
Real-world Trust Policies

Vinicius da S. Almendra1, Daniel Schwabe1

(1) Departamento de Informática
Pontifícia Universidade Católica do Rio de Janeiro - PUC-Rio

Rio de Janeiro - Brazil
{almendra,dschwabe}@inf.puc-rio.br

Abstract. One of the most important problems on the semantic web area is the
one of trust. The growing exchange of semantic web data raises the need of
policies that allow filtering out untrustworthy information. It is necessary, how-
ever, to model adequately the concept of trustworthiness, otherwise one may
end up with operational trust measures that lack a clear meaning. It is also im-
portant to have a path from one’s trust requirements to concrete trust policies.
Our proposal is to ease the building of this path, through a representation of
trust requirements grounded on a specific notion of trust and an algorithm to
map this representation to trust policies. We report our ongoing effort on this
direction.

1 Introduction

One of the great challenges to the semantic web is the problem of trust. Operational
measures of trustworthiness are needed to separate relevant and truthful data from
those that are not [2]. However, to be correctly interpreted, these measures must be
linked with real-world concepts of trust. They also must meet the trust requirements
of their users. Building on the trust concept found in [4], our work aims to pave the
path leading from a user’s trust requirements to operational trust policies that can be
applied to semantic web data, while preserving the relation between the resulting
policies and the trust requirements we started with. This relation is important as it en-
ables the user to find out why a piece of data was found trustful. We’re focusing on
the semantic web data exchange scenario, where an agent receives some data and
must decide whether or not to trust them.

Here we report our ongoing effort in this direction, which includes a model to rep-
resent trust requirements and a small test implementation, based on the Semantic Web
Publishing vocabulary [3].

1.1 Related Work

In [1] we find a very similar work: a Semantic Web Browser with filtering based on
trust policies. The user selects the trust policy he wishes to use and then the software
filters information using that policy. Besides that, it offers explanations of why each
piece of information was trusted. The difference lies in the level of abstraction. The

proposal in [1] offers facilities to express trust policies as pieces of TriQL queries in
such a way that it allows an explanation of why a triple was found trustful. Our work
deals with representing trust requirements and translating them to trust policies that
preserve real-world trust relationships.

1.2 A Motivating Scenario

The scenario we are focusing on is based upon two works: the Semantic Web Publish-
ing scenario [3] and the DBin project [5]. The Semantic Web Publishing scenario has
agents embodying two roles: of information providers and of information consumers.
An information provider publishes RDF graphs; these graphs contain information and
its metadata, such as provenance, publishing date etc. An information consumer gath-
ers these graphs and decides what to do with them, provided that these graphs can be
seen as claims of the information provider, rather than definitive facts. The formal
meaning of these claims, that is, what statements about the world are being made, is
given by a set of accepted graphs, which is a subset of the graphs the information
consumer receives. It is assumed that the agent will act based solely on information
contained in accepted graphs.

The Semantic Web Publishing proposal also enables the user to specify a trust pol-
icy, that is, a set of conditions that the received information should meet to be ac-
cepted. An example of a policy would be “trust all information that comes from direct
friends and is about computers”.

This scenario can be integrated with the one outlined in [5]: a P2P network where
people exchange RDF graphs of interest and store all the received graphs in a local
database. Filtering can be applied to hide triples that do not match the user’s criteria.
One use for this is the implementation of trust policies. The set of visible triples is
similar to the one of accepted graphs seen above; we will name it the set of accepted
triples.

These scenarios are only examples of possible uses of trust and trust policies
within the Semantic Web context; many other scenarios are possible, such as Seman-
tic Social Desktops.

2 A Model of Trust

2.1 The Concept of Trust

Following the ideas presented in [4] and [7], we will use the concept of trust as
“knowledge-based reliance on received information”, that is, an agent decides to trust
(or not) based solely on his knowledge, and the decision to trust implies the decision
to rely on the truth of the received information to perform some action. We will
elaborate some key aspects of this definition below.
• Knowledge-base trust. The agent's knowledge includes all information the agent

has, which in turn includes information received from other agents and self-
gathered information. We will call the subset of this information that the agent has
decided to trust “trusted information”. Received information that is not trusted will

be called “known information”. The decision to trust is not irrevocable: knowledge
can evolve and new evidence may render formerly trusted information untrusted,
and vice versa.

