Simulating Software Agent Colonies in Large Scale

Distributed Artificial Intelligence (DAI) Networks
C.W. Lee, J. Ryoo, S. W. Tak, D.H. Lee, C.G. Oh,J.W. Kim, J. Stach, and E. K. Park

Computer Science Telecommunications Program

University of Missouri-Kansas City
5100 Rockhill Road, Kansas City MO, 64110

{stach, ekpark}@cstp.umkc.edu

ABSTRACT

Wide area networks have a large number of computers capable of
providing a wide range of services. Due to their low cost and high
performance, autonomous mobile Agents are being used to access
information sources in distributed, wide-area, networks.
Architectures such as active networks also employ intelligent,
mobile network processes. However, there are no analytic models
for the performance of such systems and as a consequence,
simulation is required to test the efficacy of their performance and
policies. Assessment of performance and policy requires
visualization techniques that depict the state of the Agent colony
and its demand on network resources. We sketch the design for a
large scale, DAI simulation and analyze its implementation with
respect to time and resource requirements. An Agent colony is
simulated using C"™" over CSIM. C™" over CSIM achieves the
clarity and logic of Agent based simulation for network services,
as well as ease of modeling and reuse of model entities. We also
present a Java based builder to create the simulation objects under
Object Orientation, and a Visualization post processor to alleviate
the inherent difficulty of visualizing a Distributed Artificial
Intelligence (DAI) system. Decomposition is applied to partition
the search domain into an Agent-oriented view and a Network-
oriented view. The individual views are then abstracted to provide
summary views to the user, who is given control over the degree
of abstraction.

Keywords
Intelligent Agent, Distributed Artificial Intelligence,
Visualization, Distortion-Oriented Visualization, CSIM

1. Introduction

Distributed computing systems not only provide the facility for
utilizing remote resources, but increase throughput by concurrent
processing. In order to increase throughput, resource utilization
and communication costs must be balanced. To balance
utilization, we allow software Agents to migrate to desirable
locations in the network to perform computation according to
some attributed preference structure. To minimize communication
costs, process migration must be a rational function of the mobile
process. Since the software Agents perform non-deterministic user
computations, Agent migration is rooted in the Task Assignment
problem of distributed processing. Approaches to task assignment
fall into three categories: graph theoretic, mathematical
programming and heuristic methods. Graph theoretic methods
use a process graph to represent a task, and apply a minimum-cut

algorithm to the graph to get a process assignment with minimum
inter-processor communication. The mathematical programming
approach formulates process assignment as an optimization

problem and solves it by mathematical programming techniques.
The heuristic method provides fast but sub optimal algorithms for
process assignment that are useful for applications where an
optimal solution cannot be obtained in real time[1]. Our approach
to task assignment is a variant of the graph theoretic approach
proposed by Stone[2]. By careful definition of characteristics of
the network and the workflow of information Agents, we address
the problem of distributing autonomous, mobile Agents.
Assessing the performance of these Agents as a society requires
special simulation methods due to the large number of simulation
entities. There are several important features of any large scale
simulation: abstraction, emulation, scenario generation,
visualization, and extensibility[3, 4, 5]. CSIM™" is a process-
oriented, object-based language appropriate to the simulation of
mobile Agents, but does not include scenario generation methods
or visualization tools necessary for performance analysis. We
therefore augmented CSIM " with a Java based Builder program
to set the network parameters and create simulation entities.
Figure 1 is an overview of our simulation package.

B

uilder Visualizer
)
Geodesw (\ i
Matrix
Global
1 %)
Variables s . B8
= £ o
N E g 8 —N
Trader 18 22 —
A= ON-}
Place R
Service \. J HVP
Places

—

Figure 1.
Overview of Simulator

Visualization techniques for viewing the behavior of a colony of
mobile Agents in a wide area network environment present
significant challenges because of the number of network entities

hosting the colony. The most common technique for visualizing
wide area networks involves node and link diagrams. This
approach has problems when the size of the network is large.
Eick[6] points out that display clutter, node positioning, and
perceptual tension are major limitations of traditional node and
link diagrams. The problem of display clutter is exacerbated when
software Agents are present in the network. Therefore, scalability
of visualization is heavily dependent upon the decision of how to
represent network entities. We directly address that problem in
this paper.

