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Abstract

This report examines and classi�es the characteristics of signatures used in misuse intrusion detection. E�cient

algorithms to match patterns in some of these classes are described. A generalized model for matching intrusion

signatures based on Colored Petri Nets is presented, and some of its properties are derived.

1 Introduction

Computer break-ins and their misuse have become common features [Met87, Bos88, Sto88, Mar88, Rei87,
SSH93]. The number, as well as sophistication, of attacks on computer systems is on the rise. Often,
network intruders have easily overcome the password authentication mechanism designed to protect the
system. With an increased understanding of how systems work, intruders have become skilled at determin-
ing their weaknesses and exploiting them to obtain unauthorized privileges. Intruders also use patterns of
intrusion that are often di�cult to trace and identify. They use several levels of indirection before breaking
into target systems and rarely indulge in sudden bursts of suspicious or anomalous activity, for example
in [Sto88]. If an account on a target system is compromised, intruders may carefully cover their tracks so
as not to arouse suspicion, as in [Spa89]. Furthermore, threats like viruses and worms do not need human
supervision and are capable of replicating and traveling to connected computer systems. Unleashed at one
computer, by the time they are discovered, it is almost impossible to trace their origin or the extent of
infection.

Tools are therefore necessary to monitor systems, to detect break-ins, and to respond actively to the
attacks in real time. Most break-ins prevalent today exploit well known security holes in system software.
One solution to these problems is to study the characteristics of intrusions and from these, to extrapolate
intrusion characteristics of the future, devise means of representing intrusions in a computer so that the

�This work was funded by the Division of INFOSEC Computer Science, Department of Defense.
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break-ins can be detected in real time. This report is an analysis of a computational framework designed
for matching such signatures e�ciently.

Intrusions as such are di�cult to de�ne in terms of behavior or actions, but are more easily understood,
and thus de�ned, in terms of their e�ect on computer systems. Such a de�nition is given in section 2
along with a brief description of the categories of intrusion detection, and a justi�cation of the need for
intrusion detection systems [sec 2.2]. Several approaches to intrusion detection are known. These include
statistical methods which monitor anomalies in the system [sec 3.1] and pattern matching/expert system
techniques that look for well de�ned patterns of attack [sec 3.2]. Recent techniques have proposed inductive
generalization as a means for abstracting patterns of behavior [sec 3.8]; neural networks for predicting future
behavior from past behavior [sec 3.8], in which the prediction failure is indicative of anomalous activity;
and model based techniques in which the system is continually updating a model to match the observed
behavior [sec 3.10].

There are many intrusions that cannot be detected by statistical methods alone and must be speci�cally
watched for. This technique of monitoring speci�c patterns of attack, or misuse intrusion detection, is
di�cult to implement in a practical system for a variety of reasons [sec 4]. To design a generic misuse
intrusion detection system, its desirable characteristics should be de�ned at the outset. We propose such a
set that includes generality, portability, scalability and real time performance [sec 4]. Because
the system watches for well de�ned intrusion signatures we have studied the characteristics of existing
signatures and classi�ed them in terms of �ve basic characteristics, namely linearity, unification,

occurrence, beginning and duration [sec 4.2]. A matching model is proposed thereafter that can be
part of a generic misuse detector. This model is based on Colored Petri Nets and lends itself well to a
graphical representation [sec 4.4]; the details and some of its properties are given in sec 5. Some forms
of matching in this model are shown to be as easy as matching �xed strings and regular expressions, but
matching with uni�cation is shown to be hard. Some possible optimizations in this model of matching are
outlined.

The proposed model of matching is compared with two of the desirable characteristics outlined earlier.
The issue of scalability, or matching several patterns e�ciently is discussed in sec 5.2. The applicability
of compiler optimization techniques to speed up matching and the virtual machine which forms its basis
are also described. A method of achieving portability of intrusion signatures across di�erent audit trails is
outlined in sec 5.3. The realization of other characteristics can be better determined experimentally and
is not discussed in this report.

2 Intrusion Detection

An intrusion is de�ned [HLMS90] as

any set of actions that attempt to compromise the integrity, con�dentiality, or availability of a
resource.

It is a violation of the security policy of the system. Any de�nition of an intrusion is, of necessity, imprecise,
as security policy requirements do not always translate into a well de�ned set of actions. Intrusion Detection
is the methodology by which intrusions are detected.
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This methodology can be divided into two categories: \anomaly" intrusion detection and \misuse" intrusion
detection. The �rst refers to intrusions that can be detected based on anomalous behavior and use of
computer resources. For example, if user A only uses the computer from his o�ce between 9 am and 5 pm,
an activity on his account late in the night is anomalous and hence, might be an intrusion. A user B might
always login outside of working hours through the company terminal server. A late night rlogin session
from another host to his account might be considered unusual. This technique of detecting intrusions
attempts to quantify the good or acceptable behavior and ags other irregular behavior as intrusive.

In contrast, the second, misuse intrusion detection, refers to intrusions that follow well de�ned patterns of
attack that exploit weaknesses in system and application software. Such patterns can be precisely written
in advance. For example, exploitation of the fingerd and sendmail bugs used in the Internet Worm
attack [Spa88] would come under this category. This technique represents knowledge about the bad or
unacceptable behavior [Sma92] and seeks to detect it directly, as opposed to anomaly intrusion detection,
which seeks to detect the complement of normal behavior.

The above mentioned schemes of classifying intrusions was based on its method of detection. Another
classi�cation scheme, based on the intrusion types, presented in [Sma88] breaks intrusions into the following
six types:

Attempted break-in: detected by atypical behavior pro�les or violations of security constraints.

Masquerade attack: detected by atypical behavior pro�les or violations of security constraints.

Penetration of the security control system.

Leakage: detected by atypical usage of I/O resources.

Denial of Service: detected by atypical usage of system resources.

Malicious use: detected by atypical behavior pro�les, violations of security constraints, or use of special
privileges.

2.1 Premise of Intrusion Detection Schemes

A main premise of anomaly intrusion detection is that intrusive activity is a subset of anomalous activity.
This might seem reasonable, considering that if an outsider breaks into a computer account, with no
notion of the legitimate user's pattern of resource usage, there is a good chance that his behavior will be
anomalous.

Often, however, intrusive activity can be carried out as a sum of individual activities, none of which, is in
itself, anomalous. Ideally, the set of anomalous activity coincides with that of intrusive activity resulting
in a lack of false positives. However, intrusive behavior does not always coincide with anomalous behavior.
There are four possibilities, each one with a non zero probability:

1: intrusive but not anomalous
2: not intrusive but anomalous
3: not intrusive and not anomalous

4: intrusive and anomalous

For a probabilistic basis of intrusion detection see [LV89, LV92].

Most intrusion detection systems built to date [BK88, Sma88, LJL+89, SSHW88, LV89, LJL+89] etc. use
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the audit trail generated by a C21 or higher rated computer, for input. Others, for example [HLMS90,
HLM91] analyze intrusions by the network connections and the ow of information in a network. Input
information appropriate to the domain of intrusive activity is needed to detect intrusions. Enough domain
information is required to determine those variables that accurately reect intrusive behavior.

2.2 Why are Intrusion Detection Systems Necessary?

Computer systems are being broken into regularly. Are these intrusions a result of their generic weaknesses
or a result of accidental discovery and exploitation of aws, resulting perhaps, from their complexity? In
other words, does the protection model of these systems theoretically provide adequate security against
intrusions? Will the use of validated software for the critical components then thwart all attempts to
intrude?

Most computer systems provide an access control mechanism as their �rst line of defense. However, this
only de�nes whether access to an object in the system is permitted but does not model or restrict what
a subject may do with the object itself if it has the access to manipulate it [Den82, chapter 5]. Access
control does not model and thus cannot prevent illegal information ow through the system, because such
ow can take place with legal accesses to the objects.

Information ow can be controlled to provide more security; for example, the Bell LaPadula model [BL73],
to provide secrecy, or the Biba model [Bib77], to provide integrity. However, there is a tradeo� between
security and convenience of use. Both models are conservative and restrict read and write operations to
ensure that the secrecy or the integrity of the system can never be compromised. Consequently, if both
models are jointly used, the resulting system will ag almost any useful operation as a breach of some
security condition. Thus, a very secure system may not be useful.

Furthermore, access controls and protection models do not help in the case of insider threats or compromise
of the authentication module. If a weak password is broken, access control measures can do little to prevent
stealing or corruption of information legally accessible to the compromised user. In general static methods
of assuring properties in a system are overly restrictive and simply insu�cient in some cases. Dynamic
methods, for example behavior tracking, are therefore needed to detect and perhaps prevent breaches in
security.

3 Approaches to Detecting Intrusions

Most systems built to date do both anomaly and misuse intrusion detection. Some are based on advanced
techniques of predicting future patterns based on input seen thus far (like a reactive keyboard) and some
intrusion detection systems have been built using neural nets [sec. 3.8]. Some approaches, for example
the statistical approach, have resulted in systems that have been used and tested extensively, while others
are still in the research stage. Proposed methods for future intrusion detection systems include the model
based approach [sec. 3.10], to be included in NIDES [JLA+93]. Promising areas of application for future
systems are discussed, which include Bayesian clustering [sec. 3.7]. No intrusion detection system using this
approach has been designed to date. The merits, as well as shortcomings, of current intrusion detection
systems are also discussed.

1A DoD security classi�cation requiring auditing and unavailability of encrypted passwords.
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3.1 Statistical Approaches to Intrusion Detection (Anomaly Intrusion Detection)

The following, based on [LTG+92], serves to illustrate the generic process of anomaly detection, which is
by and large, statistical in nature. The anomaly detector observes the activity of subjects and generates
pro�les for them that captures their behavior. These pro�les do not require much space for storage and are
e�cient to update. They are updated regularly, with the older data appropriately aged. As input audit
records are processed, the system periodically generates a value indicative of its abnormality. This value is
a function of the abnormality values of the individual measures comprising the user pro�le. For example,
if S1; S2; : : : ; Sn represent the abnormality values of the pro�le measures M1;M2; : : : ;Mn respectively, and
a higher value of Si indicates greater abnormality, a combining function of the individual S values may be

a1S
2
1 + a2S

2
2 + � � �+ anS

2
n; ai > 0

In general, the measures M1;M2; : : : ;Mn may not be mutually independent, resulting in a more complex
function for combining them.

There are several types of measures comprising a pro�le, for example

1. Activity Intensity Measures | These measure the rate at which activity is progressing. They
are usually used to detect abnormalities in bursts of behavior that might not be detected over longer
term averages. An example is the number of audit records processed for a user in 1 minute.

2. Audit Record Distribution Measures | These measure the distribution of all activity types in
recent audit records. An example is the relative distribution of �le accesses, I/O activity etc. over
the entire system usage, for a particular user.

3. Categorical Measures | These measure the distribution of a particular activity over categories,
for example the relative frequency of logins from each physical location, the relative usage of each
mailer, compiler, shell and editor in the system etc.

4. Ordinal Measures | These measure activity whose outcome is a numeric value, for example the
amount of CPU and I/O used by a particular user.

The current user behavior is stored in a current pro�le. At regular intervals the current pro�le is atomically
merged with the stored pro�le2 . Anomalous behavior is determined by comparing the current pro�le with
the stored pro�le.

3.1.1 Pros and Cons of Statistical ID

An advantage of anomaly intrusion detection is that statistical techniques have applicability here. For
example, data points that lie beyond a factor of the standard deviation on either side of the average might
be considered anomalous. Or the integral of the absolute di�erence of two functions over time might be
an indicator of the deviation of one function over the other.

Statistical intrusion detection systems also have several disadvantages. Even if statistical measures could be
de�ned to capture the computer usage patterns unique to every user, by their very nature, these measures

2This is true of [LTG+92], in some systems the pro�les are static and do not change once determined.
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are insensitive to the order of the occurrence of events. That is, they miss the sequential interrelationships
between events. For intrusions reected by such an ordering of patterns, a purely statistical intrusion
detection system will miss these intrusions.

Purely statistical intrusion detection systems have the disadvantage that their statistical measures cap-
turing user behavior can be trained gradually to a point where intrusive behavior is considered normal.
Intruders who know that they are being so monitored can train such systems over a length of time. Thus
most existing intrusion detection schemes combine both a statistical part to measure aberration of behavior,
and a misuse part that watches for the occurrence of prespeci�ed patterns of events.

It is also di�cult to determine the right threshold above which an anomaly is to be considered intrusive.
And, to apply statistical techniques to the formulation of anomalies, one has to assume that the underlying
data comes from a quasi stationary process, an assumption that may not always hold.

3.2 Misuse Intrusion Detection

This refers to the detection of intrusions by precisely de�ning them ahead of time and watching for their
occurrence. There is a misuse component in most intrusion detection systems because statistical techniques
alone are not su�cient to detect all types of intrusions. Purely statistical methods cannot prevent users
from altering their pro�les gradually over a period of time to a point where activity previously considered
anomalous is regarded normal. Furthermore, no step in an intrusion may, in itself, be anomalous but the
aggregate may be.

Intrusion signatures are usually speci�ed as a sequence of events and conditions that lead to a break-in. The
conditions de�ne the context within which the sequence becomes an intrusion. Abstracting high quality
patterns from attack scenarios is much like extracting virus signatures from infected �les. The patterns
should not conict with each other, be general enough to capture variations of the same basic attack, yet
simple enough to keep the matching computationally tractable. Often, these patterns are simple enough
for the detection process to be automated.