• Trust as reliance. The idea of reliance means that the agent can use the trusted in-
formation to achieve some goal, without further analysis – although this may imply
running the risk of taking an inappropriate action if the information is false. For
example, if an agent trusts the information that www.mybank.com is the URL of
his bank, then he will send his password to this site without further checks: he re-
lies on this information for performing financial transactions. If the agent does not
have any action depending on that information, then there is no reliance attitude
and the concept of trust does not apply (for example, if he has no relationship with
this bank, then the information about the URL does not matter: it is not an object of
reliance).

• Reliance on information. This concept is about trust on information, where “to
trust” means “to move known information to the set of trusted information”. There
are other actions that need trust, beyond accepting information: moving money
from one account to another, running an unknown software, providing sensitive in-
formation to a website, granting access to an intranet etc. Nevertheless, many of
these actions rely on knowledge about the action itself, the agents involved and the
circumstances: a bank normally relies on a supplied account number and password
to grant access to a person's account (actually, it relies on the relation between the
person, an account and a password). So, the trust concept as defined here can also
be applied to these actions whenever it is possible to factor out the reliance on
some kind of received information. In the case of running an unknown software,
the agent will trust it or not based on the information he has about that software,
e.g. who obtained it, what it does, who is the publisher etc.
There are other important aspects of the concept of trust that are relevant to the

proposed model:
• Trust can be seen as a relationship between two agents mediated by a goal: one

trusts somebody for something [7]; in our case, trusts somebody for receiving in-
formation from him.

• Trust is subjective, that is, each agent may have a different view about what can be
trusted. So, from now on we will use the term trusting agent to denote from whose
viewpoint trust is being evaluated.

• It is of common sense that a person normally trusts himself as a provenance of in-
formation, although he might give up on this perception if someone he believes to
be wiser (with respect to this particular subject matter) contradicts him. In this
work we assume that the default attitude of the trusting agent is to trust everything
that comes from himself.

2.2 The Trust Act

When an agent receives information, he must decide whether or not to trust it: this is
the trust act [4]. To do this, the agent can use the following elements [6]:
• The context of the received information, that is, metainformation about circum-

stances (provenance, date, time, location, reason, relation of the provenance with

the trusting agent etc). For example, the sender, the date and the subject of an e-
mail are part of its context. However, the context may include information not pre-
sent in the received information but in the agent's knowledge, like the sender's job,
which one might have stored in his personal agenda. This is possible when there is
some kind of URI for the sender, which “links” the agent's knowledge with the re-
ceived information.

• The content of the received information.
• The reputation of the source, that is, what other agents say about it.

These elements provide information about the received information. The trust act
consists of checking whether or not these elements satisfy some conditions. One trusts
a received e-mail when he knows the sender, for example. These conditions will be
called trust requirements. Continuing the e-mail example, we can formulate the fol-
lowing example trust requirements when reading e-mail:
• To download an e-mail, it must be from a known source.
• To open an e-mail, it must be written in my native language.
• To run an executable attachment, it must have been sent by a close friend and must

have been verified by some kind of antivirus software.
As the trust act itself relies on information, it is reasonable to require that it should

be based only on trusted information. This has two important side effects:
• A source’s reputation becomes part of the context, as it will be composed by

trusted information (that is, trusted opinions of other agents) related to the source.
Consequently, we will restrict the elements of the trust act to encompass context
and content. Notice that it is possible to use untrusted information about reputation
to make a trust decision: it is what happens in many reputation systems, where the
score used to evaluate an agent is made from opinions of unknown agents.

• Some of the contextual information may come together with the received informa-
tion. An e-mail carries information about its sender, the date it was posted etc. If
the trust acts related to e-mail demands some of this contextual information, these
acts will fail (that is, the e-mail will not be trusted) until the contextual information
is also the subject of a trust act and gets included in the set of trusted information.
So, for a trust act about the content of received information to succeed, prior trust
acts about its context should have been made, otherwise the former trust act may
fail due to lack of trusted information. For instance, to reason about an e-mail using
the sender's name, I must trust that who claims to be the sender is the sender in-
deed.

2.3 Formalizing Trust

From the concepts presented above it is possible to define trust as a predicate over
knowledge (K), provenance (p), context (c’) and content (c) of information:
T(K,p,c’,c). This predicate is defined by the set of trust requirements of the trusting
agent. From now on, we will call it the root trust predicate. Notice that agents with
the same knowledge may react differently when faced with the same information, as
they may have different trust requirements.