The visualization decision on how to represent Agents and entities
must avoid cognitive overload. Miller has shown that the number
of items that a human can store in short term memory is
limited[7]. In our work, multiple orthogonal views are used to
ease cognitive overload. Two views employed in our visualization
are the Agent-oriented view and network-oriented view. In each
view, only the major aspects of a particular element or context are
displayed, with the remainder of the view de-emphasized and
simplified. The details available to the two views are abstracted to
a level where they can be represented commonly, through some
orthogonal relationship. For example, both network and nodal
congestion are related at some degree of abstraction by traffic
intensity. At this level or view, equal emphasis can be given to the
constituents of performance when viewed as a single metric.
Nonetheless, innovative methods of display are required to
display conditions over an arbitrarily large number of elements.
Consequently, we developed new methods consistent with the
established guidelines for visualizing abstract data[8]. While
partitioning the visualization task in terms of multiple views
significantly decreases the complexity of information to be
visualized, the amount of data to be represented in each view is
still overwhelming. We therefore employ summary views as a
navigation framework for other more concrete views, extending
from a higher category[8]. In our methods, data point reduction is
achieved using a technique we developed called Horizontal View
Partitioning (HVP). A further division of view by data type is
achieved using traditional Vertical View Partitioning (VVP)[8].
VVP is implemented using distortion-oriented visualization and
filtering.

2. Simulation Requirements

Certain knowledge about the network and task flow is required in
order for an Agent to select a location for service execution in a
network. Some notion of topology is required, but not all its
details, as well as some sort of task signature for the non-
deterministic workflow the Agent must execute on behalf of a
user. A geodesic is defined as the shortest path between two nodes
in a network. The n x n dimensions of geodesic matrix correspond
to the number of hops on the shortest path between nodes in the
network. The diameter of the network is its largest geodesic. The
network in our test system accommodates 20 nodes with bi-
directional links. The maximum link speed is 1.5 Mbps. In the
initial release of the system, link speeds are assumed constant
throughout the network. Link queuing delay is not considered as it
does not dominate the performance problem. Transmission time
however, is considered, because it can be substantial depending
on the payload of the Agent and the link speed. Nodal entities,
modeled as formal objects, consist of Agents, Service Planners
and Traders. Service Planners reside at each node and compute an
Agent migration based upon network conditions and the Agent’s

attributed preference structure. A single Trader object advertises
the services offered at each Service Place (node). Service Places
may offer a maximum of ten services to a maximum population of
10° software Agents. The Agent preference structure is applied to
the Directory advertisements to allow software Agents to select a
Service Place based on both functional and qualitative
attributes[9]. The qualitative attributes include Service Quality,
Cost of Service and Time to Service. The functional requirements
match the next required service to a set of nodes offering that
service. As the software Agent arrives at a node, it enqueues to the
Service Planner and may wait an unlimited time for execution.
Based on the link speed, arrival rate, service rate, network
configuration and Agent payload, local congestion will be
dynamically created at network nodes when Agents enter the
network system and begin to migrate. Local congestion, whose
unit is the number of Agents enqueued to the Service Place, is an
important factor in selecting the next move. Each service (task)
instance has attributes such as payload and service time. The
objective of the simulation is to provide a pareto optimal choice of
nodes to accommodate the process signature of an Agent such that
the amount of time an Agent spends in the network system is
minimal, subject to its preference structure.

2.1. Encoding An Agent s Workflow

The signature of the software Agents workflow is encoded in
basic process algebra. The workflow signature is a series of terms
corresponding to services joined by operators for sequencing,
simple alternation, or concurrency. The operators are (+)
alternation, (;) sequencing and (||) concurrency. The signature
a;b;(c||d+e);f defines a sequence executing Service a followed by
Service b, followed by Service ¢ and Service d concurrently, or
followed by Service e, concluding with the final Service f. The
choice of (c||d) or (e) is considered to be non deterministic, i.e.
determined at the completion of the execution of b. When the
alternations of series are mapped to Service Places, a migration
path through the network is formed. In our initial model, service
signatures for the non-trace portion of the Agent population are
generated randomly. It is not intended that these signatures be
meaningful or correspond to a real world processing sequence.
Their purpose is to generate dynamic system behavior. Service
times for Services are generated randomly from an exponential
distribution using the global attribute Mean_Service_Time as its
mean. For those Agents of interest in the population (trace set),
the signature is individually specified by the modeler, as is the
Agent s position in the birth sequence for the entire population.
These signatures can correspond to real world workflows. Post
processing visualization must display network performance,
population statistics and the statistics of the Agents in the trace
set. Individual Agent performance is a consequence of dynamic
interaction with the software Agent population encountered
during a signature execution.