The primary technique of misuse intrusion detection uses an expert system. This paper proposes another
technique, that of using pattern matching as a viable option for misuse intrusion detection [sec 4]. An
example of the former is [SS92] which encodes knowledge about attacks as if-then implication rules in
CLIPS [Gia92] and asserts facts corresponding to audit trail events. Rules are encoded to specify the
conditions requisite for an attack in their if part. When all the conditions on the left side of a rule are
satis�ed, the actions on the right side are performed. The primary disadvantage of using expert systems
is that working memory elements (fact base) that match the left sides of productions to determine eligible
rules for �ring are essentially sequence-less. It is thus hard to specify a natural ordering of facts e�ciently
within the natural framework of expert system shells3 .

No system directly using pattern matching has been reported to date. The objective is to frame the
intrusion detection problem as a pattern matching one, and devise e�cient algorithms for such matching.
This also has the bene�t of a leaner, more e�cient solution than that of using expert systems, which were
originally meant to solve problems in a di�erent domain. To frame the matching problem, it is easier to
�rst classify patterns in an increasing order of matching complexity (for example in [sec 4.3]) and ensure

3Even though facts are numbered consecutively in current expert system shells, introducing fact numbering constraints
within rules to enforce an order makes the Rete match [For82] procedure very ine�cient.
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that most of them fall in a set of classes for which e�cient algorithms are known or can be devised. As
the Rete match procedure [For82] used in expert system shells can be incorporated in the solution, it can
be no worse than using expert systems to detect misuse intrusions.

A misuse intrusion detector that simply ags intrusions based on the pattern of input events assumes that
the state transition of the system (computer) leads to an intruded state when exercised with the intrusion
pattern, regardless of the initial state of the system. Therefore, simply specifying an intrusion signature
without the beginning state speci�cation is often insu�cient to capture an intrusion scenario fully. For a
security model de�nition of an intrusion and a pattern oriented approach to its detection, see also [SG91].

The primary disadvantage of this approach is that it looks only for known vulnerabilities, and is of little
use in detecting unknown future intrusions.

3.3 Feature Selection or Which Measures are Good for Detecting Intrusions?

Given a set of possible measures, chosen heuristically, that can have a bearing on detecting intrusions,
how does one determine the subset that accurately predicts or classi�es intrusions? The exercise of de-
termining the right measures is complicated by the fact that the appropriate subset of measures depends
on the types of intrusions being detected. One set of measures will likely not be adequate for all types of
intrusions. Prede�ned notions of the relevance of particular measures to detecting intrusions might miss
intrusions unique to a particular environment. The set of optimal measures for detecting intrusions must
be determined dynamically for best results.

Consider an initial list of 100 measures as potentially relevant to predicting intrusions. This results in
2100 possible subsets of measures, of which there are presumably only a few subsets that result in a
high predictability of intrusions. It is clearly untractable to search through this large space exhaustively.
[HLMS90] present a genetic approach to searching through this space for the right subset of metrics. Using
a learning classi�er scheme they generate an initial set of measures which is re�ned in the rule evaluation
mode using genetic operators of crossover and mutation. Subsets of the measures under consideration
having low predictability of intrusions are weeded out and replaced by applying genetic operators to yield
stronger measure subsets. The method assumes that combining higher predictability measure subsets
allows searching the metric space more e�ciently than other heuristic techniques.

For a survey of other feature selection techniques see [Doa92].

3.4 Combining Individual Anomaly Measures to Get a Composite Picture of the Intrusion?

Let A1; A2; : : : ; An be n measures used to determine if an intrusion is occurring on a system at any given
moment. Each Ai measures a di�erent aspect of the system, for example, the amount of disk I/O activity,
the number of page faults in the system etc. Let each measure Ai have two values, 1 implying that the
measure is anomalous, and 0 otherwise. Let I be the hypothesis that the system is currently undergoing an
intrusive attack. The reliability and sensitivity of each anomaly measure Ai is determined by the numbers
P (Ai = 1jI) and P (Ai = 1j:I). The combined belief in I is

P (I jA1; A2; : : : ; An) = P (A1; A2; : : : ; AnjI)�
P (I)

P (A1; A2; : : : ; An)
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This would require the joint probability distribution of the set of measures conditioned on I and :I , which
would be a huge data base. To simplify the calculation, at the expense of accuracy, we might assume that
each measure Ai depends only on I and is independent of the other measures Aj ; j 6= i. That would yield

P (A1; A2; : : : ; AnjI) = �n
i=1P (AijI)

and
P (A1; A2; : : : ; Anj:I) = �n

i=1P (Aij:I)

which leads to
P (I jA1; A2; : : : ; An)

P (:I jA1; A2; : : : ; An)
=

P (I)

P (:I)
�

�n
i=1P (AijI)

�n
i=1P (Aij:I)

that is, we can determine the odds of an intrusion given the values of various anomaly measures, from the
prior odds of the intrusion and the likelihood of each measure being anomalous in the presence of intrusion.

In order, however, to have a more realistic estimate of P (I jA1; A2; : : : ; An) we have to take the interde-
pendence of the various measures Ai into account.

[LTG+92] use covariance matrices to account for the interrelationships between measures. If the measures
A1; : : : ; An are represented by the vector A, then the compound anomaly measure is determined by

ATC�1A

where C is the covariance matrix representing the dependence between each pair of anomaly measures Ai

and Aj .

Future systems might use Bayesian or other belief networks to combine anomaly measures. Bayesian Net-
works [Pea88] allow the representation of causal dependencies between random variables in graphical form
and permit the calculation of the joint probability distribution of the random variables by specifying only
a small set of probabilities, relating only to neighboring nodes. This set consists of the prior probabilities
of all the root nodes (nodes without parents) and the conditional probabilities of all the non root nodes
given all possible combinations of their direct predecessors. Bayesian networks, which are DAGs with arcs
representing causal dependence between the parent and the child, permit absorption of evidence when the
values of some random variables become known, and provide a computational framework for determining
the conditional values of the remaining random variables, given the evidence. For example, consider the
trivial Bayesian network model of an intrusion shown in the �gure below.

DISK I/O CPU NET I/O

INTRUSION

Fragmentation Newly Available
Program on the
net.

Thrashing

Too Many
   Users

Too Many
Disk Intensive
Jobs.

Too Many
CPU Intensive
Jobs

Figure 1: A Trivial Bayesian Network modeling intrusive activity
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Each box represents a binary random variable with values representing either its normal or abnormal
condition. If we can observe the values of some of these variables, we can use Bayesian network calculus to
determine P (IntrusionjEvidence). However, in general it is not trivial to determine the a priori probability
values of the root nodes and the link matrices for each directed arc. For a good introduction to Bayesian
Networks see [Cha91].

3.5 The Conditional Probability Scheme of Predicting Misuse Intrusions

This method of predicting intrusions is the same as the one outlined in the preceding section, with the
minor di�erence of the evidence now being a sequence of external events rather than anomaly measures.
We are interested in determining the conditional probability

P (IntrusionjEvent Pattern)

Applying Bayes law, as before, to the above equation, we get

P (IntrusionjEvent Pattern) = P (Event PatternjIntrusion)�
P (Intrusion)

P (Event Pattern)

Consider as the domain within which the conditional probability of intrusion is to be predicted, to be the
campus network of a university. A security expert associated with the campus might be able to quantify the
prior probability of the occurrence of an intrusion on the campus, or P (Intrusion), based on his experience.
Further, if the intrusion reports from all over the campus are tabulated, one can determine, for each type
of event sequence comprising an intrusion, P (Event SequencejIntrusion), by �nding the relative frequency
of occurrence of the event sequence in the entire intrusion set. Similarly, given a set of intrusion free audit
trails, one can determine, by inspection and tabulation, the probability P (Event Sequencej:Intrusion).
Given the two conditional probabilities, one can easily determine the LHS, from simple Bayesian arithmetic,
for the prior probability of an event sequence is

P (Event Sequence) = (P (ESjI)� P (ESj:I)) � P (I) + P (ESj:I)

where ES stands for event sequence and I stands for intrusion.

3.6 Expert Systems in Intrusion Detection

An expert system is de�ned in [Jac86] as a computing system capable of representing and reasoning about
some knowledge-rich domain with a view to solving problems and giving advice. The main advantage
here is the separation of control reasoning from the formulation of the problem solution. Some signi�cant
problems in the e�ective application of expert systems in intrusion detection are the voluminous amount
of data to be handled and the inherent ordering of the audit trail. The chief applications of expert systems
in intrusion detection can be classi�ed into the following types.

1. To deduce symbolically the occurrence of an intrusion based on the given data (misuse intrusion
detection). The chief problems in this use of expert systems are 1) No inbuilt or natural handling of
sequential order of data 2) The expertise incorporated in the expert system is only as good as that
of the security o�cer whose expertise is modeled, which may not be comprehensive [Lun93] 3) This
technique can only detect known vulnerabilities and 4) there are software engineering concerns in
the maintenance of the knowledge base [Lun93].
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2. To combine various intrusion measures and put together a cohesive picture of the intrusion, in short,
to do uncertainty reasoning. The limitations of expert systems in doing uncertainty reasoning are
well known [Lun93, Pea88]. See also sec. 3.10, page 12 for a list of these limitations.

3.7 Bayesian Classi�cation in Intrusion Detection

This technique of unsupervised classi�cation of data, and its implementation, Autoclass [CKS+88, CHS91]
searches for classes in the given data using Bayesian statistical techniques. This technique attempts to
determine the most likely process(es) that generated the data. It does not partition the given data into
classes but de�nes a probabilistic membership function of each datum in the most likely determined classes.
Some advantages of this approach are:

1. Autoclass automatically determines the most probable number of classes, given the data.

2. No ad hoc similarity measures, stopping rules, or clustering criteria are required.

3. Real and discrete attributes may be freely mixed.

In statistical intrusion detection we are concerned with a classi�cation of observed behavior. Techniques
used till now have concentrated on supervised classi�cation in which user pro�les are created based on
each user's observed behavior. The Bayesian classi�cation method would permit the determination of the
optimal (in the probabilistic sense) number of classes, with users with similar pro�les lumped together,
thus yielding a natural classi�cation of a group of users.

However, it is not clear (to us) how well Autoclass handles inherently sequential data like an audit trail, and
how well the statistical distributions built into Autoclass will handle user generated audit trails. Lastly, we
are not sure if this technique lends itself well to online data, i.e. whether Autoclass can do its classi�cation
on an incremental basis as new data becomes available, or whether it requires all the input data at once.

3.8 Predictive Pattern Generation in Intrusion Detection

The assumption here is that sequences of events are not random but follow a discernible pattern. The
approach of time based inductive generalization [Che88, TCL90] uses inductive generated time-based rules
that characterize the normal behavior patterns of users. The rules are modi�ed dynamically during the
learning phase and only \good" rules, i.e. rules with low entropy remain in the system. An example of a
rule generated by TIM [TCL90] may be

E1!E2!E3 ) (E4 = 95%, E5 = 5%)

where E1-E5 are security events. This rule says that if the pattern of observed events is E1 followed by
E2 followed by E3 then the probability of seeing E4 is 95% and that of E5 is 5% (all this is based on
previously observed data). TIM can generate more general rules that incorporate temporal relationships
between events.

A set of rules generated inductively by observing user behavior then comprises the pro�le of the user. A
deviation is detected if the observed sequence of events matches the left hand of a rule but the following
events deviate signi�cantly from those predicted by the rule, in a statistical sense.
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A primary weakness of this approach is that unrecognized patterns of behavior are not recognized as
anomalous because they do not match the left hand side of any rule.

The strengths of this approach are:

1. Claims better handling of users with wide variances of behavior but strong sequential patterns.

2. Can focus on a few relevant security events rather than the entire login session that has been labeled
suspicious.

3. Claims better sensitivity to detection of violations. Cheaters who attempt to train the system during
its learning phase can be discerned more easily because of the meaning associated with rules.

3.9 Neural Networks in Intrusion Detection

The basic approach here is to train the neural net on a sequence of information units [FHRS90] (from here
on referred to as commands), each of which may be at a more abstract level than an audit record. The
input to the net consists of the current command and the past w commands. w is the size of the window of
past commands that the neural net takes into account in predicting the next command. Once the neural
net is trained on a set of representative command sequences of a user the net constitutes the pro�le of the
user and the fraction of incorrectly predicted next events then measures, in some sense, the variance of the
user behavior from his pro�le. The use of the neural net conceptually looks like:

Input Layer

Output Layer

ls
ch

m
od

pw
d vi...

Next Predicted Command

ls ch
m

od

pw
d

vi

...

Figure 2: A Conceptual Use of Neural Nets in Intrusion Detection

For a good introduction to neural networks and learning in neural nets by back propagation see [Win92].

Some of the drawbacks of this approach are:

1. The right topology of the net and the weights assigned to each element of the net are determined
only after considerable trial and error.
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2. The size of the window w is yet another independent variable in the neural net design. Too low and
the net will do poorly, too high and it will su�er from irrelevant data.

3. This approach cannot induce patterns from samples. The neural net must be trained exhaustively
on all pattern instantiations.

