sets [1]. The business practitioners are involved in the daily business. 
They make use of the predefined templates to write and maintain the contract rules. 
They do not need to know any implementation details of used functions, objects or 
interfaces nor do they need to have a complete overview of all the rules in the contract 
system, meaning they do not know what the effect is on existing rules when a rule is 
added or changed. They just use the GUI to adapt the templates and build rules by 
clicking together the needed functionality. The test cases safeguard the authoring of 
rules and allow validation of complete rule sets and contracts to detect anomalies like 
inconsistencies, incompleteness or redundancies referring to the intended goals. 

 
Fig. 3. The ContractManager GUI 

Whilst the Contract Manager is used to manage the SLAs and their rules, the Ser-
vice Dashboard visualizes status information and metrics during the monitoring and 
execution process. We provide different and adaptable visualisation views in order to 
satisfy the needs of different user roles e.g. for the customer advisor to face customer 
complains and problems, for the accountancy to forecast fees and recourse receivables 
and for the administrator to give detailed information to fix arising problems. Similar 
to the process of deriving quality metrics from base data to verifying contractual rules, 
the logic engine can also be used to get meaningful quantities for each of these par-
ties. Predefined parsers and chart formations enable the user to present the informa-
tion in an adequate way. New user views can be easily plugged into the framework 
dynamically through the class loader. The underlying Model-View-Controller notifies 
these views if data are changed in the knowledge base (observer pattern) and triggers 
the visualization process. 

  
Fig. 4. Service Dashboard with different visualization views 

 



6   Use Case 

We now want to illustrate the SLA representation, monitoring and enforcement proc-
ess. We therefore use the following example agreement: 
 

The service availability will be measured every tcheck by a ping on the service. If the service is unavailable, 
the SP is obliged to restore it within tdeadline. If SP fails to restore the service in tdeadline (violation), SC is per-
mitted to cancel the contract.” 
RBSLA representation 
<Eca>                                                                                                          // ECA rule monitoring the service availability 
         <Time><Ref><Ind> tcheck</Ind></Ref></Time> 
        <Event><Ref><Ind>unavailable</Ind></Ref></Time> 
        <Action><Ref><Ind>assertEvent</Ind></Ref></Action> 
</Eca> 
<Rule>                                                                                                                 // referenced time derivation rule  
         <If>  <Intervall>… [monitoring schedule] … </Intervall>   </If>                // body 
         <Then> <Atom><Rel> tcheck</Rel></Atom>   </Then>                          // head 
</Rule> 
<Rule>                                                                                                                // referenced event derivation rule 
         <If>  <Metric>… [test availability] ... </Metric>    </If>                              // body 
         <Then> <Atom><Rel> unvailable</Rel></Atom>  </Then>                // head 
</Rule> 
                              […] 
<Initiates>                                                                                             // unavailable event initiates primary obligation 
               <Event><Ind>unavailable</Ind></Event> 
               <Oblige> … [obligation norm] … </Oblige> 
</Initiates> 
                            […] 
<Rule>                                                                                                 // if deadline elapsed then raise violation event 
            <If><ValueAt><Parameter>deadline</Parameter><Time> tdeadline</Time><Ind>0</Ind></ValueAt></If> 
            <Then><Assert><Violation><Ind>elapsed</Ind></Violation></Then> 
</Rule> 
<Initiates>                                                                                       // violation event initiates reparation permission norm 
              <Violation></Ind>elapsed</Ind></Violation> 
                 <Permit> … [cancel contract]  </Permit> 
</Initiates> 
                            […] 
ContractLog representation 
eca(everyTcheck ,  serviceUnavailable , assertUnavailable)                              // ECA rule  
Time:     everyTcheck (DT)    < interval function for  tcheck,>                           // referenced derivation rule 
Event:   serviceUnavailable(DT)   not ping(service)                                    // referenced derivation rules 
Action:  assertUnavailable(DT)  assert(happens(unavailable,T)               // referenced derivation rules 

initiates(unavailable, oblige(SP, Service, start()),T)      // defines the primary obligation initiated by an certain event  
 terminates(available, oblige(SP, Service, start()),T)  //  defines the event which normally terminates the obligation 
trajectory(oblige(SP,Service,start()),T1,deadline,T2,(T2 - T1))  // defines the period in which the norm must be fulfilled 
happens(elapsed,T)  valueAt(deadline,T, tdeadline)         // defines the violation of the obligation norm 
initiates(elapsed, permit(SC, Contract, cancel()),T)  // initiates the derived permission to cancel the contract 

The RBSLA representation is translated via the RBSLA compiler (transformation) 
into the ContractLog representation. The Prova engine (based on Mandarax rule en-
gine) together with the ContractLog extensions execute and monitor the contract. 

We assume that the service becomes unavail-
able at time t2 and is restarted by the service 
provider at time t5 which is after tdeadline. The 
ECA meta interpreter of the ContractLog 
framework monitors the ECA rule. Every t = 
tcheck it pings the service via a procedural at-
tachment and asserts the respective event to the Fig. 5. Contract tracking 



knowledgebase if the service is unavailable. This leads to the conclusions illustrated 
in fig. 5. The derived status information can be used to feed periodical reports, en-
force rights and obligations or visualize monitoring results on quality aspects in the 
Service Dashboard. 

7   Conclusion and Key Findings 

In this paper we have described our declarative rule based approach to SLA represen-
tation and management. We have given an insight into the logical core, the Contract-
Log framework which underpins the declarative RBSLA language. Based on this we 
have implemented a prototypical rule based service level management tool (RBSLM). 
In contrast to conventional pure procedural programming approaches our declarative 
logic based approach simplifies maintenance, management and execution of SLA 
rules and allows easy combination and revision of rule sets to build sophisticated and 
graduated contract agreements, which are more suitable in a dynamic service oriented 
environment than the actually used, simplified rules. Although the framework de-
scribed in this paper is still a proof of concept implementation, we have attempted to 
gather some data on its performance and usability. The important reasoning task in 
SLA monitoring and enforcement is query answering which is known to be only 
semi-decidable. However, the combination of highly optimized OO programming and 
database techniques as well as the use of adequate logical formalism implemented on 
the basis of horn logic and meta-programming techniques makes possible the high ef-
ficiency of the framework although it provides rich expressiveness. Usability analyses 
and qualitative comparisons with other representation approaches such as WSLA have 
revealed the higher flexibility and automation of our rule based approach. 
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