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Module 6: Process Synchronization

• Background

• The Critical-Section Problem

• Synchronization Hardware

• Semaphores

• Classical Problems of Synchronization

• Critical Regions

• Monitors

• Synchronization in Solaris 2

• Atomic Transactions
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Background

• Concurrent access to shared data may result in data
inconsistency.

• Maintaining data consistency requires mechanisms to ensure
the orderly execution of cooperating processes.

• Shared-memory solution to bounded-buffer problem (Chapter
4) allows at most n − 1 items in buffer at the same time. A
solution, were all N buffers are used is not simple.

– Suppose that we modify the producer-consumer code by
adding a variable counter, initialized to 0 and incremented
each time a new item is added to the buffer.

Operating System Concepts 6.2 Silberschatz and Galvin c©1998



'

&

$

%

Bounded-Buffer

• Shared data type item = ... ;
var buffer: array [0..n-1] of item;
in, out: 0..n-1;
counter: 0..n;
in, out, counter := 0;

• Producer process

repeat
...

produce an item in nextp
...

while counter = n do no-op;
buffer[in] := nextp;
in := in + 1 mod n;
counter := counter + 1;

until false;
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Bounded-Buffer (Cont.)

• Consumer process

repeat
while counter = 0 do no-op;
nextc := buffer[out];
out := out + 1 mod n;
counter := counter − 1;

...
consume the item in nextc

...
until false;

• The statements:

– counter := counter +1;

– counter := counter - 1;

must be executed atomically.
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The Critical-Section Problem

• n processes all competing to use some shared data

• Each process has a code segment, called critical section, in
which the shared data is accessed.

• Problem – ensure that when one process is executing in its
critical section, no other process is allowed to execute in its
critical section.

• Structure of process Pi

repeat
entry section

critical section

exit section
remainder section

until false;
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Solution to Critical-Section Problem

1. Mutual Exclusion . If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections.

2. Progress . If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely.

3. Bounded Waiting . A bound must exist on the number of times
that other processes are allowed to enter their critical sections
after a process has made a request to enter its critical section
and before that request is granted.

• Assume that each process executes at a nonzero speed.

• No assumption concerning relative speed of the n
processes.
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Initial Attempts to Solve Problem

• Only 2 processes, P0 and P1

• General structure of process Pi (other process Pj )

repeat
entry section

critical section

exit section
remainder section

until false;

• Processes may share some common variables to synchronize
their actions.
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Algorithm 1

• Shared variables:

– var turn: (0..1);
initially turn = 0

– turn = i ⇒ Pi can enter its critical section

• Process Pi

repeat
while turn 6= i do no-op;

critical section

turn := j;
remainder section

until false;

• Satisfies mutual exclusion, but not progress.
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Algorithm 2

• Shared variables

– var flag: array [0..1] of boolean;
initially flag[0] = flag[1] = false.

– flag[i] = true ⇒ Pi ready to enter its critical section

• Process Pi repeat
flag[i] := true;
while flag[j] do no-op;

critical section

flag[i] := false;

remainder section
until false;

• Satisfies mutual exclusion, but not progress requirement.
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Algorithm 3

• Combined shared variables of algorithms 1 and 2.

• Process Pi

repeat
flag[i] := true;
turn := j;
while (flag[j ] and turn=j) do no-op;

critical section

flag[i] := false;

remainder section
until false;

• Meets all three requirements; solves the critical-section
problem for two processes.
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Bakery Algorithm

Critical section for n processes

• Before entering its critical section, process receives a number.
Holder of the smallest number enters the critical section.

• If processes Pi and Pj receive the same number, if i < j , then
Pi is served first; else Pj is served first.

• The numbering scheme always generates numbers in
increasing order of enumeration; i.e., 1,2,3,3,3,3,4,5...
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Bakery Algorithm (Cont.)

• Notation <≡ lexicographical order (ticket #, process id #)

– (a,b) < (c,d) if a < c or if a = c and b < d

– max(a0, . . . , an−1) is a number, k, such that k ≥ ai for i = 0,
. . . , n − 1

• Shared data

var choosing: array [0..n−1] of boolean;
number: array [0..n−1] of integer;

Data structures are initialized to false and 0, respectively
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Bakery Algorithm (Cont.)

repeat

choosing[i] := true;
number[i] := max(number[0], number[1], ..., number[n − 1])+1;
choosing[i] := false;
for j := 0 to n − 1

do begin
while choosing[j] do no-op;
while number[j] 6= 0

and (number[j],j) < (number[i], i) do no-op;
end ;

critical section

number[i] := 0;

remainder section
until false;
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Synchronization Hardware

• Test and modify the content of a word atomically.

function Test-and-Set (var target: boolean): boolean;
begin

Test-and-Set := target;
target := true;

end ;
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Mutual Exclusion with Test-and-Set

• Shared data: var lock: boolean (initially false)

• Process Pi

repeat
while Test-and-Set(lock) do no-op;

critical section

lock := false;
remainder section

until false;
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Semaphore

• Synchronization tool that does not require busy waiting.