Some advantages of this approach are:

1. The success of this approach does not depend on any statistical assumptions about the nature of the
underlying data.

2. Neural nets cope well with noisy or fuzzy data.

3. It can automatically account for correlations between the various measures that a�ect the output.

3.10 Model Based Intrusion detection

This approach was proposed in [GL91] and is a variation on misuse intrusion detection that combines
models of misuse with evidential reasoning to support conclusions about the occurrence of a misuse. There
is a database of attack scenarios, each of which comprises a sequence of behaviors making up the attack.
At any given moment the system is considering a subset of these attack scenarios as likely ones under which
the system might be currently under attack. It seeks to verify them by seeking information in the audit
trail to substantiate or refute the attack scenario (the anticipator). The anticipator generates the next
behavior to be veri�ed in the audit trail, based on the current active models, and passes these behaviors
to the planner. The planner determines how the hypothesized behavior will show up in the audit data
and translates it into a system dependent audit trail match. This mapping from behavior to activity must
be such as to be easily recognized in the audit trail, and must have a high likelihood of appearing in the
behavior. That is to say that

P (ActivityjBehavior)

P (Activityj: Behavior)

must be high.

As evidence for some scenarios accumulates, while for others drops, the active models list is updated.
The evidential reasoning calculus built into the system permits one to soundly update the likelihood of
occurrence of the attack scenarios in the active models list.

The advantages of model based intrusion detection are:

1. It is based on a mathematically sound theory of reasoning in the presence of uncertainty. This is in
contrast to expert system approaches to dealing with uncertainty in which retraction of intermediate
conclusions is not easy, as evidence to the contrary accumulates. Expert systems also have di�culty
in explaining away conclusions once facts, contradicting earlier asserted facts, are made known. These
problems can be avoided using a graphical approach such as evidential reasoning.

2. It can potentially reduce substantial amounts of processing required per audit record by monitoring
for coarser grained events in the passive mode and actively monitoring �ner grained events as coarser
events are detected.
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3. The planner provides independence of representation from the underlying audit trail representation.

The disadvantages of model based intrusion detection are:

1. This approach places additional burden on the person creating the intrusion detection models to
assign meaningful and accurate evidence numbers to various parts of the graph representing the
model.

2. As proposed, the model seems to suggest the use of behaviors speci�able by a sequential chain of
events but that does not seem to be a limitation of the model.

3. It is not clear from the model how behaviors can be compiled e�ciently in the planner and the e�ect
this will have on the run time e�ciency of the detector. This, however, is not a weakness of the
model per se.

It must be mentioned that model based intrusion detection does not replace the statistical anomaly portion
of intrusion detection systems, but rather complements it. For a thorough treatment of reasoning in the
presence of uncertainty see [Pea88].

3.11 Dorothy Denning's Generic Intrusion Detection Model

[Den87] established a model of intrusion detection independent of the system, type of input and the
speci�c intrusions to be monitored. A brief description of the generic model will also help in relating
speci�c examples of intrusion detection systems to it and viewing how these systems �t into or enhance it.

Fig. 3 describes how the generic intrusion detection system works. The event generator is generic, the
actual events may come from audit records, network packets, or any other observable and monitored
activity. These events serve as the basis for the detection of abnormality in the system. The Activity
Pro�le is the global state of the Intrusion Detection system. It contains variables that calculate the
behavior of the system using prede�ned statistical measures. These variables are smart variables. Each
variable is associated with a pattern speci�cation which is matched against the generated event records
and the matched records provide data to update their value appropriately. For example, there may be
a variable NumErrs representing the statistical measure sum which calculates the total number of errors
committed by the subject in a single login session. Each variable is associated with one of the statistical
measures built into the system, and knows how to update itself based on the information contained in the
matched event records.

The Activity Pro�le can also generate new pro�les dynamically for newly created subjects and objects
based on pattern templates. If new users are added to the system, or new �les created, these templates
instantiate new pro�les for them. It can also generate anomaly records when some statistical variable
takes on an anomalous value, for example when NumErrs takes on an inordinately high value. The Rule
Set contains a set of Expert System rules which can be triggered based on event records, anomaly records
and time expirations. The rules �re as their antecedents are satis�ed and make inferences which may
trigger further rules and inferences. It interacts with the Activity Pro�le by updating it based on its rules.

There are variations on how the rules comprising the rule set are determined, whether the rule set is coded
a priori or can adapt and modify itself depending on the type of intrusions, the nature of interaction be-
tween it and the Activity Pro�le, or the environment and a learning classi�er. The basic theme, however,
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Event Generator

Activity Profile Rule Set

CLOCK

Generate New Profiles Dynamically

Audit Trail/Network Packets/whatever

gen anomaly rec

Update Profile

assert new rules
modify existing rules

Figure 3: A Generic Intrusion Detection Model

of formulating statistical metrics good for identifying intrusions, computing their value, and recognizing
anomalies in their values appears in most of the systems built to date. Conceptually, the Activity Pro-
�le module does the anomaly detection, while the Rule Set module performs misuse detection. Di�erent
techniques and methods can be substituted for these modules without altering the conceptual view sub-
stantially. However, some newer techniques of anomaly detection do not map well into the internal details
of the Activity Pro�le as outlined in the paper. For example, the neural net approach of anomaly detection
does not easily �t the framework of smart variables and the calculation of a number for an anomaly value.
It is also not clear which module TIM [TCL90] would be placed in. It detects behavioral anomalies and
therefore might be a candidate for being placed in the Activity Pro�le, but it does so by generating rules
and �ring them when conditions in the if part of the rules is satis�ed, much like expert systems. Very
recent approaches like model based approaches are too di�erent to �t this framework directly.

3.12 Shortcomings of Current Intrusion Detection Systems

In general, the cost of building an intrusion detection system is immense. The speci�cation of the rules
of the expert system and the choice of the underlying statistical metrics must be made by one who is not
only a security expert, but also familiar with the expert system rule speci�cation language.

Intrusion Detection systems written for one environment are di�cult to use in other environments that
may have similar policies and concerns. This is because much of the system and its rule set must be speci�c
to the environment being monitored. Each system is, in some sense, ad-hoc and custom designed for its
target. Reuse and retargetting are di�cult unless the system is designed in such a generic manner that it
may be ine�cient or of limited power.

Lastly, there is no easy way to test existing Intrusion Detection systems. Potential attack scenarios are
di�cult to simulate and known attacks di�cult to duplicate. Further, a lack of a common audit trail
format hampers experimentation and comparison of the e�ectiveness of existing systems to common attack
scenarios.
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3.13 Summary of Intrusion Detection Techniques

Several Intrusion Detection systems have been proposed and implemented. Most of them derive from
the statistical Intrusion Detection model of [Den87]. Some of them, for example [BK88, Sma88, LJL+89,
SSHW88, LV89, LJL+89] use the audit trail generated by a C2 or higher rated computer, for input.
Others, for example [HLMS90, HLM91] try to analyze intrusions by analyzing network connections and
the ow of information in a network. Others still [SBD+91] (not elaborated in this report) have expanded
the scope of detection by distributing anomaly detection across a heterogeneous network and centrally
analyzing partial results of these distributed sources to piece together a picture of a potential intrusion
which may be missed by the individual analysis of each source. Among non statistical approaches to
ID is the work by Teng [TCL90] which analyzes individual user audit trails and attempts to infer the
sequential relationships between the various events in the trail and the neural net modeling of behavior
by Simonian et. al [FHRS90]. A promising approach for future intrusion detection systems might involve
Bayesian classi�cation [CKS+88, CHS91]. There are several issues that we have omitted, including audit
trail reduction and browsing for intrusion detection [Wet93, Moi], non-parametric pattern recognition
techniques [Lan92] etc. Audit trail reduction techniques permit the compression of audit data into coarser,
higher abstraction events, which may be queried later by the security o�cer to retrieve information rapidly
and e�ciently. Non parametric techniques for anomaly detection have the advantage that they make no
assumptions about the statistical distribution of the underlying data, and are useful when such assumptions
do not hold. The interested reader is advised to follow up on these references for more information.

4 Intrusion Detection Using Pattern Matching

The previous section presented an overview of the various types of intrusion detectors commonly used today
and the techniques they use for detecting intrusions. This section examines in depth, one particular method
of detecting intrusions, namely misuse intrusion detection using pattern matching. We �rst examine the
generic problems encountered in misuse intrusion detection via pattern matching, notably the amount of
data to be matched and the generality of the signatures to be matched. We then state what we believe
are important goals of any system that attempts to do misuse intrusion detection. Our attempt here is to
lay down metrics for a misuse intrusion detector that we will use later, to measure the e�ectiveness of our
model of misuse intrusion detection using pattern matching. We are not implying completeness of these
criteria, but hope to have captured the most signi�cant requirements of such a system. As we are focusing
on pattern matching as the means of intrusion detection we include a brief overview of some relevant string
matching results in section 4.1. Several results in approximate string matching are applicable to misuse
intrusion detection, except that in some instances approximate string matching provides a more general
solution than is needed for misuse intrusion detection.

To provide a generic framework for understanding the characteristics of intrusion signatures, we propose a
set of orthogonal characteristics of signatures so that signatures can be studied in terms of these simpler
basis properties. This partitioning is discussed in section 4.2 and section 4.3 illustrates the use of this basis
set by classifying some attack classes in terms of this set. Finally, section 4.4 describes our proposed model
for misuse intrusion detection.
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Di�culties in Intrusion Detection using Pattern Matching

There are several di�culties in doing misuse intrusion detection using pattern matching. The generic
problem, and, by far the most dominant one is the sheer rate at which data is generated by a modern
processor. A typical C2 audit mechanism can �ll a 1Gb disk in less than an hour on a multiuser system;
a Sun SPARC 4-CPU system can saturate 2 CPUS and 100% of the disk channel logging the activities of
the other two CPUS. The amount of data substantially increases in a networked environment.

The other major problem is the nature of the matching itself. An attacker may perform several actions
under di�erent user identities, and at di�erent times, ultimately leading to a system compromise. Because
an intrusion signature speci�cation, by its nature, requires the possibility of an arbitrary number of inter-
vening events between successive events of the signature, and because we are generally interested in the
�rst (or all) occurrence(s) of the signature, there can be several partial matches of each signature at any
given moment, requiring substantial overhead in time and space keeping track of each partial match. In
some scenarios, there may be weeks between events. In others, di�erent portions of an attack scenario
can be executed over several login sessions and the system is then required to keep track of the partial
matches over login sessions. Sometimes the signature may specify arbitrary permutations of sub-patterns
comprising the pattern, which would be too many to enumerate separately, thus making the recognition
problem much more di�cult.

Before we attempt to solve any of these problems particular to misuse intrusion detection using pattern
matching, we must abstract the problems and place them in the larger context of a generic solution to
misuse intrusion detection. This will have the bene�t, not only of providing a yardstick against which
general solutions can be compared, but also serve to qualify the success of the solution that we propose,
based on these criteria. To this end we propose the following to be the key design goals that the �nal
system or matching detection model must possess in as large a measure as possible.

Generality. The model should capture all or almost all the known and hypothesized next generation
attacks.

E�ciency of the common case. The model should be fast for the common case and should not unduly
penalize the common case because of the uncommon case.

Real Time behavior, in as much as it can be achieved.

Portability of the signature representation across existing and future audit trail formats. The portability
must be considered ascending the security rating as well as across implementations of the same
security rating by di�erent manufacturers.

Embeddability. This is a desirability, for embeddability can free the signature representation language
of the clutter of providing general language constructs best left to general purpose languages within
which it can be embedded.

Scalability of the model as an increasing number of signatures are added to the system.

Low Resource Overhead. The system should not consume inordinate amounts of memory/cpu to run
e�ectively.
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Our approach to designing a model for misuse intrusion detection is to start with a classi�cation (resulting,
perhaps, in a hierarchy) of intrusion scenarios and devise e�cient algorithms to detect intrusions in each
category. We have developed a matching model tailored for misuse detection and we show that the above
mentioned goals of generality, e�ciency of the common case, portability and scalability are realized in our
model. The remaining characteristics of e�ciency, real time behavior and low resource overhead will be
determined by an implementation of our model and running tests on it. The results of the implementation
will be presented in a later report. We partition the intrusion signatures along the orthogonal characteristics
shown in section 4.2 and, to illustrate, we classify a few categories of attacks in terms of these characteristics
in section 4.3.

A fundamental assumption made in the requirement of matching audit trails against intrusion pattern
speci�cations is that the common case of representing intrusion scenarios weighs heavily or exclusively
towards the speci�cation of patterns embodying the \follows" semantics rather than the \immediately
follows" semantics. For example, with the \follows" semantics the pattern ab speci�es the occurrence of
the event a followed by the occurrence of event b and not a immediately followed by b with no intervening
event. In Unix regular expression syntax, this means that any two adjacent sub patterns within a pattern
are separated by an implicit \.*". This assumption is reasonable under the current mechanism of audit trail
generation and modern user interfaces which allow users to login simultaneously through several windows
whereby audited events from multiple processes overlap in the audit trail.

Because of this overwhelming requirement of matching with an arbitrary number and type of intervening
events between two speci�ed events, the �eld of approximate pattern matching is relevant to intrusion
detection. We outline some related results from this �eld in the next section. They are also used in later
sections to compare against results obtained in our model.

