
A Using the Cloud for Malware Analysis

There may be several reasons to use a cloud service as a platform for malware
analysis.

1. The user’s own laptop (or desktop) computer may not have enough
CPU power, or memory, to run several VMs at once

2. The user’s computer may not support virtualization, and therefore not
be able to run VMWware or VirtualBox at all. This is the case for
some Apple products at the time of this writing.

3. The user may want to analyze malware in the cloud in order to provide
a extra level of protection in the possible but unlikely case the malware
is able to escape.

4. The user may want to have access to the same malware analysis envi-
ronment from a variety of physical locations, such as home, work, or
when on travel.

Cloud service providers, or CSPs, offer their customers access to a variety
of virtual machines. This variety may include a choice of operating systems,
number of CPUs, memory, disk storage, and software configurations. Se-
lecting the right configuration is mostly a trade-off between capability and
budget. Many CSPs offer a free tier of services, and charge more depending
on the size of the virtual machine, and the level of access desired. For the
student malware analyst, free or at most ”pay as you go” is probably the
best choice.

Before describing how to set up a Windows desktop suitable for malware
analysis using a particular cloud service, we need to discuss nested virtual-
ization. Nested virtualization can be described as the ability to run a virtual
machine inside another virtual machine. If one acquires a Windows or Linux
desktop running in the cloud, that desktop is actually a VM running under
the control of a hypervisor (such as Xen), and it’s the hypervisor that is
running on real, bare metal hardware. At this time, not all cloud service
providers make nested virtualization available.

Whatever CSP we use, we intend to connect to the cloud platform using a
virtual network controller, or VNC. Several VNC servers are freely available
on the Internet. The Remote Desktop Protocol, or RDP, would be an option
were we to connect to a Windows VM from a Windows PC. For the sake of
licensing if no other reason, Linux VMs seem to be the more common CSP
offering. In what follows, we describe the creation of a Linux VM, and how
to connect to it using VNC.

30

A.1 Google Compute Engine

The Google Cloud Platform (GCP), and the Google Compute Engine in par-
ticular, is the example we use. The place to start is the GCP Console, which
is accessed at https://console.cloud.google.com/. The GCP documen-
tation suggests that more testing has been done with nested virtualization
on Debian, so that’s the Linux distribution we use in the following. But
we caution the reader that systems change, and what worked for us may
not work for them. Details large and small may need to be updated. We
found this web site to be helpful 16. We decided to use the xfce4 desktop,
as described at https://www.digitalocean.com/community/tutorials/

how-to-install-and-configure-vnc-on-debian-10

From the GCP Console, create a new VM instance, taking note of its
external IP, which in this example is 34.162.107.197. The IP is ephemeral,
in the sense that GCP may assign a different external IP the next this VM
is started. We configured a new virtual machine instance with the following
parameters:

• 4 cores and 16 GB RAM (e2-standard-4)

• latest version of Debian

• a default disk, at least 100 gigabytes, since OVA files and VMs are big

• enable display device (which may not be necessary)

• allow default access to all Cloud APIs (which may not be necessary)

• enable HTTP and HTTPS

Take note of the zone in which the machine is created, which happens
to be ”us-central1-a”. Start this VM, and connect with ssh. The resulting
shell is a root shell, but it lacks a password. So the obvious first step is to
set a root password using: sudo passwd root.

To configure the xfce4 desktop, from the newly password-protected shell,
issue these commands. Installing tasksel takes a while, but it makes in-
stalling xfce4 much easier.

sudo apt-get update && sudo apt-get upgrade

sudo apt install tasksel -y

sudo tasksel

16https://tecadmin.net/how-to-install-vnc-server-on-debian-10/

31

https://console.cloud.google.com/
https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-vnc-on-debian-10
https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-vnc-on-debian-10
https://tecadmin.net/how-to-install-vnc-server-on-debian-10/

Invoke tasksel as shown above, select the xfce4 option, and tab down
to ”Okay”. Once xfce4 is installed, install a VNC server as shown below.
This too will take a few minutes. Once all this is done, we can invoke the
vncserver. This last command will prompt for a password. Test it using
netcat. If you need to install netcat, do so as shown. Try to connect to port
5901. If that succeeds, kill the server because some additional configuration
work needs to be done. The process is summarized here:

sudo apt install tightvncserver

sudo apt-get install autocutsel

sudo apt-get install dbus-x11

sudo apt-get install -y netcat

vncserver

(prompts and confirms a password)

nc localhost 5901 -- gives a short RFB message in reply

vncserver -kill :1

Use a text editor such as vi or nano to modify .vnc/xstartup

#!/bin/sh

xrdb $HOME/.Xresources

startxfce4 &

We should now be able to connect to our new Debian instance using a
VNC client, such as VNC Viewer. In the GCE version of Debian, VirtualBox
is not installed by default. So we visit the Debian site for package files and
instructions17. Having downloaded a Debian binary from the Virtualbox
web site, we referred to the instructions to see how to load some repositories
and header files. To actually run VirtualBox, however, it turns out that
nested virtualization needs to be explicitly enabled for the Debian instance
using the GCP shell. Stop the newly created Debian instance, and following
the directions at GCP18 we end the ssh session and issue this command:

gcloud compute instances export VM_NAME \ % "instance-6"