• Semaphore S – integer variable

• can only be accessed via two indivisible (atomic) operations

wait(S): while S ≤ 0 do no-op;
S := S − 1;

signal(S): S := S + 1;
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Example: Critical Section for n Processes

• Shared variables

– var mutex : semaphore

– initially mutex = 1

• Process Pi

repeat
wait(mutex);

critical section

signal(mutex);

remainder section
until false;
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Semaphore Implementation

• Define a semaphore as a record

type semaphore = record
value: integer;
L: list of process;

end ;

• Assume two simple operations:

– block suspends the process that invokes it.

– wakeup(P) resumes the execution of a blocked process P.
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Implementation (Cont.)

• Semaphore operations now defined as

wait(S): S.value := S.value − 1;
if S.value < 0

then begin
add this process to S.L;
block;

end ;
signal(S): S.value := S.value + 1;

if S.value ≤ 0
then begin

remove a process P from S.L;
wakeup(P);

end ;
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Semaphore as General Synchronization Tool

• Execute B in Pj only after A executed in Pi

• Use semaphore flag initialized to 0

• Code:

Pi Pj
...

...

A wait(flag)

signal(flag) B
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Deadlock and Starvation

• Deadlock – two or more processes are waiting indefinitely for
an event that can be caused by only one of the waiting
processes.

• Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);
...

...

signal(S); signal(Q);

signal(Q); signal(S);

• Starvation – indefinite blocking. A process may never be
removed from the semaphore queue in which it is suspended.
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Two Types of Semaphores

• Counting semaphore – integer value can range over an
unrestricted domain.

• Binary semaphore – integer value can range only between 0
and 1; can be simpler to implement.

• Can implement a counting semaphore S as a binary
semaphore.
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Implementing S as a Binary Semaphore

• Data structures:

var S1: binary-semaphore;
S2: binary-semaphore;
S3: binary-semaphore;
C: integer;

• Initialization:

S1 = S3 = 1
S2 = 0
C = initial value of semaphore S.
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Implementing S (Cont.)

• wait operation wait(S3);
wait(S1);
C := C − 1;
if C < 0
then begin

signal(S1);
wait(S2);

end
else signal(S1);
signal(S3);

• signal operation wait(S1);
C := C + 1;
if C ≤ 0 then signal(S2);
signal(S1);
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Classical Problems of Synchronization

• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem
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Bounded-Buffer Problem

• Shared data

type item = ...
var buffer = ...

full, empty, mutex: semaphore;
nextp, nextc: item;
full := 0; empty := n; mutex := 1;
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Bounded-Buffer Problem (Cont.)

• Producer process

repeat
...

produce an item in nextp
...

wait(empty);
wait(mutex);

...
add nextp to buffer

...
signal(mutex);
signal(full);

until false;
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Bounded-Buffer Problem (Cont.)

• Consumer process

repeat
wait(full);
wait(mutex);

...
remove an item from buffer to nextc

...
signal(mutex);
signal(empty);

...
consume the item in nextc

...
until false;
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Readers–Writers Problem

• Shared data

var mutex, wrt: semaphore (= 1);
readcount : integer (= 0);

• Writer process

wait(wrt);
...

writing is performed
...

signal(wrt);
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Readers–Writers Problem (Cont.)

• Reader process

wait(mutex);
readcount := readcount + 1;
if readcount = 1 then wait(wrt);

signal(mutex);
...

reading is performed
...

wait(mutex);
readcount := readcount − 1;
if readcount = 0 then signal(wrt);

signal(mutex);
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Dining-Philosophers Problem

• Shared data

var chopstick: array [0..4] of semaphore;
(=1 initially)
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Dining-Philosophers Problem (Cont.)

• Philosopher i:

repeat
wait(chopstick[i ]);
wait(chopstick[i+1 mod 5]);

...
eat
...

signal(chopstick[i ]);
signal(chopstick[i+1 mod 5]);

...
think
...

until false;
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Critical Regions

• High-level synchronization construct

• A shared variable v of type T, is declared as:

var v: shared T

• Variable v accessed only inside statement:

region v when B do S

where B is a Boolean expression.