4.1 A Brief Overview of Relevant Results in Pattern Matching

The class of pattern matching algorithms of interest in misuse intrusion detection is that of discrete
approximate matching. This is because of the basic requirement of allowing an arbitrary number of events
between adjacent sub-patterns. However, discrete approximate matching is too broad in scope for detecting
intrusions, and its specialization of interest is termed matching with the \follows" semantics in this report.
The longest common subsequence problem (see [WF74] for a fuller treatment), referred to as LCS, is used
to illustrate the applicability of approximate matching to misuse intrusion detection. Consider the input
to be the stream of events a b c d d a b a c e b c to be matched against the pattern (intrusion signature)
a d a c. The pattern does not occur in the input if an exact match (\immediately follows" semantics) is
desired. However, if an approximate match is desired, the pattern matches the input in the following sense"

a b c d d a b a c e b c

a � � d � a � � c � � �

#

where � indicates that the input event does not match any character in the pattern.

If the misuse intrusion detection question is framed in terms of the edit distance of converting the input
to the pattern, with deletion costs = 0, insertion costs = mismatch costs = 1, it is to determine if the
minimum cost of converting the input to the pattern is 0. That is, insertions and mismatches between the
input and the pattern are disallowed. For the example problem there is a linear time algorithm as stated
in observation 1, page 35. The general LCS problem can be solved using dynamic programming in O(mn)
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time where m is the size of the pattern and n that of the input. This holds for both the o�-line and the
online versions of the match. In o�-line matching, all the input is known in advance, in the online case
matching proceeds as each input character becomes available.

Results in approximately matching various classes of patterns are summarized in the table below. These
time bounds hold for arbitrary values of deletion, insertion and mismatch costs, and are not optimized
for the special case of misuse intrusion detection. They are restricted to online matching because we are
primarily concerned with real time intrusion detection. RE stands for regular expressions and sequence

refers to the type of patterns used in the example above (same as �xed linear patterns de�ned on page 27).
The column match denotes the type of match determined by the corresponding algorithm. An entry of
\all endpts" denotes that the algorithm detects all positions in the input where a match with the pattern
ends, but cannot reconstruct the match sequence, \all" denotes that the algorithm can also construct the
match. However, �nding all matches of a pattern in the input is an all paths source to sink problem and
is computationally hard.

Pattern Time Space Preproc Match Reference Comment

Sequence O(mn) O(m) O(1) all endpts [WF74] Using dynamic programming.
Sequence O(mn) O(mn) O(1) all [WF74] Using dynamic programminga .
Sequence O(n) O(m) O(1) all endpts [BYG89, WM91] Pattern �ts within a word of the

computer. Small integer values of
costs.

RE O(mn) O(m) O(m) all endpts [MM89] Using dynamic programming.
RE O(mn) O(mn) O(m) all [MM89] Using dynamic programminga.

aDoes not include the time for enumerating all matches which may be exponential

While approximate pattern matching is useful in misuse intrusion detection, the general problem in misuse
intrusion detection cannot be reasonably solved by current pattern matching techniques. For example,
it requires matching of partial orders, context free and context sensitive structures, and matching in the
presence of time, a notion inherent in audit trail generation and very important in specifying intrusions.
Traditional pattern matching has restricted itself to sequences, which is subsumed under the notion of
time.

The results on pattern matching above are useful starting points for further investigation. For specialized
classes of patterns, some of these results are directly applicable or can be improved [Appendix A]. It is
our attempt to unify the disparate algorithms and pattern classes into one generalized model without
sacri�cing the e�ciency of individual classes.

Because of the complexity of matching requirement for misuse intrusion detection, we partition intrusion
signatures into a set of orthogonal characteristics in the next section, with the intention of classifying them
in terms of these characteristics.

4.2 Orthogonal Characteristics of Patterns Used to Model Attacks

Linearity. By linearity of the patterns we mean that the speci�ed sequence of events comprising the
signature pattern is a strict chain of one event following another, with no conjunction, disjunction,
* (0 or more) etc. Examples: foo, aXbcX, aXbcY(Y.time - X.time � 5). Capitalized variables
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denote arbitrary events except that later occurrences of a capital variable refer to the same value
that was bound in the �rst occurrence.

By non linearity, on the other hand, we mean that patterns can specify partial orders. One can thus
say that b follows a and d follows c, but there is no connection between ab and cd. For example, the
attack scenario [Ilg92]

1. cp /bin/sh /usr/spool/mail/root

2. chmod 4755 /usr/spool/mail/root

3. touch x

4. mail root < x

5. /usr/spool/mail/root

can be speci�ed by the partial order

*(init)

*

s1 s2 s3

s6

s4

s5t3

t1 t2 t4

cp chmod mail

touch

Figure 4: Representing a Partial Order of Events

as the only dependency of touch is that it occur before mail. States marked with a `*' indicate initial
states (will be elaborated on later) of the partial order.

Uni�cation. This is a characteristic of patterns which instantiate variables to earlier events and match
these events to later occurring events. The instantiation is meant to be over an in�nite space, other-
wise the pattern can be written as a set of ORs representing all the possibilities of the instantiation.
For example one can specify the pattern abXcd which means event a, followed by event b, followed
by any event, which is stored and made available through the variable X , followed by c, followed
by d. We refer to this style of intrusion signature speci�cation and matching, pattern matching with

uni�cation. For example attacks of the type

1. ln setuid_shell_script -x

2. -x
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can be generalized into the pattern [Ilg92]

hardlink(FILE1, FILE2) execute(FILE2)

1. name(FILE2) = "-*"
2. not owner(FILE1) = USER
3. permitted(SUID, FILE1)
4. shell_script(FILE1)
5. permitted(XGRP, FILE1) |
   permitted(XOTH, FILE1)

1. not euid = USER

Figure 5: A pattern illustrating uni�cation

All the capitalized identi�ers, like FILE1, FILE2 etc. are variables, and take on values corresponding
to every audit record against which the pattern is matched. Bound identi�ers can be referenced later
to retrieve the values bound to them. Once instantiated, identi�er values do not change.

Occurrence. This characteristic speci�es the relative placement in time of an event with respect to the
previous events. For example, in �gure 4 there might be an occurrence speci�cation that the event
at transition t2 occur within 5s of transition t1. An event can have many previous events and the
placement constraint can be speci�ed with respect to any such event. For example, event mail at
transition t4 has two previous events, chmod at t2 and touch at t3. A complex constraint might
specify that Tt4 � Tt2 2 [0; 2] and Tt4 � Tt3 2 [2; 7]. The total time within which a pattern must
be matched can be easily speci�ed by imposing a constraint on the last event with respect to the
�rst. This constraint is an interval within which the speci�ed event must begin. That is, for the
speci�cation Tt4 � Tt3 2 [2; 7] to be satis�ed, the event at t3 must begin at least 2 units before the
event at t4, but no earlier than 7 units before.

Beginning. This speci�es the absolute time of match of the beginning of a pattern. It can be signi�cant
if the detection of certain signatures is more meaningful during certain times. For example, invalid
logins at night might be more signi�cant than during daytime. This constraint permits use of ranges.

Duration. This characteristic places constraints on the time duration for which the event must be active.
This is also speci�ed as a range.

Three more characteristics determine signi�cantly the kinds of theoretical bounds that can be placed on
the matching solution.

Dynamic Input. In this case the input is not known in advance before matching begins, but input is
generated dynamically. This is also referred to in string matching literature as online matching,
as opposed to o�-line matching in which the input is known in advance. If the algorithm for the
static case is e�cient while that of the dynamic case intractable, a window of previous input may
be considered for the application of the static algorithm, with a concomitant loss of accuracy in
detection.

Dynamic Patterns. Here patterns can be added or deleted as matching proceeds. This might be useful
in model based intrusion detection.
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All or One Match. This is the requirement of �nding all matches of a pattern in a given input stream,
or simply �nding whether the pattern occurs in the stream.

In order to show the relevance of these pattern characteristics and the resulting simpli�cation on examining
intrusion signatures in terms of these simpler characteristics, we take a few categories of attack and show
how each can be represented by the orthogonal characteristics that we have mentioned.

4.3 Some Examples of Attack Scenario Classi�cation

The previous section examined characteristics of intrusion patterns by breaking them into simpler, inde-
pendent properties. These properties are used to build a classi�cation of signatures in this section. This
classi�cation is not strictly a hierarchy as characteristics easy to match at lower levels of the classi�cation
become intractable at upper levels. Thus, some of the characteristics present in lower levels are dropped in
higher levels. The classi�cation, meant to be illustrative, is outlined below and summarized in the following
table.

1. Existence. The fact that something(s) ever existed is su�cient to detect the intrusion attempt. Simple
existence can often be found by static scanning of the �le system, ala the COPS [FS91] and Tiger
[SSH93] systems. This means looking for changed permissions or certain special �les.

2. Sequence. The fact that several things happened in strict sequence (with the \immediately follows"
or \follows" semantics) is su�cient to specify the intrusion. The vast majority of known intrusion
patterns fall into categories 1 & 2.

3. Partial order. Several events are de�ned in a partial order, for example as in �g. 4.

4. Duration. This requires that something(s) existed or happened for not more than or no less than a
certain interval of time.

5. Interval. Things happened an exact (plus or minus clock accuracy) interval apart. This is speci�ed by
the conditions that an event occur no earlier and no later than x units of time after another event.

In the table below, Y stands for yes and N for no. Under the linearity column LIN, L stands for linear and
NL for non linear. ; 0 means that existence is a limiting case of linearity in which the sequence length
tends to 0. Also note that the choice of particular values under LIN, UNIF etc. corresponding to the types
of attack is arbitrary, and reects our belief in the most promising direction of investigation for e�cient
algorithms.

# Type of Attack LIN UNIF OCC BEG DUR

1. Existence ; 0 Y/N [0; 0] Y/N N

2. Sequence L Y/N [0;1] Y/N N

3. Partial Order NL Y/N [0;1] N N

4. Duration L N [0;1] N Y

5. Interval L Y/N [x; x] N N

Table 1: Classi�cation of some attack types in terms of simpler pattern characteristics.
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4.4 The Model of Pattern Matching | An Overview

This section introduces the pattern matching model proposed for matching intrusion signatures. It is based
on Colored Petri Nets. Each intrusion signature is represented as a Petri net and the notion of start states
and �nal state is used to de�ne matching in this model. The notion of linearity/non linearity is easily
subsumed in this model because of its generality, unification is introduced through the use of globally
visible variables, and occurrence, beginning & duration constraints are introduced through the use
of guard expressions in the net. In the subsequent section we analyze the model to see how well it does
against the criteria speci�ed earlier for an ideal misuse detector.

The following computation models were considered for their suitability in detecting intrusions via pattern
matching. The premise in investigating these models is that they are to be used as intuitively and directly
as possible in representing intrusion signatures. For example, attribute grammars are known to be Turing
complete, so a program in any model of computation can be mapped to an equivalent attribute grammar.
However, using an AG to recognize a set of sentences whose underlying structure does not lend itself to
being represented as a CFG is not very intuitive and, therefore would not be very useful for the human
responsible for writing the intrusion signatures.

1. Regular Expressions. Traditional matching with regular expressions is fast (linear in the input with
the \immediately follows" semantics) and well understood. Approximate matching is polynomial in
its input. However, regular expressions can represent only very simple attack scenarios not including
non linearity, uni�cation or duration.

2. Deterministic Context Free Grammars like LR, LALR are easily subsumed under Attribute Gram-
mars. By themselves they are of limited use because they cannot handle uni�cation, occurrence or
duration. There is no easy way to extend them to match with the \follows" semantics.

3. Attribute Grammars provide a very powerful representation mechanism but do not provide a natural
human understandable graphical model for their representation. Graphical models can be imposed on
them which would make them very similar to CP nets. Furthermore, to be useful to humans writing
intrusion signatures as attribute grammars, the underlying signature speci�cation would need to be
context free, and for e�cient matching, deterministic context free. Like CFG's there is no easy way
to extend them to match with the \follows" semantics.

4. Colored Petri Nets. The main advantage here is that the model itself is conceptually so general that
extensions to it do not change it substantially. They are also naturally represented as graphs and
have well de�ned semantics.

We have adapted the CP net model [Jen92] for pattern matching because of its generality, conceptual
simplicity and graphical representability. This model represents the form in which patterns are internally
stored and matched. Externally, a language can be designed to represent signatures in a more programmer
natural framework, and programs in the language compiled to this internal representation for matching.
Work in this direction is planned at COAST once the underlying matching model is validated and thor-
oughly tested.

To recall briey, our attempt is to match incoming events (audit trail records or higher abstractions) to
the patterns representing intrusion scenarios. Consider, as an example, the representation of the attack



4 INTRUSION DETECTION USING PATTERN MATCHING 23

scenario on page 19, as represented in �gure 4. s1 and s4 are the initial states of the net and s6, its �nal
state. Any net in our model requires the speci�cation of � 1 initial states (to represent partial orders of
events) and exactly 1 �nal state. The circles represent states and the thick bars, the transitions. At the
start of the match, a token is placed in each initial state. This is called the initial marking of the net.
Each state may contain an arbitrary number of tokens. An arbitrary distribution of tokens in the net is
referred to as its marking.

The net also has associated with it, a set of variables, in the Prolog sense, i.e. assignment to the variables
is tantamount to uni�cation, which are globally visible to the pattern. This is unlike variables in CP-nets
which are local to transitions. Variables local to a transition can be simulated by using the global variable
name space. Allowing only global variables does not dilute the expressiveness of the model. We feel that the
choice between local/global variables is a user interface issue and rests in the domain of language design, if
a language were to be designed as an alternative representation of this model. Local variable speci�cations
in such a language can easily be translated to the above described model by choosing a separate part of the
global variable name space, much like is done in imperative language compilation. For related work which
uses a language front-end for an underlying matching model in intrusion detection see [HCMM92, WB90].