2.2. The Move/Stay Decision

The feasibility of Agent migration (the move or stay decision) is
based upon comparing a dynamic lower bound and the minimum
migration time to a Service Place offering the desired service,
assuming that service is also offered at the Agent’s current
location. If the Agent does not migrate, it must enqueue again to
the Service Place at its current node, thereby incurring a delay

equal to the local congestion on that node, but avoiding the time
penalty of migration. If the Agent migrates, it must incur a penalty
(geodesic*payload/ link speed) of the transmission time to the
closest node offering the service plus the minimum local
congestion of any node offering the service in the network. If the
local congestion at the Agent s node is less than this lower bound
and the desired service is offered at the current Service Place,
there is no reason to incur the computational expense of the
Service Planner. The Agent simply enqueues again to its local
Service Place, requesting the desired service. Otherwise, the
Agent requests the Service Planner to compute the next optimal
migration for its signature in a manner that minimizes its total,
predicted life in the network, subject to its preference structure. If
the decision is made to move and if the next required service is
offered on more than one node, a minmax algorithm is run to
select the pareto optimal node to visit based on Time to
Service(TTS), Quality of Service(QOS) and Cost of
Service(COS). Our method extends Stones’ graph theoretic
approach that performs a minimum cut over a graph whose
interior edges are weighted by Inter Process Communication
Costs (IPC) and whose exterior edges are weighted with task
Execution costs (E). In distributed processing, this model is
referred to as (E+IPC). In our research, we represent the interior
nodes as services and the exterior nodes as Service Places offering
those services. A graph of the interior nodes is constructed
according to the Agent’s service signature. a;b specifies a single,
unidirectional edge between services a and b. a;b+c specifies
outgoing edges from a to b and a to ¢ respectively. a; b||c specifies
an outgoing edge from a to supernode (bc). The edges between
these services carry the expected payload of their transitions. In
the case of b||c, the edge will carry the maximum payload transfer
of ((a,b),(a,c)). Each exterior edge maps an interior service node
to the Service Places supporting that service. The weight of the
service-Service Place edge is the cost computed from congestion,
quality and cost attributes of the Service Place according to a
multi-attribute programming solution. Each Service Place in the
set mapped to the next service being planned is considered as the
root of a graph. A minimum cut algorithm is applied which results
in a set of services being assigned to some Service Place. More
than one service may be assigned each Service Place when the
minimum cut is applied. When the service being planned is
assigned, it is removed from the graph so that it does not have
multiple assignments. When all the services in the rooted
signature have been assigned, a minimal migration for the
signature is returned from the Service Planner to the Agent. The
Agent migrates to the selected node, enqueues to the Service
Place, executes the service, enqueues to the Service Planner
process in that node and repeats the process described above.

2.3 Simulation Objects

Major simulation objects are the Geodesic matrix, Global
Variables object, Directory object and Service Place objects.
These define the network and network environment in which the
Agent colony resides. The Agent colony is auto-populated with
objects of random signature in the simulator, except for a specific
trace population whose individual and collective performance is to
be assessed in the dynamic system created by auto-population.
The trace population objects, which are the subject set of the
simulation, are defined by the user and generated as individual,
named objects. Global parameters include a number of network

attributes: number of Service Places, number of Traders, number
Agents, mean inter-arrival time, mean service time, mean payload
size, grain size for the data sampling interval, link speed,
maximum signature size, maximum task alternatives, random seed
and names of Agents in the trace population. The Geodesic object
provides a symmetric matrix of shortest paths between Service
Places. The Trader object advertises the attributes of the Service
Places (nodes) in the network including available services, local
congestion, QOS and COS. Local congestion is updated
dynamically during the simulation according to a Trader update
parameter. The update policy in the initial implementation is a
fixed interval for all Service Places. There is no random start.

3. Visualization Requirements

The objects of information visualization in networking are fairly
well identified in papers such as [6, 10, 11, 12, 13]. Significant
visualization data items include network nodes, links, and their
attributes. While the design aspects of visualization in DAI
systems have been explored [14], few researchers have worked on
visualizing network DAI systems. In our work, we try to build on
established network visualization techniques in an attempt to
present the dynamic operations of a DAI system. Initially, we
tried to superimpose the Agent colony activities over conventional
network visualization. That result was not satisfactory. As an
alternative, we developed a powerful data abstraction technique
referred to as HVP. In visualizing data items, HVP increases the
abstraction level of de-emphasized data, while presenting concrete
details of the data emphasized by a specific view. Data items are
partitioned into Agent-oriented and Network-oriented views
according to what view is dominant at the moment.