Using the idea of trust requirements as conditions on received information, we can
represent one's trust requirements using logical predicates, similarly to [8]. The trust

problem then becomes the one of building the root trust predicate. Instead of tackling
the problem of building a single predicate that encodes all trust requirements of an
agent (a “top-down” approach), we can try to reduce the problem to building the root
trust predicate as a composition of simpler predicates that can be evaluated independ-
ently. This way, the root trust predicate becomes a disjunction of these simpler predi-
cates: when faced with some information, it will be trusted if at least one of these
simpler predicates is true. We call these simply trust predicates.

As an example, the root trust predicate shown below states that the user will trust
information if it is “good email” or “good software”.

)',,(),',,(),',,(cpKreGoodSoftwaccpKGoodEmailccpKT ∨← (1)

Each of the trust predicates states necessary and sufficient conditions to trust some

piece of information. This can be put in evidence by breaking them into conjunctions
of other trust predicates:

)'()(
),(),',,(
cOldcIsEmail

pKndIsFromFrieccpKGoodEmail
¬∧∧

←
 (2)

What distinguishes trust predicates from other logical predicates is that the former

express meaningful conditions for trust from the agent's viewpoint. In the example, it
does not matter how the name of a source is represented; what matters is whether or
not the source is a friend.

Trust predicates should express trust conditions that make sense for the trusting
agent, linking his trust-related concepts (e.g. “being a friend”, “belonging to a re-
search group”, “being a relevant author”) to logical conditions on the information
available (e.g. “being referenced in my personal FOAF file”, “having a link from a
specific web page to the source's FOAF”, “appearing in the citations of more than five
publications”). Another possibility is to define them in terms other trust predicates
(e.g. the GoodEmail predicate in the example above: it is a trust predicate composed
by other trust predicates), in this case, we will call it a composite trust predicate. In
contrast, an elementary trust predicate is one that has no meaningful decomposition
from the agent’s point of view and must be built by directly stating conditions on in-
formation.

To strengthen the connection with real-world trust, we will apply the formal model
with the trust concept presented in [4], where the decision to trust is made based on
the appreciation of three things: the subject matter (the content), the entity involved
(in our case, the provenance), and the circumstances (the context). Therefore, if trust
predicates can be specified to verify these three aspects, then it is possible to solve
completely an arbitrary instance of the trust problem (within the limits of expressive-
ness of the formalisms used) by making a trust predicate that is a conjunction of those
trust predicates. We will call this conjunction, namely, the triple <subject matter, en-
tity, circumstances>, a trust-point [4]. Accordingly, the root trust predicate can be de-
scribed as a disjunction of trust-points. In the preceding example, GoodEmail is a
trust-point: it evaluates the entity (first predicate, IsFriend), the subject matter (second

predicate, IsEmail) and the circumstances (third predicate, not Old). If the three trust
predicates are true for the received information, then it is considered trustful. Summa-
rizing, a trust-point is a set of conditions on who sent the information, on what is the
information, and on what circumstances surround it. According to this model, the
trust act consists of applying the root trust predicate to a known fact to determine
whether or not it should be trusted.

It is important to notice that the provenance of information is part of the context in
[6], whereas it is factored out in [4]. We adopted the latter approach, grounded on the
idea that trust is a relationship between agents and hence the model should capture
this explicitly.

2.4 An Example

Looking at the scenario presented and restricting it to the exchange of scientific in-
formation among researchers, we can identify many trust predicates, some more gen-
eral (i.e., they apply to other domains), others more specific. Each predicate is fol-
lowed by its name in the logical formulas:
• Trust predicates related to entities involved: “works with me” (Colleague), “is a

relevant researcher” (IsRes), “is cited by other authors” (IsCited).
• Trust predicates related to the matter: “is a publication” (IsPubl), “is a website”

(IsSite), “is a relevant website” (GoodSite), “is cited by a relevant website” (Cite-
ByGoodSite), “is the contact information of a researcher” (InfoRes), “is a relevant
publication” (GoodPubl), “is the contact information of a person” (IsCInfo).

• Trust predicates related to circumstances: “is recent enough” (IsRecent), “is old
enough”, “is newer than my preferred publications”, “is hosted in a university”
(HostUniv).
With these trust predicates, we can model the trust requirements of two hypotheti-

cal agents, John and Mary, concerning acceptance of scientific information.