Each token maintains its own local copy of these globally visible variables (depending on the pattern the
token is associated with), the reason being that each token can make its own variable \bindings" as it ows
towards the �nal state. In CP-net terminology, each token is colored, and its color can be thought of as
the cross product of the variable types associated with the pattern.

The net also contains a set of directed arcs which connect places to other places and transitions in the net.
The arcs which connect places to other places are � transitions in which tokens can ow nondeterministically
from one place to another without being triggered by an event. Each transition is associated with the type
of event, called its label, which must occur before the transition will �re. For example in �gure 4, transition
t1 is labeled with the event cp, t3 is labeled with the event touch and so on. Nondeterminism can be
speci�ed by the labels given to the transitions by labeling more than one outgoing transition of a state by
the same label. There is, however, no concurrency in the net, an event can �re at most 1 transition. A
transition is said to be enabled if all its input states contain at least one token.

Optional expressions, called guards, can be placed at each transition. These expressions permit assignment
to the global variables of the pattern, for example the values of matched event �elds; variable testing for
equality, <, > etc.; calling built in functions on the variables etc. Guards are boolean expressions which
evaluate to true or false. Compare this with [Ilg92, PK92] in which guards are placed on states rather
than transitions. Guards are evaluated in the context of the event which matches the transition label and
the set of consistent tokens which enable the transition. For example in �gure 7, in order for transition
t4 to �re, there must be at least 1 token in each of states s3 and s5, and the enabling pair of tokens (one
from s3, the other from s5) must have consistently bound (uni�able) pattern variables, and the uni�ed
token and the event of type c together must satisfy the guard at t4. A transition �res if it is enabled and
an event of the same type as its label occurs that satis�es the guard at the transition. When a transition
�res, all the input tokens that have caused the transition to �re are merged to one token, and copies of
this uni�ed token are placed in each output place of the transition.

The process of merging resolves conicts in bindings (i.e. uni�es or rejects the combination of tokens)
between the tokens to be merged and stores a complete description of the path that each token traversed
in getting to the transition. Thus a token not only represents binding, but also the composite path that
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the token encountered along its way to this state.

As an example consider the following signature which raises an alarm if the number of unsuccessful login
attempts for user kumar exceeds 3 within a minute. The example below only serves to illustrate the idea,
and has no bearing on the signature representation format.

login(user = kumar, exception = YES, time = T1) #failed login due to exception

login(user = kumar, exception = YES)

login(user = kumar, exception = YES)

login(user = kumar, exception = YES, time = T2) if T2 � T1 < 180s

Its corresponding CP-net is

login login login

t = T1

login

t = T2

T2-T1 <= 180s

* (final)(init)

Figure 6: Four failed login attempts within a minute.

T1 and T2 are global variables associated with the pattern.

As another example, consider the �xed partial order pattern in �gure 7

*(init)

a b

a

c

*

s1 s2 s3

s6

s4

s5t3

t1 t2 t4

Figure 7: Fixed Pattern Simulation
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and the event sequence abac. The way the pattern is matched is:

Pattern consumed TokenConfig Comment

:abac fs1; s4g

a:bac fs2; s4g Only 1 transition can �re, no
concurrency. Nondeterminism
is allowed.

ab:ac fs3; s4g

aba:c fs3; s5g

abac: fs6g The two tokens are merged to
one. From the token in s6

we can reconstruct the path of
each individual token from the
initial marking.

Note that merging of tokens occurs in step 4 and so does conict resolution. This example illustrates a
nondeterministic search of the pattern, in which tokens are removed from one or more states and placed in
others, and tokens always make the right choice in their transitions. In a deterministic, exhaustive search
on the other hand, tokens are never moved from one state to another, they are instead duplicated and
copies moved to other states. In the case of matching in the absence of guards, this duplication is probably
not required, but because events are tagged with data �elds, this in a sense makes every event unique, and
because tokens carry bindings with them, it is not permissible to lose the binding of a token by moving

it across a transition, instead the previous binding must be preserved for a future match, and a duplicate
created for the current match.

The guards allowed at the transitions are grouped into the following categories:

File Test Operations for example, testing for a �le being readable, writable, executable by e�ective/real
user id, existence of a �le, testing the size of a �le etc.

Set Manipulation Operations like adding, deleting, testing for the presence of an element in a set etc.

System Interaction Functions like system(), raising and lowering audit levels, interacting with pro-
cesses etc.

this is instantiated to the most recent transition (signature action). It may be empty, i.e. NULL. It
provides a hook into the event (audit record) matched at this transition.

last takes a hook into an event (transition) as input and returns the (set of) events (audit records) matched
at the immediately previous event. In this speci�cation of expressions, one cannot refer to values in
other tokens yet.

Logical, Arithmetic and Matching Operators like &&, ||, =~ etc.

Note: The process that does this matching must not itself generate audit records in response to its
computation. Further, for the sake of e�ciency, the average time to exercise each token (over all the
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patterns) must be much less than the average time between the generation of successive events in the
system.

The Nature of Events

Events in general are tagged with data. In particular, the time stamp at which the event \occurred" is
of special importance because of the monotonicity properties of time. The events can have an arbitrary
number (though usually a small number) of tag �elds. The exact number and nature of the �elds is
dependent on the type of the event. Mathematically one can think of the events as being tuples with a
special �eld indicating the type of event. For example, one can think of the event a occurring at time t to
be the tuple (a; t), where a denotes the type of the event.

5 Analysis of Our Matching Model

The previous section described our matching model in some detail, this section presents some of its theo-
retical properties. The complexity of matching in this model increases rapidly with increasing complexity
of the patterns. At the simplest end are linear patterns without guards, for which well known algorithms
from discrete approximate matching [MM89, WF74, BYG89, WM91] are applicable. Such matching can
be done deterministically and e�ciently, without requiring much preprocessing of the patterns.

If the pattern is fixed but has regular or partial order features, preprocessing it to yield an equivalent
deterministic automaton is very expensive. It takes exponential time in the worst case to convert an NFA

to a DFA [ASU86, pp. 117{121]. Converting a nondeterministic partial order pattern to an equivalent
deterministic automaton is even more expensive [Appendix A]. This forbids preprocessing of any realistic
set of partial order patterns before matching. Adding uni�cation to �xed linear patterns makes the problem
of matching NP Complete [claim 5, Appendix A].

The expense of preprocessing the pattern types mentioned above necessitates a simulation of the non
deterministic pattern representation. Structures in the input may also be exploited to improve matching
in special cases. Two such structures are outlined [observation 8, claim 3; Appendix A]. Both reduce
an exhaustive search of the input for matching under certain conditions. Observation 8 exploits the
monotonicity of audit record �elds, for example its time stamp, which is non decreasing. A monotonic
expression that fails for a monotonic �eld of a particular audit record, fails for all subsequent records as
well (depending on the directions of the monotonicities of the expression and the �eld). Claim 3 is based
on the observation that a single match for the pattern ab (with the follows semantics) is satis�ed for any
choice of a and a subsequent b. Other less signi�cant results are also presented in Appendix A.

Sections 5.2 and 5.3 consider the two important, practical aspects of scalability and portability in the
model. The measure of scalability is the lack of degradation in performance with an increased number of
patterns. Ideally, the degradation is sub linear with a linear increase in the number of patterns, albeit with
a linear increase in the preprocessing time. Common subexpression elimination techniques can be used to
exploit the commonality of guard subexpressions placed at the various pattern transitions to reduce this
degradation [Appendix B, sec 5.2].

Portability, considered in sec 5.3 is concerned with ensuring that intrusion signatures can be moved across
sites without rewriting to accommodate �ne di�erences in each vendor's implementation of the same
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security rating. It also ensures their transparent movement to higher security rated systems. An abstract
audit record de�nition and a standard de�nition of a virtual machine to represent guards, ensures that
patterns precompiled to an intermediate representation can be moved across systems with minimal overhead

5.1 Theoretical Results

De�nitions

Fixed Linear Pattern Matching: This denotes matching in the KMP [KMP77] or Boyer Moore [BM77]
sense, i.e. the pattern consists of a sequence of known events (symbols in KMP & BM) forming a chain
of one event following another, with no conjunction, disjunction or other \regular" features. Examples:
abc, abracadabra, foo. This is in contrast with patterns in which all events are �xed (i.e. prespeci�ed),
but the pattern is not linear and may have regular or partial order features. For example, the pattern
speci�cation in �gure 8 below

c

e

8
f g

d5

6

a

b

c

ba

1
2

3

4

7

e
a

9

10

11

init states=> other states=>

final state

Figure 8: A non linear �xed pattern

is �xed but not linear. The numbers represent states (vertices in the directed graph) and alphabets,
representing events, label the edges. Such patterns are denoted fixed.

Linear Pattern Matching: This denotes matching in patterns in which the speci�ed sequence of events
comprising the pattern may not be �xed (allowing for uni�cation [sec 4.2], for example), but the pattern is
a strict chain of one event following another, with no conjunction, disjunction, 0 or more etc. For example
aXbcX, aXbcY(Y.time - X.time � 5).

The key result to note is that the complexity of matching in this model, with the exception of generalized
partial orders, is exponential [obs. 10, pg. 44, Appendix A]. Matching results for specialized classes are
summarized here. The derivation details can be found in Appendix A. The attack classi�cation listed
below, and its properties in terms of pattern characteristics, is similar to that in table 1. m is the size of
the pattern, and n that of the input.
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Attack LIN UN OCC BEG DR Time Space Match Ref Cmnt

Existence ; 0 N [0; 0] Y/N N O(m) O(m) one � A

Sequence I L N [0;1] Y/N N O(n) O(m) one obs. 1, pg. 35

Sequence II L Y [0;1] Y/N N cn O(m) one cl. 1, pg. 40

Reg. Expr. NL N [0;1] Y/N N O(mn) O(m) one obs. 3 pg. 36

Partial Order NL N [0;1] Y/N N O(nmi) O(m) one pg. 39 B

Duration L N [0;1] N Y cn O(m) one C

Interval L N [x; x] Y/N N O(r logn) O(n+m) one [AA93] D

Table 2: A summary of matching algorithms for di�erent attack classes.

Legend:

DR is the duration characteristic associated with the events comprising the pattern.

Match refers to all or one match.

Ref lists the reference explaining the result in more detail.

Comment:

A. Existence patterns may have an associated clock event to specify evaluation of the condition at speci�ed
intervals.

B. i is the number of initial states of the partial order. It is rarely desirable to convert this type of pattern to a
deterministic matching automaton.

C. A general linear pattern can be matched in exponential time by trying all possible sequences of the input. We
are unaware of better bounds for this case.

D. r = �aP (a)� T (a), P (a) = # of occurrences of the symbol a in the pattern, T (a) = # of occurrences of a in
the input, which yields an o�-line upper bound of O(mn logn).

Intrusions that can be determined by testing a condition are classi�ed in the class existence. This class
has no use of uni�cation because instantiated variables cannot be referenced at later transitions, as there
are none. m includes the representation of the condition. Evaluating the condition requires O(m) time, in
direct proportion to its size because conditions are loop free (see the example in Appendix C).

When the pattern is speci�ed as a sequence of events, it is classi�ed as a sequence. Matching a sequence
without conditions or uni�cation can be done e�ciently in O(n) time when only a single match is desired. If
all matches are desired, it takesO(mn) space and exponential time. Finding all matches can be transformed
to �nding all distinct paths between a source node and a set of sink nodes and there may be an exponential
number of such distinct paths [Appendix A]. If uni�cation is desired in a sequence, the problem of matching
is NP Complete. This makes it as di�cult to match linear patterns that require uni�cation as matching
general linear patterns [obs. 10, pg. 44]. A majority of intrusion scenarios common today belong to either
the existence or the sequence class. The NP Completeness bound, however, holds for arbitrary patterns
and input. In practice, there are several factors that can signi�cantly reduce the bound. They are:

� Arbitrary general uni�cation is rarely desired. For example, uni�cation over the event type is seldom
required. Uni�cation is most often done over audit record �elds of a given audit record type, which
signi�cantly reduces the computation required for matching.

� Uni�cation is often not over an in�nite space, and patterns can be written to use alternation to
signi�cantly reduce its matching complexity. This might result in a linear pattern becoming non
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linear, but if there is little non determinism in the resulting pattern, matching takes �(n)4 time
rather than general result of O(mn) time.

� Patterns are most often deterministic, including regular expression and partial orders, and the number
of initial states of the partial order is small. Therefore, practically, matching regular expressions can
be done in O(n) time, and partial orders in much less time than the worst case bound.

� Multiple instances of the same intrusion pattern rarely overlap, or can be carefully written to ensure
that they do not. This means that on a successful match, all tokens that are ancestors of the matching
combination can be destroyed. That is, we need not look for overlapping matches.

The rest of the categories and the associated time and space bounds are self explanatory. Further opti-
mizations can be made in matching several of these categories. They are outlined in Appendix A. Matching
in the general case can also be improved by exploiting the monotonicity of audit record �elds. Two such
optimizations are detailed in Appendix A. In a practical system, in order to control space requirements,
tokens that will never lead to a match should be garbage collected. For example, tokens may have vari-
ables bound to �lenames, process numbers and other system objects. If these objects are destroyed the
corresponding tokens may become garbage and can be collected. The machinery required to do this is not
presented here as it does not add conceptually to our model of matching. The machinery also obviates the
need to specify such explicit exclusion of events in the pattern, resulting in simpler pattern speci�cations.