3.1 Data Items in the Agent-Oriented View

The focus of the Agent-oriented view is the status (or condition)
and activity information of a single Agent or a group of Agents.
Given the fact that Agents are mobile, and that the network
provides a distributed environment, visualizing the migration
pattern of an Agent or multiple Agents is critical in this view.
Considering that there could be thousands of Agents active in a
network, it is not feasible to display the migration traces of every
mobile process in the Agent-oriented view. The display space
would be so cluttered that no meaningful presentation of
migrating is possible. It is more viable to show an individual
Agent moving from one network node to another leaving an
apparent trace. Here, the information with respect to the network
is minimal since the view concentrates on the Agent. Except for
topological information, network data such as node and link
statistics are abstracted away. Some data items that are important
to show are related to the current status of an Agent. Mobility
provides one criteria of Agent status. At anytime, Agents are
either migrating or situated. Waiting and running are the possible
states when an Agent is situated. The running state can be further
categorized into planning or processing. A second category of
Agent status is its Agent’s progress toward goal, i.e. how much of
its signature is completed. The health of an Agent is the last
criterion of Agent status visualization. Agent health can be
defined in many different ways, but one possible approach is
assessing an Agent’s behavioral integrity by keeping track of
Agent generated events to detect misbehavior or access
violation[15]. Once the criteria for Agent status are established,

each category can be separately encoded into disparate visual
elements. In our prototype when Agents are migrating, an Agent
symbol is shown above the node portion of network topology.
Also, the Agent symbol transforms itself into different shapes to
represent its different states. Our implementation uses a cartoon
figure to represent the current status of an Agent. The icon is
arbitrary. Finally, the behavioral health of an Agent is visualized
by changing the color of an Agent symbol. Figure 2 is a snapshot
of the prototype HVP Agent-oriented view. Some additional
information such as an Agents name, passage of time, and
migration path are displayed at the left lower portion of the figure.
The start button at the bottom initiates the visualization process.

32 HVP in DAI Visualization

As mentioned above, the Agent colony resides in a dynamic
system environment described by the attributes of the network.
Individual Agent worlds are specified by the service offerings,
service attributes and local congestion of the node at which they
are situated. In the Network-oriented view, the information related
to Agents is suppressed. They merely represent arrivals and routed
traffic. Agent-related data are implicit and presented only through
statistics provided by the network. For instance, the collective
migration pattern of Agents can be indirectly obtained from
examining the average Agent age, local congestion, and nodal
utilization. The major data items in the Network-oriented view are
the attributes of network nodes and links. The possible current
states of nodes and links are operational or failed. Operational
node and link states can be further analyzed. However, not all
these statistical values are relevant to DAI visualization.
Typically, the data items demonstrating the effect of the Agents in
a DAI system are performance-centric. Performance-centric
network status data include the amount of traffic between two
nodes, local congestion and utilization of a network node to name
a few.

Knowing what data item to visualize does not fully address the
question of what techniques to use for DAI visualization. When
collecting performance-centric network statistics, one needs to
understand that the data is corrupted by data sources that have
little to do with the Agent activities. It cannot always be
guaranteed that Agents are the dominant force affecting the
performance statistics of the network. Therefore, one essential
function of a DAI visualization system is a capability to filter the
net effect generated by the Agents of interest from the raw data of
network sources.

Once the needed data is available, one can address the problem of
how to represent the Network-oriented view data in the most
efficient way. Many different, well-established, network
visualization approaches can be adopted. Since the objective of a
Network-oriented view is to observe what kind of effect rational
software Agents have on their environment (the network), it is
necessary for the visual interface to provide users with a means to
isolate and display affected data items according to their source.
Another requirement for an effective DAI visualization is the
temporal projection of data. Most network-related data in a DAI
system have semantic interpretation only when displayed in the
context of time. Timelines are a linear visualization of events[16],
and this technique can be applied to the visualization of the
Network-oriented view of a DAI system. In fact, for the purpose
of implementing the Network-oriented view, plotting data points

with interpolation is one of the most straightforward and intuitive
ways of visualization. An example of such implementation is
shown in Figure 3. In this figure, network node utilization is
displayed in a relational manner that abstracts the details of their
utilization from its form. We see in figure 3 that the load of the
network has maintained an approximate balance but we cannot
tell if individual nodes are under utilized or congested. Initially,
local congestion increases dramatically when Agents enter the
network. Some of the nodes, particularly SP1, display markedly
higher utilization than others. We can infer that the rational
migration policy of individual Agents has the effect of leveling
utilization over the network nodes because after what appears to
be an initial congested period, utilization becomes approximately
equal across all nodes displayed. Other statistics are also
accessible in a temporal context by using the drop-down box at
the bottom. The Network-oriented view can be further partitioned
to accommodate the need for analyzing related data items
collectively and for the inspection of a single data.