--destination=YAML_FILE_PATH \ % "yaml.txt"

--zone=ZONE % "us-central1-a"

Still within the GCP shell, use a text editor to add the following to the
YAML file:

17https://wiki.debian.org/
18https://cloud.google.com/compute/docs/instances/nested-virtualization/

32

https://wiki.debian.org/
https://cloud.google.com/compute/docs/instances/nested-virtualization/

advancedMachineFeatures:

enableNestedVirtualization: true

Save that file, and:

gcloud compute instances update-from-file VM_NAME \ % "instance-6"

--source=FILE_PATH \ % "yaml.txt"

--most-disruptive-allowed-action=RESTART \

--zone=ZONE % "us-central1-a"

using the same substitutions as before. We then connect to the machine
using ssh, and confirm that the command grep -cw vmx /proc/cpuinfo

returns something non-zero. (The GCP documentation says to make sure
the VM is running on an Intel Haswell or later.)

A.2 Running VirtualBox

We can now attempt to run VirtualBox on the new Debian instance. We
found it useful to have small OVA files for Ubuntu and Windows Server
available for such testing. When trying to run a new VM, VirtualBox might
complain about the VirtualBox Linux kernel driver being not loaded or not
set up correctly. The /sbin/vboxconfig command may in turn complain
about missing header files. Correct this as follows:

sudo apt update

sudo apt upgrade

sudo apt install linux-headers-$(uname -r)$

sudo /sbin/vboxconfig

Given the size of OVA files, and that we may need several of them, we
decided to add a standard disk, which we need to format. The GCP console
has links to instructions. We set up the disk /dev/sdb to be mounted at
/mount/disks/disk1, with fstab configured to mount it automatically at boot
time. (In a situation where several students in the same class may need read-
only access to a set of ISO or OVA files, the disk can be shared between
virtual machine instances belonging to the same GCP project.)

We now have the ability to run virtual machines, using VirtualBox, but
those machines will not be able to access the Internet until they can acquire
IP addresses. From a Debian instance shell, issue the command VBoxManage

modifyvm aNewVM --natdnsproxy1 on where ”aNewVM” is replaced with

33

the VM’s name in VirtualBox. This will allow the guest operating systems
to go out to the Internet for updates, and web browsers running on the guest
will be able to reach the Internet. See Figure 20.

Once the various guest systems are updated and stable, it’s not a bad idea
to export them as VirtualBox appliances, that is, as OVA files. Likewise,
once the GCP instance is able is able to support VNC connections and run
VirtualBox successfully, creating an image of that instance as a backup is
appropriate.

The process of starting a VM, connecting to it with VNC, and using
VirtualBox to create virtual machines can be summarized as follows:

• Go to the GCP Compute Engine VM Instances page

• Select the VM instance to be started, and start it

• Note the external IP address <extIP>

• Use SSH (right menu) to connect to that VM once it has started

• from that shell, run vncserver -geometry 1600x1000

• use VNC Viewer to connect to ¡extIP¿:5901

• when the remote desktop appears, use VNC Viewer properties to zoom
as much as 200 %

• invoke VirtualBox from the new desktop

• if creating or importing a new VM into VirtualBox, issue the VBox-
Manage modifyvm command as shown above.

• Keep the CPU and memory configuration minimal, e.g. one CPU and
four GBs of RAM. More can be added later, once the new VirtualBox
VM is stable

• Set paravirtualization to default, unless experience shows different.
Linux prefers KVM, while Windows prefers Hyper-V.

• Network should be NAT, cable connected

• install Guest Additions as desired

• do whatever you need to do...take snapshots as desired

• shut VirtualBox down cleanly

34

• close the VNC Viewer session

• if desired, run vncserver -kill :1 to stop that server

• MAKE SURE to shutdown the VM instance on the Instances page

When building a new VM, whether from an ISO image or an OVA file, it’s
probably better to build the new VM on an ordinary (non-cloud) desktop.
Let it do updates there. Once the new system is updated and stable, create
an OVA file and move that up to the cloud, where it can be unpacked and
used.

Figure 20: Running Ubuntu and Windows 10 as guests on a Debian GCP
instance

35

	Summary
	Introduction
	Web Resources
	A Virtual Environment for Malware Analysis
	The Malware Analyst's Work
	Utilities for Static Malware Analysis
	Using Disassemblers
	Using Ghidra

	Research Questions
	Proposed Tasks
	Using the Cloud for Malware Analysis
	Google Compute Engine
	Running VirtualBox