While statement S is being executed, no other process can
access variable v.
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Critical Regions (Cont.)

• Regions referring to the same shared variable exclude each
other in time.

• When a process tries to execute the region statement, the
Boolean expression B is evaluated. If B is true, statement S is
executed. If it is false, the process is delayed until B becomes
true and no other process is in the region associated with v.
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Example – Bounded Buffer

• Shared variables:

var buffer: shared record
pool: array [0..n−1] of item;
count,in,out: integer;

end ;

• Producer process inserts nextp into the shared buffer

region buffer when count < n
do begin

pool[in] := nextp;
in := in+1 mod n;
count := count + 1;

end ;
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Bounded Buffer Example (Cont.)

• Consumer process removes an item from the shared buffer
and puts it in nextc

region buffer when count > 0
do begin

nextc := pool[out];
out := out+1 mod n;
count := count − 1;

end ;
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Implementation: region x when B do S

• Associate with the shared variable x, the following variables:

var mutex, first-delay, second-delay: semaphore;
first-count, second-count: integer;

• Mutually exclusive access to the critical section is provided by
mutex.

• If a process cannot enter the critical section because the
Boolean expression B is false, it initially waits on the first-delay
semaphore; moved to the second-delay semaphore before it is
allowed to reevaluate B.
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Implementation (Cont.)

• Keep track of the number of processes waiting on first-delay
and second-delay, with first-count and second-count
respectively.

• The algorithm assumes a FIFO ordering in the queueing of
processes for a semaphore.

• For an arbitrary queueing discipline, a more complicated
implementation is required.
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wait(mutex);
while not B

do begin first-count := first-count + 1;
if second-count > 0

then signal(second-delay)
else signal(mutex);

wait(first-delay);
first-count := first-count − 1;
second-count := second-count + 1;
if first-count > 0 then signal(first-delay)

else signal(second-delay);
wait(second-delay);
second-count := second-count − 1;

end ;
S;
if first-count > 0

then signal(first-delay);
else if second-count > 0

then signal(second-delay);
else signal(mutex);
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Monitors

• High-level synchronization construct that allows the safe
sharing of an abstract data type among concurrent processes.

type monitor-name = monitor
variable declarations
procedure entry P1 ( ... );

begin ... end ;
procedure entry P2 ( ... );

begin ... end ;
...

procedure entry Pn ( ... );
begin ... end ;

begin
initialization code

end .
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Monitors (Cont.)

• To allow a process to wait within the monitor, a condition
variable must be declared, as:

var x,y: condition

• Condition variable can only be used with the operations wait
and signal.

– The operation x.wait;

means that the process invoking this operation is
suspended until another process invokes

x.signal;

– The x.signal operation resumes exactly one suspended
process. If no process is suspended, then the signal
operation has no effect.
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Dining Philosophers Example

type dining-philosophers = monitor
var state : array [0..4] of (thinking, hungry, eating);
var self : array [0..4] of condition;
procedure entry pickup (i: 0..4);

begin
state[i ] := hungry;
test (i);
if state[i ] 6= eating then self[i ].wait;

end ;

procedure entry putdown (i: 0..4);
begin

state[i ] := thinking;
test (i+4 mod 5);
test (i+1 mod 5);

end ;
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Dining Philosophers (Cont.)

procedure test (k: 0..4);
begin

if state[k+4 mod 5] 6= eating
and state[k] = hungry
and state[k+1 mod 5] 6= eating
then begin

state[k] := eating;
self[k ].signal;

end ;
end ;

begin
for i := 0 to 4

do state[i ] := thinking;
end .
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Monitor Implementation Using Semaphores

• Variables
var mutex: semaphore (init = 1)

next: semaphore (init = 0)
next-count: integer (init = 0)

• Each external procedure F will be replaced by

wait(mutex);
...

body of F;
...

if next-count > 0
then signal(next)
else signal(mutex);

• Mutual exclusion within a monitor is ensured.
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Monitor Implementation (Cont.)

• For each condition variable x, we have:

var x-sem: semaphore (init = 0)
x-count: integer (init = 0)

• The operation x.wait can be implemented as:

x-count := x-count + 1;
if next-count > 0

then signal(next)
else signal(mutex);

wait(x-sem);
x-count := x-count − 1;
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Monitor Implementation (Cont.)

• The operation x.signal can be implemented as:

if x-count > 0
then begin

next-count := next-count + 1;
signal(x-sem);
wait(next);
next-count := next-count − 1;

end ;
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Monitor Implementation (Cont.)

• Conditional-wait construct: x.wait(c);
– c – integer expression evaluated when the wait operation is

executed.