33 VVP In DAI Visualization

Figure 4 gives the detailed performance of SP1, one of the
congested nodes in figure 3, over the same time frame using
VVP or drill down. In this figure, the actual utilization for the
congested node is displayed at each time grain. From figure 4 we
see that SP1was not congested, merely higher utilized than other
nodes in the region. Examining a series of these graphs will allow
the analyst to determine how well the load has been distributed
and if the congestion points are time coincident. More
importantly, VVP allows the analyst to determine whether the
relatively higher utilization of SP1 is a consequence of arrivals
(i.e. its service offering) or a relative number of arrivals whose
mean service time is greater than other less utilized nodes.

Reducing the amount of data that a user needs to comprehend in a
given period of time decreases cognitive overload. While HVP
helps solve the human cognition problem in a DAI visualization,
it does little when users are presented with a single, horizontally
partitioned view, containing too much information to display.
Display space for visualization is a limited resource. The
maximum possible number of data elements to be displayed in a
visualization is confined by the number of pixels available in a
given display space. If the number of data items is larger than the
number of pixels available for representing a certain category of
data, one has to develop a method to abstract the total population
of data items without distorting the possible interpretations of the
original data set.

Limited display space in visualizing large information systems has
prompted extensive efforts to overcome the challenge. Problems
researchers face in an attempt to address the spatial restriction in
visualization are summarized in [17] as follows:

e Inlocating a given item of information (navigation)

¢ Ininterpreting an item, and

e Inrelating it to other items if the item cannot be seen in
its full context.

Information drill-down is a widely used technique to manage
these problems. The technique can be either distortion-oriented or
non-distortion-oriented. Non-distortion-oriented techniques
display a portion of the whole data set at a time, while distortion-

oriented techniques allow a user to examine a local area in detail
on a section of the same screen.

Among the views introduced above, the Agent-oriented view
produces increasing ineffectiveness in visualization when the
number of network nodes that can be potentially visited by an
Agent is large. One plausible solution to this scalability problem
is abstracting a group of nodes into a single node according to
their proximity. When an Agent visits any node belonging to the
group, the move is considered to be to the representative super
node. If the analyst wants to inspect the region in more detail, she
or he can evoke a view displaying the traces made by an Agent
within the region represented by the super node. This zooming-in
approach can be applied recursively, and is consistent with the
non-distortion oriented, drill-down technique. Unlike the Agent-
oriented view, the Network-oriented view focuses on visualizing
time-line based data such as local congestion, utilization, and
average Agent age in a network node. Therefore, capability to
navigate data space in a certain context (time in our case) is
critical. This is why we choose a distortion-oriented method for
visualizing the status information of a DAI-based system. There
are a variety of distortion-oriented data presentation techniques
available[13]. Poly-focal display, bifocal display, fish-eve view,
and perspective wall, are the major ones. Most of these techniques
adopt sophisticated mathematical transformation functions. For
the visualization of DAI system status, there is no need for such a
complicated transformation functions since the visual abstraction
of non-graphical data generated from a DAI monitoring system is
temporal and is best captured by simple 2D or 3D graphs.
However, the fact that data collection in such a system is achieved
by sampling implies a non-trivial mechanism to interpolate the
graph interval where sampling is not available. In addition, the
summary view providing the context to the distortion-oriented
presentation needs to be informative enough to guide users to the
data sections of their interest. Figure 5 shows a schematic diagram
describing the distortion-oriented information drill-down
technique employed in our work. The technique is referred to as
Vertical View Partitioning (VVP). VVP is composed of three
major views: final summary view, intermediate summary view,
and raw sampled data view. A summary view is what the analyst
sees when the display window of a DAI monitoring system is first
opened. As its name suggests, this view provides the visualization
of the whole data set in a format that fits the display area of the
system. Generating this view is of great importance because other
views are initially hidden, obligating the final summary view to
represent the rest of the views. When an analyst spots the graph
segment of interest in the final summary view, they have the
option to activate a slide bar. Once the slide bar is activated, an
intermediate view appears underneath the summary graph. The
section of the final summary graph bounded by two sliding bars is
magnified and stretched into an intermediate summary view.
Depending on the amount of sampled data, it is possible that no
intermediate view exists, and only the raw sampled data view
exists. In this case, the final summary view and the raw sampled
data view are equivalent. In our work, the only cases considered
are ones with a massive amount of data, and it is assumed that
there is at least one intermediate summary view accompanied by a
final summary view and a raw sampled data view.