It is now shown how multiple patterns can be matched in our model.

5.2 Scalability or Matching Many Patterns E�ciently

The problem of scalability is controlling the complexity of matching as the number of patterns to be
matched increases. This section investigates approaches to matching several patterns in the audit trail.
Matching several �xed linear patterns takes as much time as a regular expression formed by the alternation
of the patterns in the worst case. The case of several regular expressions is subsumed under matching a
single regular expression. Matching several partial orders is discussed under matching several general
patterns. If a virtual machine and its instruction set is de�ned to represent and evaluate guards, common
subexpression elimination techniques from compiler design [ASU86] can be used to improve their evaluation.
For an example of this see Appendix C which shows a 25% asymptotic runtime reduction in multiple guard
evaluation.

Scalability results derived in our model are summarized below. The classes of attack are the same as in
Table 2. k is the number of patterns to be matched simultaneously. Each of the k patterns is of size
m1; : : : ; mk respectively and M = m1 + � � �+mk is the total pattern size. n is the size of the input and m

is the largest mi. Details can be found in Appendix B.

4A function is O(f) if it grows no faster than f , it is �(f) if it grows at the same rate as f .
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Attack LIN UNIF OCC BEG DUR Time Space Mat Ref

Existence ; 0 N [0; 0] Y/N N O(M ) O(M ) one �

Sequence I L N [0;1] Y/N N O(Mn) O(M ) one obs. 11, pg. 46

Sequence II L Y [0;1] Y/N N exp O(M ) one �

RE NL N [0;1] Y/N N O(Mn) O(M ) one obs. 3

Partial Order NL N [0;1] Y/N N O(knmin) O(M ) one �

Duration L N [0;1] N Y exp O(M ) all �

Interval L N [x; x] Y/N N O(kr logn) O(n+M ) one obs. 6, [AA93]

Table 3: Summary of matching multiple patterns in the same attack category.

In most classes above, the approach to matching several patterns is to match each independent of the
other. The following observation for matching general patterns reduces the complexity of matching.

For any input audit event, only transitions labeled with that event type need be exercised. If

the event types are uniformly distributed over the pattern and the input, substantial savings

may result.

The table above did not take into account the presence of guards at the transitions. One approach to
matching in the presence of guards might be to ignore them during matching, and on success, to verify
that they are also satis�ed. The chief di�culty with this approach is that techniques for space e�cient
approximate matching do not store the entire dynamic programming matrix, but only the current and the
previous columns (each column equals the size of the pattern). This means that all positions in the input
that approximately match the pattern can be determined, but not all the matches. Thus there is no way
to verify that guards are also satis�ed without determining the exact match because guard evaluation is
dependent on audit record �elds.

Approaches to Matching Multiple General Patterns

For the most general case (each pattern being a CP-net) involving multiple patterns, there are several
approaches, the simplest is to exercise every pattern against every input event. Pictorially, this looks like:

Pat 1 Pat n

input event

Figure 9: One approach to handling multiple patterns



5 ANALYSIS OF OUR MATCHING MODEL 31

The �lled dots represent tokens corresponding to enabled transitions in the patterns, some of which may
exercise on the current event (if the guards at these transitions evaluate true). Each pattern keeps track
of the tokens that may need to be duplicated or moved, and is given control to exercise the tokens, even
if the pattern may return the control immediately because no transition �res on the input event.

A slightly improved approach is to compute, for every input event, the tokens, across all the patterns that
can possibly be exercised. This approach looks like:

Pat 1 Pat n

input event

B

Figure 10: Another approach to handling multiple patterns

The box B takes in an input event and computes the tokens, across all patterns, corresponding to enabled
transitions, that can possibly make a transition on that event. This makes it unnecessary to hand over
control to patterns that have no enabled transition to be exercised on the current event and also avoids
the lookup done by each pattern individually to determine enabled transitions (though that may be very
e�cient) by coalescing the individual lookups.

However, we can do better than the above approaches. These approaches disregard the evaluation of guards
at the transitions while computing the list of active tokens, and evaluate the guard for each enabled tran-
sition, even when the guard expressions are similar. Common subexpression elimination techniques from
compiler theory can be applied to avoid their re-evaluation across guards. This idea can also be combined
with that of representing match patterns as a network [For82]. The amount of common subexpression
elimination realized depends on the number and nature of the guards. More expression elimination can
be achieved if the guards can be broken into simpler, more primitive expressions, similar to the case of
compiling code.

This can be done by de�ning a virtual machine with simple instructions to evaluate the guards. A standard
de�nition of the machine instruction set will also help in the portability of \compiled" guards and patterns
across machines. The virtual machine needs to be extensible so that newer information present in more
sophisticated audit trails can be easily incorporated. Some instruction types supported are:

1. Assignment, i.e. uni�cation.

2. Indexing to retrieve �elds from the abstract audit record.

3. Useful inbuilt operations to interact with the operating system and general purpose utility functions.
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4. Regular expression matching.

5. Testing of conditionals.

For an example of such a machine, see Appendix C.

5.3 Portability

By portability we mean:

� Portability of intrusion signatures across di�erent interpretations of the same auditing level, by dif-
ferent manufacturers of the same underlying operating system. The similarity of the underlying
operating systems dictates similarity of aws across the versions. For example the di�ering interpre-
tations of C2 security by SunOS and AT&T SVR4.

By representing signatures in a machine independent format; using a standard de�nition of the virtual
machine matching the patterns; and using an abstract, extensible audit trail that is independent of
any speci�c vendor implementation the portability of intrusion signatures can be ensured.

Two levels of translation of the native audit trail, once to the abstract audit trail, and again to read
and process the abstract trail internally for matching, can be avoided by an appropriate description
of the native audit trail format in the backend of the virtual machine. The virtual machine for any
speci�c audit trail architecture would then look like:

Generic
VM

Native Audit Trail Format Description

VM for the specific Audit Trail

Tx

� The same signatures should be usable when ascending the auditing level for a given OS.

This can be achieved with an appropriate de�nition of the abstract audit trail, when signatures
written for a lower security auditing level are moved to a higher security auditing level. The converse,
however, is not true in general, because there may be information in the higher security auditing
lacking in the lower one. In this case an appropriate error is agged.

Generically, signatures can be thought of in two equivalent ways, either as program speci�cations, or
as data to a matching program. In the former, the program speci�cation is compiled for each audit
trail while in the latter, the matching program is compiled for the speci�c audit trail. The dependence
on speci�c audit trail architectures can be removed by de�ning an intermediate, standardized audit
trail but results in an extra level of indirection in matching.
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6 Extensions/Future work

When the guards corresponding to all transitions with the same label are merged together for CSE, it is
not clear what order they must be merged in. There are no semantics to the expressions forming each
guard and ideally all the expressions in all the guards must be merged in an order to achieve maximum
overlap between the expressions, taking into account the probability of occurrence of each expression. Rete
network generation has applicability to this problem and can perhaps be used to compile the guards in an
order to achieve much better performance.

It would be interesting to determine if certain audit records can be omitted, i.e. not exercised on any token
in any pattern, without a�ecting the accuracy of the detection, for the class of intrusions of interest. If the
accuracy is a�ected, it would be useful to characterize the relationship between the types and amount of
omission and the accuracy of detection for di�erent classes of intrusions.

We mentioned in section 4.4 that states can have arbitrary number of tokens. This may not be possible
in practice. It would be of interest to determine how matching is a�ected if the capacity of states to hold
tokens is restricted and some replacement scheme put into e�ect to determine the token to be discarded
when adding newer generated tokens. It might be that the class of intrusions common today follow a
locality of attack rule with respect to the tokens.

While not directly related to this work, it would be useful to design a Bayesian belief network which
incorporates the interdependence between the various anomalies and intrusions common today, as suggested
in section 3.4. Such a model can be useful in combining observed data on a system and assigning belief to
the hypothesis that an intrusion is occurring given the observed data.

7 Conclusions

In summary, the paper followed the following broad outline:

� It studied and formalized the problem of applying a pattern matching solution to misuse intrusion
detection [sec. 4]. It proposed a set of metrics to evaluate a generic misuse intrusion detector.

� It presented a simple engineering solution to the problem [sec. 4.4].

� It analyzed the solution to derive some of its theoretical properties and outlined some of its limitations.
It suggested methods and heuristics to improve the solution in practice [sec. 5, Appendices A, B, C].

The model is interesting and appealing from a theoretical standpoint. However, its true test is an evalu-
ation of its implementation running under \live" conditions. We hope to implement this model and get
experimental results in the near future. The results will be reported in a future report.

Once the model is implemented our goal is to make it, as well as several sample intrusion patterns available
to anyone who wants it. Users can then add their own libraries of signatures to deal with intrusions speci�c
at their site. Interested parties are invited to contact the authors for current status and availability
information.
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9 Appendix A

This appendix presents results in matching various categories of attack patterns in our model. All results,
unless otherwise speci�ed, are derived for the case of matching with the follows semantics. Arguments
are sometimes made in lieu of formal proofs to substantiate the claims. Formal proofs will appear in a
subsequent report. The results are presented as claims and observations. Claims are more signi�cant
and weighty while observations should be regarded as corollaries.

Matching Fixed Linear Patterns

Observation 1: Online �xed linear pattern matching with the follows semantics can be done

in linear time [Man89, ex. 6.48, pg. 181].

For example, to determine that the pattern ba occurs in the input abcaa (in the follows sense) requires
only a single scan of the input. Compare this result with that of approximately matching a sequence (�xed
linear pattern) with arbitrarily speci�ed penalties on the deletion, insertion and substitution of pairwise
symbols. That result requires O(mn) time and O(m) space [section 4.1] for the online case. m is the size
of the pattern, and n that of the input. The primary reason for the O(n) time for the \follows" semantics
is that there are no insertion and substitution edges in the approximate matching graph, only matching
and deletion edges. Compare the graphs for matching ba against the input abcaa in the general case and
with the follows semantics. As opposed to the much fuller graph in the general case, the graph for the
follows semantics is more sparse.

b a

a

b

c

a

a

i
n
p
u
t
 
(
N
)
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signifying
a matchSource b a

a

b

c

a

a

i
n
p
u
t

pattern

Source

Figure 11: Alignment graphs representing matching with arbitrary insertion/deletion/substitution costs
(left) and with the \follows" semantics (right).

Matching ba with the follows semantics is the same as matching (.*)b(.*)a(.*) with the immediately
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follows semantics, and when only the determination of presence or absence of the pattern in the input is
desired, this pattern is equivalent to matching ([^b]*)b([^a]*)a in the input. The latter can be directly
represented as the deterministic automaton

b

b a

a

and does not require a simulation of the non deterministic automaton representing (.*)b(.*)a(.*), or its
conversion to an equivalent DFA. Converting an NFA encoding a �xed linear pattern to be matched with
the follows semantics, into a DFA with the immediately follows semantics results in a chain of states with
no back-edges to earlier states. This obviates the need for backtracking and failure functions.

The previous discussion was for matching a single pattern with the follows semantics, where any match
would su�ce. When all matches are desired, the alignment graph of the pattern and the input can be used
to yield all matches in exponential time and polynomial space. If the pattern size is small enough to �t the
word length of the computer on which matching is done, all matches can be determined in linear time using
the algorithm of Baeza-Yates and Gonnet [BYG89] augmented for the wildcard case by Manber and Wu
[WM91]. Both algorithms determine whether any character position in the input ends a match with the
pattern by conceptually sliding the pattern across the input. This does not result in the correct number of
all possible matches because all ways of matching terminating at an input character are coalesced into a
single match. This procedure can also not reconstruct the exact match sequence. To determine all matches
and the match sequences, the entire alignment graph must be preserved, and all paths from the source to
any sink (states marked ) must be determined.

Observation 2: There are at most exponential paths from the source to any sink node in the

alignment graph for matching a �xed linear pattern with the follows semantics.

The graph allows only two kinds of edges, matching and deletion. If the size of the pattern is m and that
of the input is n, exactly m matching and n �m deletion edges are required. This implies that we must
pick m events from the input corresponding to matching edges, and the rest are deletion edges. Because
the order of the input must be preserved, we have at most nCm choices. As �i

nCi = 2n, there are at most
2n such choices.

Matching Regular Expressions

Matching fixed non linear patterns is more involved than matching �xed linear patterns. Two cases
are considered, regular expressions and partial orders.

Observation 3: Regular expressions can be matched with the follows semantics in polynomial

time.
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Approximate matching with regular expressions has been solved by Wagner and Seiferas [WS78] and
Myers and Miller [MM89]. The approach taken in [MM89] is followed here. The solution constructs a non
deterministic �nite automaton from the regular expression in a special way. States of this automaton label
the input symbols and its graph is reducible with every state having a maximum in-degree and out-degree
of 2. The alignment graph of the pattern against the input consists of n+1 copies of the automaton and is
similar to that of �g. 11 with the row of states representing the �xed linear pattern being replaced by the
automaton graph. The approximate matching solution is the result of applying a dynamic programming
recurrence to the states of the alignment graph. This recurrence relation at each state is evaluated in two
\topological" sweeps of each copy of the automaton. The time required is O(mn). It permits arbitrary
values to be speci�ed for insertion, deletion and substitution costs for each pair of symbols.