– value of c (priority number) stored with the name of the
process that is suspended.

– when x.signal is executed, process with smallest associated
priority number is resumed next.

• Check two conditions to establish correctness of system:
– User processes must always make their calls on the monitor

in a correct sequence.

– Must ensure that an uncooperative process does not ignore
the mutual-exclusion gateway provided by the monitor, and
try to access the shared resource directly, without using the
access protocols.
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Solaris 2 Operating System

• Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and
multiprocessing.

• Uses adaptive mutexes for efficiency when protecting data
from short code segments.

• Uses condition variables and readers–writers locks when
longer sections of code need access to data.
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Atomic Transactions

• Transaction – program unit that must be executed atomically;
that is, either all the operations associated with it are executed
to completion, or none are performed.

• Must preserve atomicity despite possibility of failure.

• We are concerned here with ensuring transaction atomicity in
an environment where failures result in the loss of information
on volatile storage.
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Log-Based Recovery

• Write-ahead log – all updates are recorded on the log, which is
kept in stable storage; log has following fields:

– transaction name

– data item name, old value, new value

• The log has a record of <Ti starts >, and either

– < Ti commits > if the transactions commits, or

– < Ti aborts > if the transaction aborts.
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Log-Based Recovery (Cont.)

• Recovery algorithm uses two procedures:

– undo (Ti ) – restores value of all data updated by
transaction Ti to the old values. fIt is invoked if the log
contains record <Ti starts >, but not <Ti commits >.

– redo (Ti ) – sets value of all data updated by transaction Ti

to the new values. It is invoked if the log contains both
<Ti starts > and <Ti commits >.
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Checkpoints – Reduce Recovery Overhead

1. Output all log records currently residing in volatile storage onto
stable storage.

2. Output all modified data residing in volatile storage to stable
storage.

3. Output log record <checkpoint > onto stable storage.

• Recovery routine examines log to determine the most recent
transaction Ti that started executing before the most recent
checkpoint took place.

– Search log backward for first <checkpoint > record.

– Find subsequent <Ti start > record.

• redo and undo operations need to be applied to only
transaction Ti and all transactions Tj that started executing
after transaction Ti .
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Concurrent Atomic Transactions

• Serial schedule – the transactions are executed sequentially in
some order.

• Example of a serial schedule in which T0 is followed by T1:

T0 T1

read (A)

write (A)

read (B)

write (B)

read (A)

write (A)

read (B)

write (B)
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Concurrent Atomic Transactions (Cont.)

• Conflicting operations – Oi and Oj conflict if they access the
same data item, and at least one of these operations is a write
operation.

• Conflict serializable schedule – schedule that can be
transformed into a serial schedule by a series of swaps of
nonconflicting operations.
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Example of a Concurrent Serializable Schedule

T0 T1

read (A)

write (A)

read (A)

write (A)

read (B)

write (B)

read (B)

write (B)

Operating System Concepts 6.55 Silberschatz and Galvin c©1998

'

&

$

%

Concurrent Atomic Transactions (Cont.)

• Locking protocol governs how locks are acquired and released;
data item can be locked in following modes:

– Shared: If Ti has obtained a shared-mode lock on data
item Q, then Ti can read this item, but it cannot write Q.

– Exclusive: If Ti has obtained an exclusive-mode lock on
data item Q, then Ti can both read and write Q.

• Two-phase locking protocol

– Growing phase: A transaction may obtain locks, but may
not release any lock.

– Shrinking phase: A transaction may release locks, but
may not obtain any new locks.

• The two-phase locking protocol ensures conflict serializability,
but does not ensure freedom from deadlock.
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Concurrent Atomic Transactions (Cont.)

• Timestamp-ordering scheme – transaction ordering protocol
for determining serializability order.

– With each transaction Ti in the system, associate a unique
fixed timestamp, denoted by TS(Ti ).

– If Ti has been assigned timestamp TS(Ti ), and a new
transaction Tj enters the system, then TS(Ti ) < TS(Tj ).

• Implement by assigning two timestamp values to each data
item Q.

– W-timestamp (Q) – denotes largest timestamp of any
transaction that executed write (Q) successfully.

– R-timestamp (Q) – denotes largest timestamp of any
transaction that executed read (Q) successfully.
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Schedule Possible under Timestamp Protocol

T2 T3

read (B)

read (B)

write (B)

read (A)

read (A)

write (A)

• There are schedules that are possible under the two-phase
locking protocol but are not possible under the timestamp
protocol, and vice versa.

• The timestamp-ordering protocol ensures conflict serializability;
conflicting operations are processed in timestamp order.
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