4. Sketch of The Simulation Solution

The simulation and visualization requirements for assessment of
DAI policies have been presented for mobile, autonomous,

software Agents. The selection of the appropriate simulation
paradigm and platform should conform to those requirements
while providing flexibility and extensibility in the simulator itself
as the distributed computing problem evolves. We examined the
three different approaches to discrete event simulation: event-
oriented simulation, activity-oriented simulation, and process-
oriented simulation[18,19]. In the event-oriented approach, the
simulation programmer defines events and writes routines that are
invoked as each type of event occurs. Simulated time may pass
between events. In the activity-oriented approach, the programmer
defines activities that are started when certain conditions are
satisfied. In the process-oriented approach, the programmer
defines processes that use the resources of the system. Each
process can be in one of three states: active (currently being
processed), holding (waiting for an interval of simulated time to
pass) or waiting (in a queue) for an event to occur. Simulated time
passes only when processes are in the hold state[18]. The event
approach is easy to understand and computationally efficient but
is more difficult to implement than the activity approach. On the
other hand while the activity approach is relatively easy to
understand, it suffers from poor execution efficiency. The
process-oriented approach is less common and requires more
planning to implement properly, though it is generally thought to
be efficient. In CSIM++, simulation is a process-oriented, discrete-
event model. In process-oriented simulation, the primary unit of
execution is a process. Execution of a process is initiated by
another process. The main program is really process one. All
concurrently active processes execute in a quasi-parallel fashion.
With certain restrictions, each process appears to be executing in
parallel with other active processes, when in fact they are really
executing one-at-a-time on a single processor. The environment
simulated is a parallel execution environment. Processes can wait
for event to occur and thereby cause simulated time to pass[20].
Process-oriented simulation is a convenient tool for developing
simulation models of computer and communication systems. It is
possible to use a process-oriented simulator, such as CSIM over
C"", as an execution environment for parallel programs. Process-
oriented simulation is a useful technique for estimating program
behavior on novel architectures[20]. [19] compared process
orientation and event orientation, and found the run time
performance of process-orientation to be superior to equivalent
event-oriented models. Therefore, process-oriented simulation
may be the best approach for mobile Agent simulation. A
CSIM18 model is a C or C++ program that implements a process-
oriented, discrete-event simulation model of a system[20].
However, our description of network entities and Agents is
consistent with Object Orientation and as such is best achievable
using C"™" over CSIM. Object-Oriented designs reduce the risk of
building complex software systems because they are developed to
evolve incrementally from smaller systems in which they have
been tested for reliability and stability[21].

4.1 Builder

One of the key features of our simulation system is the ability to
configure a scenario easily. This is particularly important for
studies of complex system behaviors such as the response to the
change of local condition or cost of service in network nodes. This
type of question is typically difficult to answer through analytical
studies and requires significant experimentation. The Builder
facilitates the generation of input configurations to the simulation
run and allows users to generate scenarios easily and correctly.

The Builder forces the user to create simulation objects in a
prescribed order. In this way, the Builder can check the integrity
of each object created as well as the integrity of the simulation
object set. The Builder steps the user through the creation a
number of components: global parameters, geodesic matrix,
Trader, payload factors, and mobile Agents for tracing. Global
parameters include the traffic pattern, topology, and Agent
population size. The geodesic matrix provides the degree of
connectivity and distances among nodes (Processors). The
topology is created based on the set of global parameters and the
geodesic matrix. The Trader stores the characteristics of the
Processors such as type and number of services the Processor
provides. The Trader is updated dynamically during the
simulation according to its interval parameter.

4.2 Traffic Generation, Internal Structures,
Processes, and Custom functions

We use the exponential distribution for the inter-arrival times and
service times of mobile Agents. An arrival time list is generated
for the number of Agents corresponding to the population size
specified by the user under the Builder. The simulation of mobile
Agents requires a set of attributes associated with each Agent
object (i.e. mobile process). A mobile Agent is an autonomous
software process that can migrate from one node to another node
by its own authority. Mobile Agents perform their tasks
autonomously and asynchronously. To simulate this behavior, the
CSIM process instance has a number of attributes such as
Agent_id, payload size, arrival time, signature size, and a set of
weights reflecting the Agent s preference for certain Service Place
attributes: time to service(TTS), cost of service(COS), quality of
service(QOS). The Agent process must also be tagged with an
arrival node name, exit node name, service time for each service
in its signature, current age, life expectancy in the system,
network exit time etc. These internal attributes are not configured
by the user, but appended to the process by the Builder for use in
the simulation. The justification is that these are not external
attributes associated with the Agent objects in the problem
domain. Process-oriented simulation allows simulation
programmers to model systems by defining interacting processes

as abstractions of active entities in the system. Each process must
be able to execute in parallel with other active processes. Each
process requires a private data area and active processes must be
able to interact (communicate and synchronize) with other active
processes[18]. In this simulation, processes find the best Service
Place for their subsequent tasks by using a graph theoretic
approach, in terms of the minimal cost and overall optimal system
throughput. Therefore, Builder and Visualization tools previously
described are the pre and post processors employed to manage the
complexity and number of simulation entities.