When only a single match with the follows semantics is desired, the simulation procedure of [ASU86, �g.
3.31, page 126] can be adapted as follows:

S := �-closure(fs0g);
a := nextchar;
while a 6= eof do begin

S := S [ �-closure(move(S, a)) ;

a := nextchar;
if S \ F 6= � then

return yes;
endif

end

Figure 12: A single match for a regular expr with the follows semantics.

The key di�erence between the two algorithms is shaded. Both follow the subset construction to form the
set of all possible states the automaton can be in, after examining each symbol of the input. The di�erence
in the above algorithm is that states can be reached on input � by ignoring some of its symbols. Therefore
states that can be reached on input � must be a subset of the states reached from the input �x because x
can be ignored by the automaton.

The simulation procedure of �g. 12, combined with the automaton construction procedure in [MM89] can
be used to make the following optimizations for the single match case.

1. Back edges need not be taken. This optimization follows from the reducibility of the graph. Because
any match, not necessarily the longest is desired, revisiting states is not advantageous.

2. If all the output states of a state s are in the set S, then state s can be removed from S. Consider
two sets of states fsg and (S � fsg). For any input, performing the while in �g. 12 on these sets,
denoted WHILE(fsg) and WHILE(S � fsg), results in WHILE(S � fsg) � WHILE(fsg) because
every outgoing edge from s leads to states already in S.

The amount of savings resulting from these observations can only be determined through simulation.
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If the regular expression �ts the word length of the machine on which matching is done, matching may be
done in linear time [WM91]. When several regular expressions are to be matched simultaneously, they can
be combined to yield a single regular expression.

Matching partial orders, which is more complex than matching regular expressions, is considered next.

Observation 4: If all event symbols occur equally frequently in the pattern, matching �xed

linear and regular expression patterns can be done in time �
O(mn)

�
, where m is the size of

the pattern, n that of the input, and � is the number of distinct event symbols.

In the construction for matching regular expressions [obs. 3] above (a �xed linear pattern is a trivial regular
expression), the maximum size of set S is m. Using the uniformity assumption, the next input event can
match at most m=� elements of S. Thus, exercising n input events takes time at most mn=�. This gives
all positions in the input that end a match with the pattern.

Matching Partial Orders

The following adaptation of [ASU86, �g. 3.31, page 126] can be used to match �xed partial orders. I0; : : : ; Ii
are i initial states of the partial order. For simplicity, all transitions are assumed enabled. Otherwise, the
enabling can be incorporated in the function move. The set S is initialized to the cross product of the
�-closure sets of each initial state. Thereafter, on each input symbol, S is augmented to include all ways
of exercising each thread of the partial order. The pattern is matched if all threads reach the �nal state
F . If S is a cross product, S[k] is used to denote its kth element. The function \move" is as described in
[ASU86].
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S := f(�-closure(fI0g)� : : :� �-closure(fIig));
a := nextchar;
while a 6= eof do begin

8e 2 S, add Move(e; a) to S
a := nextchar;
if 9e 2 S j 8k; 1 � k � i; e[k]\ F 6= � then

return yes;
endif

end

Move(State s, input a)
f

return
(�-closure(move(s[1]))� � � �� s[i]) : : :[ : : :
...
(s[1]� � � � � �-closure(move(s[i])))

g

Figure 13: A single match for a partial order with the follows semantics.

Similar to the optimizations mentioned for matching regular expressions, revisiting states may be avoided.
However, this does not translate easily into skipping a set of edges in the automaton.

Each cross product represents a possible combination of the i threads of the partial order. All of them
together represent all such possibilities. Since each input symbol may exercise any thread, the deterministic
matcher must exercise each in turn. Thus each cross product results in i cross products being exercised.
Starting with 1, the number of cross products added at each step are i; i2; i3; : : : Since each thread may
take up to the size of the pattern to be exercised, the total time required is mi+mi2 + � � � �min.

Observation 5: Fixed Partial Order Pattern matching with the immediately follows semantics

can be done in time

O(N � jQjjIj)

where Q is the set of states, I is the set of initial states of the partial order and N is the size of the input.
For example jQj = 11; jI j = 2 in �gure 8. In the discussion below, we use the term NPFA to denote the
non deterministic �nite state automaton that recognizes a �xed partial order pattern speci�cation (like �g.
8) and DPFA, its corresponding deterministic �nite state automaton.

This follows from a straightforward subset construction of the pattern as outlined in �g. 13. The di�erence
in this case from the subset construction for NFAs is that there are several \threads" along which an
input event can be matched, corresponding to each thread begun at its corresponding initial state of the
partial order. Furthermore, non determinism is possible along any thread, just as in the case of an NFA.
An external event can be discarded or match the next transition of only one thread, but nondeterminism
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prevents us from knowing which one. We must therefore exercise all in turn, and represent the composite
transition information by a set of each individual thread transition. So each state of the NPFA matching
the partial order looks like

fstate of thread 1; : : : ; state of thread ig

Consider that, on exercising the NPFA with a particular string �, the NPFA reaches a state s. This state
embodies the information of one possible way of matching � in the NPFA, and the set of states that can
be reached on input � represents all possible ways of exercising the NPFA on input �. From any state s
in the NPFA, a transition on the symbol a leads to at most jQjjIj states, each such state corresponding to
exercising the ith thread of the NPFA.

This NPFA can be converted into a DPFA by the straightforward subset construction of automata theory.
The number of states possible for the NPFA is jQjjIj and the number of states in the corresponding DPFA,

2jQj
jIj

Matching With Uni�cation

Claim 1: Pattern Matching with Uni�cation is NP Hard.

We show that a much weaker type of pattern, linear pattern with uni�cation is NP complete. The reduction
is from an arbitrary Hamiltonian circuit problem. Let the arbitrary graph whose Hamiltonian cycle must
be determined have n vertices and e edges. Generate, from the graph description, another description of
all its edges (the input events) such that the description of all the directed edges emanating from a vertex
are written together. Let a be the node whose edge description is written �rst. Let each edge be written as
T(tail, head). T is a �ctitious tuple type with two elements, and is simply used to cast the Hamiltonian
cycle problem as a matching problem. This can be done in time O(e). Generate the pattern to be matched
against the edge description as input, in time O(n) as follows:

T (a;X) (1)
T (X; Y ) (2)

...
...

T (P;Q) (n� 1)
T (Q; a) (n)

Each line of the pattern represents an edge of the graph. The pattern represents a Hamiltonian cycle in the
graph. When the pattern matches successfully, X is necessarily di�erent from Y , Y from Z etc. because
when successive elements in the pattern T (X; Y ) and T (Y; Z) are matched, T (Y; Z) must be matched from
the group of edges emanating from Y . If Z is matched with any node previously matched then matching
cannot proceed since the group of directed edges emanating from that node have been skipped in the input
which cannot be rolled back.

This shows that Pattern Matching with Uni�cation is NP hard. The problem is in NP because a polyno-
mial time bounded oracle can \guess" the values of X; Y; Z; : : : to be matched.

For example, for the graph below
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a

b

c

d

one possible edge description and its corresponding pattern are:

T(a, b)
T(a, d) ! edges emanating from a

T(a, c)
! no edges emanating from b

T(c, b) ! edges emanating from c

T(d, c) ! edges emanating from d

Edge Description

T(a, X)
T(X, Y)
T(Y, Z)
T(Z, a)

Pattern

Matching With Simpli�ed Occurrence Constraints

Observation 6: Given a sequence of input and a �xed linear pattern, there is a polynomial time

algorithm to decide whether the entire pattern can be detected in a certain amount of time.

As an example consider the pattern bca to be matched in 8 time units against the �xed sequence of input
events:

Time: 1 3 4 7 11 12 19 23 25
Event: a b a c b c a b a

Figure 14: A simple example of a time bounded pattern match.

With the \follows" semantics, to determine the minimum time of occurrence of the pattern bca starting
at any b, determine the occurrence of the next c, followed by the occurrence of the next a. Thus, the
minimum time of occurrence of bca in �g. 14 at t = 3 is 16, and that starting at t = 11 is 8.

and that is the minimum time for the occurrence of the pattern bca starting at that b. Therefore all we
have to do is to compute this value for every b.

The minimum time of occurrence of the pattern bca, then, is

min
b
(time of occurrence of bca)

The worst case time of this algorithm is O(n2), given n events, because there are at most n potential
instances of the pattern that can be matched, and each event might require to be matched against each
instance.
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Observation 7: Given a �xed sequence of input and a �xed linear pattern, there is an exponential

time o�-line algorithm to decide a pattern match when the maximum time between successive

events is given.

Construction: Label all the input events of the same type with subscripts starting at 1 and increasing
sequentially (see �g. 15). Construct a tree of the labeled events such that successive levels of the tree
correspond to successive events in the pattern. In the pictorial representation of the input in �g. 16, edges
are labeled with the corresponding event for illustration.

Pattern: abc

Time: 1 3 4 7 11 12 19 23 25
Event: a b a c b c a b a
Label: 1 1 2 1 2 2 3 3 4

Figure 15: An example of a pattern with constraints on successive events.

For illustration, the entire tree is depicted, in reality only those edges satisfying the maximum time criterion
between successive events are present in the real tree. The construction of the tree requires a worst case
time of n(m+1) with n events and pattern size m because the depth of the tree is m and its branching factor
is n in the worst case. All nodes at depth m correspond to matched patterns. The space requirement is
exponential because the maximum number of possible matches is nCm, which is < 2n.

Note: If, in addition to the maximum time between events, a maximum overall time is also speci�ed, that
can also be handled in a straightforward manner. This construction requires that the event sequence be
prespeci�ed.

1
2 3 4

1 2 3 2 3 3

1 2 2 2

a

b

c

a

aa

b

ccc

b bbb

Figure 16: Converting the input to a tree for matching.

More recently [AA93] have shown much better bounds for the generalized version of this problem. Their
solution requires O(r log n) time, where n is the number of input events and r = �aP (a)�T (a), P (a) = #
of occurrences of a in the pattern, and T (a) = # of occurrences of a in the input, which yields an o�-line
upper bound of O(mn logn).

Matching General Patterns

Having considered the complexity of matching �xed linear patterns, regular expressions, partial orders
and matching with uni�cation, we investigate some structures in the input that reduce the complexity of
matching for the above mentioned problems as well as for the general case. The results of the previous
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section show that deterministic matching requires considerable expense in space and time for the conversion
of non deterministic patterns to a deterministic recognizing automaton. This expense precludes their
precompilation even though it is one time. Matching requiring all possible matches is much more expensive,
in the general case, than when any match will do. Single match algorithms can be applied if all the matches
are non overlapping. In this case the automaton can be restarted in its initial state, once it has reached the
�nal state. Presented below are some structures in the input that might be useful in detecting particular
types of intrusions.

Observation 8: An exhaustive search can be avoided when matching, if some or all of the

guards in the pattern speci�cation are monotonic.

As an example, consider �gure 8 with the following guards:

At the transition cutting the edge f11) 10g: T1 = htimei

At the transition cutting the edges f1) 7; 8) 7g: T2 = htimei && T2� T1 � 5

During matching, consider that there is a token t1 at state 10, duplicated to t2 in state 8 and awaiting
merging with t3 in state 1. Assume that the transition can never �re for the combination of tokens ft2; t3g
because the guard T2�T1 � 5 for this pair cannot be satis�ed. This indicates that t1 need not be duplicated
any further, because any further duplication will only result in a larger value of T2, resulting in the failure
of the guard T2� T1 � 5. This conclusion was possible because the time stamps of successive events was
non decreasing and the operator � is monotonic. That is if a � b is false then a + x � b is false 8x � 0.
This observation is not applicable for non monotonic data �elds.

How can this property be apply. Exactly what part of the search space can be excluded? This is formalized
as claim 2 below:

Claim 2: During matching, whenever a monotonic data �eld d gets de�ned at state s for

token t, t may be destroyed if there is a node p dominating the �nal state f on any path from

s to f such that the monotonic expression involving d at p cannot be satis�ed.

Consider the pattern

p

s

f

i1

i2
i3

i4

path of t
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in which i1; i2; i3; i4 are initial states, f is the �nal state, p dominates f and the darkened path is the path of
token t as it ows to f . The monotonic data �eld d (of the audit record) gets bound to a pattern variable at
state s. Because p dominates s, token t must pass through p before it reaches f . However, before reaching
p, t might merge with other tokens at intermediate transitions. At each step of the movement of t towards
p, copies of token t (and copies of copies etc.) are being moved to further states rather than t itself. If the
monotonic condition involving d cannot be satis�ed for the copy of t �rst reaching p, then the condition
cannot be satis�ed for any of its copies that occupy states in the path between s and p, including t itself
(at state s) because of the monotonicity of the expression involving d. Future combinations of the set of
tokens that resulted in t may be prohibited, because they will yield a non increasing or non decreasing
value of d, and depending on the type of monotonicity of the expression at p, will continue to result in its
failure.

This observation can be easily generalized to multiple monotonic �elds and monotonic expressions involving
only these �elds.

Claim 3: For the single match case, tokens can be moved instead of duplicated from states that

lead to single input transitions which do not involve uni�cation or make additional bindings

to variables.

As a consequence of these conditions, no pattern variable associated with the token changes. Therefore,
future duplications do not alter the token bindings. The result of expressions evaluated at later transitions
are also not a�ected. Thus, because duplicated tokens traverse the same path, no new solutions are
discovered.

Observation 9: For the single match case, during matching, as soon as all the variables

associated with the pattern have been instantiated for a token, that token need not be

duplicated further.