),,(),',,(),',,(
),,(),,(),',,(
cpKsoReInfccpKGoodPublccpKT

cpKGoodSitecpKGoodPublccpKT

MaryMary

JohnJohn

∨←
∨←

 (3)

TJohn and TMary are the root trust predicates representing trust requirements of the
agents. John is prepared to trust relevant publications and websites; Mary also is pre-
pared to trust relevant publications (although she may have a different concept of
what a good publication is, as will become clearer the example), as well as contact in-
formation of researchers. GoodPubl, GoodSite and InfoRes are the trust-points in-
volved. Now we proceed to describe these trust-points using the <subject matter, en-
tity, circumstances> template. In Table 1, each trust-point will be described in natural
language, and then cast as trust predicates.

Table 1. Description of the trust-points

Trust-point Subject Matter Entity Circumstances
GoodPublJohn It is a publication and it

is cited by a relevant
website

It has been sent by a
colleague

-

GoodPublMary It is a publication and it
is cited by relevant
publications

It has been sent by a
researcher

It is not recent

GoodSite It is a website It has been sent by a
researcher

It is hosted in
an university

InfoRes It is contact information
of a known researcher

It has been sent by a
colleague

-

Now it is possible to specify each trust-point using the trust predicates shown be-

fore:

))rKsReIsrcIsCInfor
pKColleaguecpKResInfo

cKHostUniv
)pKsReIscKIsSitecpKGoodSite

cKdSiteCitedByGoo
p)K,Colleague(cIsPublcpKGoodPubl

cIsRecent
sKGoodPublscKIsCiteds

p)IsRes(K,cIsPublccpKGoodPubl

John

Mary

,(),((
),(),,(

),(
,(),(),,(

),(
)(),,(

)'(
)),(),,((

)(),',,(

∧∃
∧←

∧
∧←

∧∧←
¬∧

∧∃

∧∧←

 (4)

One thing to notice is the “reuse” of trust predicates (IsPubl, Colleague, IsRes): we

believe this decomposition allows great simplification of the process of building trust-
points, as many trust decisions rely on the presence (or absence) of the same proper-
ties (for example, “being a colleague”, “being a relevant author”, “being cited”).

2.5 A Model for the Trust Process

Having a model for the trust requirements, now we can proceed to model the dynam-
ics of trust: how the trust acts are combined to form what we call the trust process,
which is the process by which an agent keeps its trusted facts base with all the facts
that the agent trusts, according to its trust-points, and with no facts that he does not
trust.

We propose the following procedure for realizing the trust process:

1. Include in the known facts base facts contained in the received information.
2. Remove one fact from either the trusted or the known facts base that has not been

analyzed yet.
3. Apply the trust act to it.
4. If the fact tested is found trustful, then include it in the trusted facts base. If not, in-

clude it in the known facts base.
5. Go back to step 1 until all facts (either known or trusted) have been analyzed.
6. If no fact changed its status (from known to trusted or vice versa), the process

ends; otherwise, restart the process from step 2.
This procedure is depicted in figure 1. Notice that the trust act uses only the set of

trusted facts and the trust-points to decide the trustfulness of a fact.

Fig. 1. Depiction of the trust process

An iterative procedure is used, as the conditions that each trust-point states to ac-
cept a set of facts (for a given provenance) are fulfilled depending on the presence (or
absence) of other trusted facts. So, to trust a fact, it may be necessary that other facts
have already been trusted, which also means that trusting a fact may lead other facts
to be trusted. The same happens when a fact loses its trust status: other facts that de-
pended on this one may also become untrusted.

The last step of the procedure is justified by the functional nature of the trust act: if
there are no changes in the inputs, then nothing will change if it is applied again.

The dependence among facts shown above presents an interesting property of the
model: the interplay between trust-points. The dependence that exists in practice
among facts reveals the intrinsic dependence among trust-points. When a trust-point
is added, it may implicitly enter in a chain of trust-points. These implicit chains of
trust-points resemble the trust policies that are explicitly defined in other approaches

like [8]. We say that the model allows the implicit definition of arbitrarily complex
trust policies through the use of its building blocks, the trust-points.