43 Run times and memory consumption for tests

The numbers of Processors and mobile Agents are the major
factors that affect the run time and memory usage. Memory
consumption and running time are measured over a set of test
cases to compare system performance among various topologies
and Agent populations. As demonstrated in Figures Figure 6 to 9,
the increase in memory consumption and system run time is stable
enough to study distributed process behavior. As figures 6 and 7
show, memory usage and system time increase monotonically as
the number of processors (Service Places) increases. This is

because the overhead in the simulation is adding a single Service
Planner process for each Service Place added to the network. The
size of local congestion in a small number of nodes is similar to
the migration delay in a large number of nodes, causing the graph
to be monotonical. The traffic intensity derives from the Agent
population. In Figures 5 and 6, memory usage and system running
time increase linearly to the number of software Agents in the
colony.

Figures 10 — 17 begin at time 20. This is because for the first 20
seconds of simulation, the system was in a warming up period and
unstable. In earlier experiments, we showed that when the Agent s
preference structure is heavily biased toward time to service, that
the behavior of the colony is congestion avoidant. The nodes of
the network load level over time as a second order effect of
individual, Agent decisions. However, in this experiment, services
were not ubiquitous in the network. Consequently, Agent s must
incur the local congestion penalty associated with migrating to a
node best matching the Agent s preference structure, regardless of
local congestion. As a consequence, the behavior of the colony
can be self-managed only within a range of local congestion and
utilization. As Figures 10 to 13 show, the number of Agents
enqueued to four representative Service Places ranged from
approximately 26 — 52. Figures 14 to 17 depict CPU utilization at
those same four Service Places. CPU utilization ranged from
approximately 28%-68% for a colony of 100 Agents. These
ranges highlight the importance of the service assignment problem
in DAI networks. Assignments of services to only a few nodes can
result in focused overloads and regional congestion if the majority
of Agents in a colony require that service. Additionally, attention
should be paid to the probability of a service being visited by an
Agent and the distribution of mean service times at a single
Service Place in order to balance CPU utilization. All the graphs
of Figures 10 to 17 display a characteristic step function with
negative slope. The step function is related to the grain size in the
post processor. The height of the step is the number of arrivals
since the last sample point. Each step has a different length
depending on the consecutive tasks’ execution times. As a number
of tasks are executed, the step has negative slope at the service
rate. The beginning and the end of the step correspond to the
initial and final queue size of the execution interval. The
difference between two steps indicates the increment of arrivals.

5. CONCLUSION AND FUTURE RESEARCH

The autonomous mobile Agent simulator is being developed at
University of Missouri-Kansas City under a grant from the
Department of Defense (DOD). The objective of our simulation is
to evaluate optimal mobile Agent service assignment to nodes on
a wide area network. This paper presents the structure and
efficacy of process based simulation of such systems. Significant
benefits are obtained both from object-oriented and process-
oriented simulation using CSIM"™". The structure of the simulator
is such that the results are optimal by proofs presented in
literature, primarily [1,2]. However the running time of the
Service Planner is O(N3) which is unacceptable. Our current work
centers on the development of Agent perception functions and
reasoning methods as to the next Service Place to visit relative to
the Agents goal seeking behavior. A Rational approach to
migration will improve run times such that the mobility decision

does not dominate the execution time for the Agents service
signature. However, the perception functions and reasoning must
be evaluated for efficacy against the non-dominated or pareto
optimal solutions produced by the graph theoretic service
assignment algorithm in the initial release of the simulator. The
post processor visualization program is being designed with a
view toward the management of a large colony of Agents over a
wide area network. Partitioning the information space to the
cognitive advantage of human analysts is an approach that
improves the effectiveness of a DAI-based visualization.
Furthermore, combining view-partitioning with an information
drill-down technique such as distortion-oriented visualization, has
not often been employed in the implementation of large scale
systems. Our views with respect to HVP do not yet include the
collective Agent migration view that will be required in an Agent
management system.

6. REFERENCES

[1] C.C.Shen and W.H. Tsai, "A Graph Matching Approach to
Optimal Task Assignment in Distributed Computing Systems
Using a Minmax Criterion," IEEE Transactions on
Computers, vol.C-34, No.3, March, 1985

[2] H.S. Stone, "Multi Processor Scheduling with the Aid of
Network Flow Algorithms," IEEE Transactions on Software
Engineering, Vol. SE-3, No.1, January, 1977

[3] W. David Kelton, "Designing Simulation Experiments,"
Proceeding of Winter Simulation Conference, 1999

[4] A.M.Law and W.D. Kelton, Simulation modeling and
analysis, McGraw-Hill, 1991

[5] S. Bajaj et al, "Improving Simulation for Network Research,"
USC CS Technical report 99-702b, March, 1999

[6] S.G.Eick, Aspects of Network Visualization, IEEE
Computer Graphics and Applications, March 1996, pp. 69-
72.