This result holds if we are not concerned with �nding all matches of the pattern in the input, but the
�rst match will su�ce. It follows from the fact that variables, once assigned, cannot be modi�ed. Thus,
whenever a token has all its variables bound to values, it becomes unique, and duplicating it simply makes
identical copies of the token. Thus, if not all matches are desired, a single copy will do. Note, however, that
this does not imply preservation of the number of those tokens, if the token is moved across a transition
with several output arcs and one input arc, the number of tokens of that exact type will increase.

The current section discussed some theoretical results obtained in our model. These results focused on
e�cient matching a single pattern. The next section discusses how several patterns may be matched
e�ciently.

Observation 10: Matching general patterns, with the exclusion of partial orders, can be done

in exponential time.

Given a general pattern of size m (including guards) and an input of size n, matching the pattern to
the input with the \immediately follows" semantics can be done in time O(mn) by a simulation of the
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non deterministic matching. There are an exponential number of choices of selecting a subsequence (not
necessarily a substring) of n input events, yielding an overall time of O(mn2n) = O(cn).
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10 Appendix B: Matching Multiple Patterns

Matching Multiple Fixed Linear Patterns

Observation 11: Matching several �xed linear patterns with the follows semantics can be done

in time O(n�# of patterns)

n is the size of the input. This follows from [obs. 1, pg. 35] by running the matching procedure for each
pattern simultaneously. Compare it with [AC75] in which multiple �xed linear patterns can be matched
with the immediately follows semantics in linear time. The primary reason for the di�erence is that in
[AC75], the set of states maintained by the algorithm matches the set of states reachable on the input in
the NFA; while matching with the follows semantics requires the maintenance of the set of states reachable
on any pre�x of the input with any characters deleted. Because of the way the automaton is constructed
in the former, the set of states can be represented by a single state.

Several regular expression patterns, say re1; : : : ; rem can be written as the regular expression (re1j : : : jrem)
and matched approximately in O(mn) [page 36], where m is the total length of all the patterns. The
optimizations mentioned in that approach are also applicable.
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11 Appendix C: An Example of Subexpression Elimination in Guards

Consider, as an example, the following attacks (see �g. 5 for a description of their guards):

1. a. ln setuid_shell_script -x

b. -x

2. a. ln setuid_shell_script FOO

b. FOO &

c. rm FOO (200ms <= T.c - T.b <= 1s)

d. ln your_favorite_shell_script FOO (T.d - T.b <= 1s)

There is considerable similarity between the sub-signatures 1a & 2a. For any event of type LINK, once one
of them is evaluated, the other may need not be. The signatures may be compiled as show below. This is
representative of the translation, and may be di�erent in the �nal form, as the speci�cation of the virtual
machine instruction set and its semantics is continuing to evolve. The translation process is not discussed
in this report and is not within the scope of this work.

Compilation of 1a

1. OBJ  LINK

2. TRANSITION  4 ;this transition is numbered 4 among all the transitions.

3. T11  OBJ[SRC FILE]1 ;indexing is a primitive, polymorphic operation.

4. FILE11  T11 ;global variables are assigned only through temporaries. FILE1 and FILE2

5. T22  OBJ[DEST FILE]2 ;are variables global to the pattern.

6. FILE22  T22 ;all temporary variables are named T<number>.

7. T33  OBJ[UID]3

8. U3  T33 ;U is also global to the pattern.

9. T44  OWNER(FILE11)4 ;owner is a built in function that returns the owner of a �le.

10. IFM T4, U, EXIT ;if T4 matches with U, jump to EXIT.

11. T55  NAME(FILE11)5 ;built in function giving the �lename portion of a full path name.

12. IFM T5, ``-*'', EXIT ;if T5 matches \-*" then jump to EXIT.

13. T66  SHELL SCRIPT(FILE11)6 ;built in function to test if a �le is a shell script.

14. IFFALSE T6, EXIT ;if T6 is 0, jump to EXIT.

15. T77  FPERM(FILE11)7 ;built in function giving the permissions of a �le.

16. T88  AND T66, XGRP ;XGRP is a constant used to determine if a �le is group executable

17. IFFALSE T88, L1

18. RES  1 ;signals a successful evaluation of the guard.

19. RETURN ;return from this guard.

20. L1:

21. T99  AND T66, XOTH ;XOTH is a constant used to determine if a �le is executable by others.

22. IFFALSE T99, L2

23. RES  1
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24. RETURN

25. EXIT: L2:

26. RES  0 ;signals an unsuccessful evaluation of the guard.

27. RETURN

Compilation of 2a

28. OBJ  LINK

29. TRANSITION  7 ;this transition is numbered 7 among all the transitions

30. T1010  OBJ[SRC FILE]10 ;Temporary variable numbers are not reset.

31. FILE110  T1010

32. T1111  OBJ[DEST FILE]11

33. FILE211  T1111

34. T1212  SHELL SCRIPT(FILE110)12

35. IFFALSE T1212, EXIT

36. T1313  FPERM(FILE110)13

37. T1414  AND T1313, XGRP

38. IFFALSE T1414, L3

39. RES  1

40. RETURN

41. L3:

42. T1515  AND T1313, XOTH

43. IFFALSE T1515, L4

44. RES  1

45. RETURN

46. EXIT: L4:

47. RES  0

48. RETURN

The superscripted numbers in the instructions above correspond to their value numbers as outlined in
[CS70]. The expression OBJ[SRC FILE] is given a single value number because indexing is a primitive
operation in our virtual machine. Each guard expression begins with an instruction of the form

OBJ  htype of audit recordi

The variable OBJ is special and is automatically instantiated to the audit record currently under analysis
for a possible match. This instruction also serves to limit the types of audit records that are tried for a
possible match with this instruction sequence. Only an audit record of type LINK can possibly evaluate the
expressions 1a and 2a successfully. The other variables of special meaning are RES, whose value determines
whether the guard has been evaluated successfully, and TRANSITION, which refers to the particular guard
transition currently being compiled. This number is used to index into a vector of transitions in which
each element denotes whether the corresponding transition �res.

Combining the set of compiled instructions from all transitions labeled with the same event type is non
trivial. Each guard expression may involve &&s and ||s, resulting in conditional jumps in the compiled
code. This complicates static subexpression elimination across jumps, both within and across guards.
Common subexpression elimination within a basic block is not very useful here as they are likely to be
small, with little redundancy.
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Another important decision is the method of combining the guard expressions. Guards can be combined
in a chain with common subexpression elimination performed on the composite sequence, or organized as
a network (similar to Rete networks [For82]) to improve the running time of evaluation by taking into
account its dynamic evaluation. When organizing a network, a good con�guration needs to be determined
as does the duplication and rearrangement of guards (perhaps based on historical statistics of their truthful
evaluation).

The approach taken here is to combine the guards in a chain in an arbitrary order and perform elimination
across basic blocks and guards by introducing the notion of active and inactive regions of code. This notion
is similar to that commonly used by data driven SIMD architecture machines to force some of its processors
to execute instructions, while the remaining to ignore the same, based on a vector mask to enable/disable
each processor. For our virtual machine de�nition, some instructions are treated di�erently depending on
the type of the region of code. An active region of code is the region executed when the virtual machine
is enabled. The rest of the code is part of the inactive region. It cannot be determined statically because
the evaluation of conditional expressions inuences its boundaries. Expressions evaluated in an inactive
region are termed inactive. Lack of loops and jumps in the guard expressions enable its translation to
have forward jumps only. The virtual machine executing the composite code treats (un)conditional jumps
specially. Instead of jumping to the speci�ed label, it stores its address and disables itself by setting its
condition code register. When the processor is disabled certain types of instructions are not evaluated by
it. Because all jumps are forward, the machine is enabled correctly when the jump address is reached, at
which point it resumes its normal operation and evaluates every instruction it encounters.

This arti�ce ensures that all expressions will always be evaluated, and therefore, be available to expressions
evaluated later. This regardless of whether the expressions are active or inactive. All assignments to
pattern variables (associated with each token) occur through temporaries and assignment to non temporary
variables is disabled in an inactive region. This prevents undesired side e�ects while ensuring that all
subexpressions are evaluated and reside in their appropriate temporary variables.

Following the procedure of common subexpression elimination outlined in [CS70], the code for both the
guard expressions looks as shown below.

1. OBJ  LINK

2. TRANSITION  4

20. if(!ENABLED TRANSITIONS[TRANSITION])f

set processor state disabled

JUMP 28 ;has no e�ect since processor state is disabled

g

3. T11  OBJ[SRC FILE]1

4. FILE11  T1 1 ;assignment to global variables has no e�ect when

5. T22  OBJ[DEST FILE]2 ;the processor is disabled

6. FILE22  T22

7. T33  OBJ[UID]3

8. U3  T33

9. T44  OWNER(T11)4

10. IFM T4, U, EXIT ;conditional jumps have no e�ect when the processor
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11. T55  NAME(T11)5 ;state is disabled

12. IFM T5, "-*", EXIT ;if T5 matches \-*" then jump to EXIT

13. T66  SHELL SCRIPT(T11)6

14. IFFALSE T6, EXIT

15. T77  FPERM(T11)7

16. T88  AND T77, XGRP

17. IFFALSE T88, L1

18. FIRABLE TRANSITIONS[TRANSITION]  1 ;this assignment has no e�ect when the processor is disabled.

19. JUMP 28 ;instead of RETURN. If the processor is enabled,

20. L1: ;disable it and continue. A JUMP has no e�ect otherwise.

21. T99  AND T77, XOTH

22. IFFALSE T99, L2

23. FIRABLE TRANSITIONS[TRANSITION]  1

24. JUMP 28 ;instead of RETURN.

25. EXIT: L2:

26. FIRABLE TRANSITIONS[TRANSITION]  0

27. JUMP 28 ;instead of RETURN.

28. OBJ  LINK ;compiled away

29. TRANSITION  7 ;this transition is numbered 7 among all the transitions

290. if(!ENABLED TRANSITIONS[TRANSITION])f

set processor state disabled

JUMP beginning of next pattern

g

30. T1010  OBJ[SRC FILE]10 ;compiled away because of value propagation. Same as T1.

31. FILE110  T1010 ;not compiled away because it refers to a pattern variable.

32. T1111  OBJ[DEST FILE]11 ;compiled away. same value as T2.

33. FILE211  T1111 ;not compiled away

34. T1212  SHELL SCRIPT(T1010)12 ;compiled away. same value as T6.

35. IFFALSE T1212, EXIT ;T6 value propagated to T12.

36. T1313  FPERM(T1010)13 ;compiled away. same value as T7.

37. T1414  AND T1313, XGRP ;compiled away. same value as T8.

38. IFFALSE T1414, L3 ;T8 value propagated to T14.

39. FIRABLE TRANSITIONS[TRANSITION]  1

40. JUMP next pattern ;instead of RETURN.

41. L3:

42. T1515  AND T1313, XOTH ;compiled away. same value as T9.

43. IFFALSE T1515, L4 ;T9 value propagated to T15.

44. FIRABLE TRANSITIONS[TRANSITION]  1

45. JUMP next pattern ;instead of RETURN.

46. EXIT: L4:
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47. FIRABLE TRANSITIONS[TRANSITION]  0

48. JUMP next pattern ;instead of RETURN.

ENABLED TRANSITIONS is a vector, each element of which indicates if a particular transition is enabled.
FIRABLE TRANSITIONS is also a vector whose elements indicate if the corresponding transition is �rable.
The percentage reduction in the number of instructions is � 10%. Out of 48 instructions, 7 were compiled
away while 2 were added (20 and 290). This is the case with two guards. Note that all the instructions
compiled away are from the second expression. In the asymptotic case, the �rst few expressions will result
in most other subexpression eliminations, and for our example, would asymptotically result in a reduction
of 5 statements out of 21, which tends to � 25%. The �gures for the reduction in the number of instructions
do not imply a corresponding decrease in the execution time of the code, for that depends on the run time
behavior of the conditionals. But, to simplify analysis, an assumption of uniform elimination in every basic
block implies a corresponding decrease in the evaluation time of the guards.

Thus, in order to determine whether the tokens in the initial states of �gures 5 and 7 need to be duplicated
and moved across to the succeeding state, we need to evaluate the code for every audit record of type LINK.

This leads to the question of the e�ciency of this approach. For it is possible that only one of the guards is
true, but this approach would require every expression in every guard to be evaluated. This approach might
seem worse than that of evaluating every guard individually because in that case short circuiting might
result in fewer expressions being evaluated. We believe that savings can be made with this approach,
but its amount of is dependent on the type of guard expressions and the commonality between them.
Because of the nature of the matching process, transitions, enabled once, continue to remain enabled.
Thus if a guard is evaluated once, it is likely to be evaluated from then on. The approach presented here
provides a mechanism, which can be used pro�tably given the right set of signatures. An actual system
might incorporate both types of approaches, with and without subexpression elimination and, based on
heuristics and run time statistics, use one approach over the other.

In summary, the following properties are used to ensure the semantic consistency of the expressions or
simplify the CSE on the generated code.

1. Pattern variable values referenced at a guard but set outside it are not value propagated across
patterns, but re-evaluated from the token the �rst time they are referenced in the guard.

2. All jumps in the compiled code are forward. This can always be arranged by the compiler as there
are no loops in the guard expressions. This implies that the structure of a guard expression is a DAG
with only forward edges. As a consequence, dead variables can be detected by simply examining the
rest of the code.

For a good treatment of these and other compiler optimization issues, see [ASU86, FL88].
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