2.6 Trust Transitivity

One often-used property of the trust relationship is the transitivity [9, 10]. It is com-
monly used jointly with trust degrees to represent trust relationships as weighted
graphs, where the weight is the degree of trust. Trust propagation algorithms are used
to infer the degree of trust between unrelated nodes (that is, nodes with no direct edge
between them).

Our approach does not yet use transitivity of trust in the model: it does not support
trust-point inference through the use of trust relationships. In other words, trust-points
are independent: the fact that one agent trusts another on some aspect does not influ-
ence the agent’s trust on a third agent.

However, the model does provide transitivity de facto in a scenario of information
sharing where agents use the proposed trust model and each one of them only shares
information that they trust. To see how this happen, we must derive a trust graph,
where each trust-point originates an edge from the trusting agent to the trusted agent
(the provenance); this edge’s “weight” is the subject matter of the trust-point. If we
merge the trust graphs of several agents, one might find a path in which all edges have
the same subject matter, e.g. John trusts Mary on finding papers, Mary trusts Daniel
on finding papers and Daniel trusts Mark on finding papers. In the example, when
Mark finds an interesting paper, it will eventually end up being trusted by all the
agents in the path (see Fig. 2).

Fig. 2. De facto trust transitivity

2.7 Degrees of Trust

It is a common perception that trust has degrees: one can trust someone more than
someone else [7]. In formal terms, there is an order on the relation of trusting agents
and information sources. Some models try to capture this order through the assign-
ment of trust ratings to trust relationships [10]. This assignment is made for some
pairs of agent-source and then the remaining ratings are inferred [9].

Although the proposed model does not use trust degrees, it does capture the order-
ing of trust relationships based on the idea that to trust more one agent means to trust
him over a larger scope of “things”. A single trust-point’s subject matter gives a set of
trusted facts for some provenance. Given a trusting agent Ta, another agent A, we can
group all trust-points of Ta that include A in their provenance. From this set of trust-
points we can extract the set of subject matters on which Ta trusts A, which gives the
extent of trust of Ta with respect to A. To visualize this, we can look again to the trust

graph originated by the trust-points: each pair of nodes can have one or more edges,
one for each subject matter. The set of edges between two nodes gives the extent of
the trust relationship, as exemplified in Fig. 3, which shows the extents of trust of
John with respect to Mary (accepting web sites, Semantic Web papers and rock mu-
sic) and Bob (accepting web sites and antivirus software). Formally, we can say that
the trust predicate associated with a subject matter entails the set of facts that will be
trusted. Then, we can say that the extent of trust of Ta with respect to A entails the set
of all facts that Ta trusts when coming from A.

Now the problem is reduced to finding an order on the set of extents. A partial or-
dering on it is given by the entailment relation: an extent A is strictly greater than the
extent B if A entails B and B does not entail A. Loosely speaking, an extent is greater
than other if it contains the other extent. If there is no entailment relation between two
extents, then it is not possible to order them.

Fig. 3. John is the trusting agent. The dashed lines show the extents of trust of John with re-
spect to Mary and Bob.

2.8 Applying the Model to the Motivating Scenario

The above model of trust can be applied to the scenario of interest with the following
mappings:
• A fact is an RDF triple pertaining to a named graph [3]. We used named graphs in

order to support attachment of provenance and contextual information to graphs
(see below).

• The trusted facts are the accepted triples.
• The trusting agent is the information consumer.
• The circumstances are facts whose subject is the context of a triple, that is, its sur-

rounding named graph. The provenance is a particular circumstance that will be
treated separately, as justified before.

• The Semantic Web Publishing vocabulary [3] provides means to attach provenance
information to graphs, establishing a relation between an agent and a graph. This
relation can be of assertion, quoting, denial etc. So, a triple’s provenance is the en-
tity asserting this triple’s graph.

• The subject matter entails a set of triples that the trusting agent relies on (for a
particular provenance). The subject matter “receiving academic articles” will entail
all triples that, in the domain theory of the agent, assert that something is an
academic article. Notice that this relation can (and normally will) be described
intensionally. In the preceding example, the entailment relation can be stated using
an RDF property whose domain is the set of academic articles.

• The trust policy of an agent for receiving information is given by its set of trust-
points. The trust process presented enforces this policy, separating reliable facts
from facts that are just known.