[71 G. A.Miller, The Magical Number Seven Plus or Minus
Two: Some Limits on Our Capacity to Process Information,
Psychological Review, 63 (2): 81-87, 1956.

[8] G. M. Nielson, H. Hagen, H. Muller, Scientific
Visualization, IEEE Computer Society Los Alamitos,
California, 1997.

[9] S.S.Foster, D. Moore, B. A. Nebesh, "Autopilot:
Experiences Implementing a Distributed Data-Driven Agent
Architecture , Proceeding of TOOLS-26’98, august 3-7,
1998, Santa Barbara, California

[10] S. Eick and G. Wilis, Navigating Large Networks with
Hierarchies, Proc. of IEEE Visualization 93, IEEE
Computer Soc. Press, Los Alamitos, Calif., 1993, pp. 204-
210

[11] K. Cox and S. Eick, Case Study: 3D Displays of Internet
Traffic, Proc. of Information Visualization 95, IEEE
Computer Soc. Press, Lost Alamitos, Calif., 1995, pp. 129-
131.

[12] R. Rohrer and E. Swing, Web-Based Information
Visualization, IEEE Computer Graphics and Applications,
July/August, 1997, pp. 52-59.

[13] H. Liu and D. Hockney, Visualization in Network Topology
Optimization, ACM Computer Science Conference
Communications Proceedings, ACM, 1992, pp.131-137.

[14] RJA. Buhr, D. Amyot, M. Elammari, D. Quesnel, T. Gray,
and S. Mankovski, Feature-Interaction Visualization and
Resolution in an Agent Environment, Feature-Interactions
in Telecommunications and Software Systems V, IOS Press,
Amsterdam, Netherlands, 1998, pp. 135-149.

[15] Abeck, A. Koppel, and J. Seitz, A Management
Architecture for Multi-Agent Systems, Proc. of the IEEE
Third International Workshop on System Management, IEEE
Computer Soc., Los Alamitos, CA, USA, 1998, pp. 133-138.

[16] G. Karam, Visualization Using Timelines, Sigsoft
Software Engineering Notes, spec. issue, ACM, 1994,
pp-125-37. USA.

[17] Y. Leung and M. Apperley, A Review and Taxonomy of
Distortion-Oriented Presentation Technique, ACM
Transactions on Computer-Human Interaction, Vol. 1, No. 2,
June 1994, pp. 126-160.

[18] H. Schwetman, "CSIM: A C-BASED, Process oriented
Simulation Lnaguage," Proceeding of Winter Simulation
Conference, 1986

[19] K.S. Perumalla, R.M. Fujimoto, "Efficient Large-Scale
Process Oriented Parallel Simulation," Proceeding of Winter
Simulation Conference, 1998

[20] H. Schwetman, CSIM Reference Manual, June, 1992

[21] J.A. Joines, S.D. Roberts, "Simulation in an object-oriented
world," Proceeding of Winter Simulation Conference, 1999

[22] A. Leinwand and K. Fang, Network Management-A
Practical Perspective, Addison-Wesley Publishing
Company, Reading Massachusetts, 1993.

ng Individual Agent Migration

LTy

[L]

Time IN - 61,65 Time OUT: 411,80

Cape Hope Cape Hope Detroit Detrait Detrot Londan Landan
Fick_up ID_Language Xlate_Chinesesummarize Drop_off

o

o

1m|mi|mw-m1mmummﬂwnwmnmmmmm'mummi

Total Time inthe System : 350,15

]

Figure 2.
HVP Agent oriented view

Eg_'gﬁelvice Place Statistics: 5P1 - SF10

SP1
t M,w—vw*’"‘___‘——m________
52 " T T
SP3 T
51| - T 1
SP5 g P
SP6 i T
SP7 I
A e et S ||
spg T T T T
SPg] e o e e S A
J.a-v_a-'"_'_ _‘“——_..________
sP10 ——— i
Elapsed Time: 1740.2 792 snapshots
‘ Refresh H|Utiliza1iun V|| ‘Chuusethe grain size!l v|
Figure 3.

HVP Network Oriented View: Comparative Service Place Utilization

Egjg'Service Place Statistics: Service Place 1

100

a0

e

Figure 4.
VVP Network Oriented View: Specific Service Place Utilization

Slide Bar

Summary View
at Its Highest Level

Intermediate
Summary View

Raw Sampled
Data View

Figure 5.
Dynamic Use Of VVP Distortion Oriented View For Data Interpretation