3 Prototype Implementation

We tested the preceding ideas in a prototype solution aimed to partially implement the
trust process presented above. We used named graphs to store triples and TriQL (the
extension of RDQL for named graphs) to represent (and apply) trust predicates. Cur-
rently we do not implement neither composite nor negated trust predicates. We also
do not support transparently blank nodes due to limitations of the underlying imple-
mentations used. Currently all blank nodes are transformed into fake URI nodes dur-
ing the prototype execution.

The trust-points were expressed using a simple ontology, mirroring the model’s
structure: each trust-point is composed by one or more trust predicates, which may be
predicates on the subject matter or on the provenance. We do not provide separate
predicates for circumstances yet, although they can be implemented as subject matter
predicates without loss of expressiveness. The elementary trust predicates are ex-
pressed as graph patterns and sentence patterns or URI, depending on the type of
predicate (subject matter or provenance). Follows a sample of the trust-points and
trust predicates we used in our tests. The trust-points are represented using N3 format.

Describes the trust-point GoodSite

ex:goodSite a trust:TrustPoint;

 # Provenance must be a researcher
 trust:provenance trustpred:isResearcher;

 # Subject matter must be a web site
 trust:subjectMatter trustpred:isSite;

 # The site must be hosted on a university
 trust:subjectMatter trustpred:isHostedOnUniv .

Describes the trust-point GoodPublJohn

ex:GoodPublJohn a trust:TrustPoint;

 # Provenance should be a John’s colleague
 trust:provenance trustpred:isColleagueJohn;

 # Subject matter must be a publication and
 # must be cited by a good web site
 trust:subjectMatter trustpred:isPublication;
 trust:subjectMatter trustpred:citedByGoodSite .

Describes the trust predicate IsRes

trustpred:isResearcher a trust:ElementaryPredicate;
 trust:graphPattern

"?g (?GRAPH swp:assertedBy ?g .
 ?g swp:authority ?ENTITY)
 (?ENTITY foaf:member ?u)
 (?u rdf:type ex:University)" .

Describes the trust predicate isPubl

trustpred:isPublication a trust:ElementaryPredicate;

 # This predicate is described as a sentence

pattern. It will allow sentences whose
predicate is dc:type. This is the trusting
agent’s view of what is a publication.

 trust:sentencePattern
"?ANYTHING dc:type ?ANYTHING" .

The graph patterns are used to express conditions on the set of trusted facts, that is,
what must be already known to trust a triple. They follow TriQL syntax and may use
variables. Each trust-point is converted to a TriQL query, which is applied to the set
of trusted facts. There are four special variables, whose values are bound before run-
ning the queries: GRAPH, SUBJ, PRED and OBJ, which are bound respectively to
the graph name, the subject of the triple being tested, its predicate and its object.
These variables allow the trust predicates to test relationships between the triple being
analyzed with the trusted facts. The graph patterns of all trust predicates of a trust-
point are concatenated to build the query.

The sentence patterns restrict the valid values on each of the triple’s components. If
the agent does not wish to restrict some of them, he may use the special variable
ANYTHING. These restrictions appear in the query as conditions on the variable’s
values.

To deal with provenance information, the prototype recognizes the special variable
ENTITY and allows the trust predicate to specify a concrete URI value for it. The
trust predicate is responsible for providing a graph pattern that binds this variable to
the node that represents the provenance of the triple being tested.

The trust-point GoodSite shown above is translated to the following TriQL query
that, given a triple, rules it out if it does not match the conditions imposed by the
trust-point.

SELECT * WHERE ?GRAPH (?SUBJ ?PRED ?OBJ)
 (?SUBJ ex:hostedOn ?u)
 (?u rdf:type ex:University)
 ?g (?GRAPH swp:assertedBy ?g .
 ?g swp:authority ?ENTITY)
 (?ENTITY foaf:member ?u)
 (?u rdf:type ex:University)

 AND ?PRED eq rdf:type
 AND ?OBJ eq ex:Website

Once the trust-points are translated into queries, the prototype cycles through the

set of triples not yet trusted, following the trust process defined earlier. Currently it
operates on a static knowledge-base, that is, no new facts can be added during its exe-
cution. This restriction will be removed in future developments.

We tested the prototype with some hand-made sample data and it performed as ex-
pected, being capable of implement and enforce the trust policies expressed by the
sample trust points presented. Follows the output of the prototype in one of the tests,
showing which triples got trusted in which cycle. The name of the trust-point who al-
lowed the inclusion of the fact is between angle brackets before each sentence.

Loading knowledge base...
Loading trust-points...
Running trust-point engine...

====> Cycle 1

+ {goodProvenance1} ex:JohnWarrant swp:assertedBy
ex:JohnWarrant
+ {goodProvenance1} ex:AnnWarrant swp:assertedBy
ex:AnnWarrant
+ {goodProvenance3} ex:JohnWarrant swp:authority
ex:John
+ {goodProvenance3} ex:AnnWarrant swp:authority
ex:Ann
+ {selfTrust} ex:JohnData swp:assertedBy
ex:JohnWarrant
+ {selfTrust} ex:John foaf:knows ex:Ann
+ {selfTrust} ex:John foaf:name "John M."
+ {selfTrust} ex:puc rdf:type ex:University
+ {selfTrust} ex:Ann foaf:member ex:puc
+ {selfTrust} ex:swsite ex:cites ex:book

+ {hosting} ex:swsite ex:hostedOn ex:puc
+ {goodProvenance2} ex:AnnData swp:assertedBy
ex:AnnWarrant

====> Cycle 2

+ {goodSite} ex:swsite rdf:type ex:Website

====> Cycle 3

+ {GoodPublJohn} ex:book dc:type ex:Book

====> Cycle 4

FINISHED

4 Conclusions

Our goal was to build a formalism to capture, represent and apply trust requirements
of an agent in the scenario of Semantic Web data exchange, while preserving the real-
world semantics of trust. This was done using the trust-point concept as a unit com-
prising all information needed to decide the trustfulness of received information. The
composition of trust-points yields trust policies that can be realized using the trust
process proposed. We presented a partial prototype implementation fulfilling this trust
process, using TriQL queries to implement the trust policies.

Differently from Bizer’s work [1], where each policy must specify all the condi-
tions the triples must fulfill to be accepted, in the proposed model the trust policies
can be built incrementally, as each trust-point can be specified independently from the
others, while cooperating with them in each trust act. The addition of new trust-points
enriches the resulting trust policies. In fact, these trust policies emerge from the inter-
actions between the different trust-points. We believe this represents more realisti-
cally how trust acts occur in the real-world.

The next steps in this work include a deeper study of the proposed formalism in
order to evaluate its properties (expressiveness and computational complexity, among
others) and to see how it compares to other existing models. We also wish to com-
plete the prototype’s implementation and use it in more realistic scenarios, including
Social Semantic Desktops and P2P networks.

5 References

1. Bizer, C., Cyganiak, R., Maresch, O., Gauss, T.: TriQL.P - Trust Policies Enabled Semantic
Web Browser. http://www.wiwiss.fu-berlin.de/suhl/bizer/TriQLP/browser/

2. Guha, R.: Open Rating Systems. 1st Workshop on Friend of a Friend, Social Networking and
the Semantic Web (2004).

3. Carroll, J. J., Bizer, C., Hayes, P., Stickler, P.: Named Graphs, Provenance and Trust. Tech-
nical report HPL-2004-57 (2004).

4. Gerck, E.: Toward Real-World Models of Trust: Reliance on Received Information.
http://www.safevote.com/papers/trustdef.htm.

5. Tummarello, G., Morbidoni, C., Puliti, P., Piazza, F.: The DBin Semantic Web platform: an
overview. http://www.instsec.org/2005ws/papers/tummarello.pdf.

6. Bizer, C., Oldakowski, R.: Using Context- and Content-Based Trust Policies on the Semantic
Web. In: International World Wide Web Conference (2004).

7. Castelfranchi, C., Falcone, R.: Social Trust: A Cognitive Approach. In: Castelfranchi, C.;
Yao-Hua Tan (Eds.): Trust and Deception in Virtual Societies. Springer-Verlag (2001).

8. Nejdl, W., Olmedilla, D., Winslett, M.: PeerTrust: Automated Trust Negotiation for Peers
on the Semantic Web. Workshop on Secure Data Management in a Connected World
(SDM'04) in conjunction with 30th International Conference on Very Large Data Bases,
Aug.-Sep. 2004, Toronto, Canada

9. Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of Trust and Dis-
trust. In: International World Wide Web Conference (2004).

10. Golbeck, J., Parsia, B., Hendler, J.: Trust Networks on the Semantic Web. Proceedings of
Cooperative Intelligent Agents (2003), Helsinki, Finland.

