
'

&

$

%

Module 4: Processes

• Process Concept

• Process Scheduling

• Operation on Processes

• Cooperating Processes

• Threads

• Interprocess Communication

Operating System Concepts 4.1 Silberschatz and Galvin c©1998

'

&

$

%

Process Concept

• An operating system executes a variety of programs:

– Batch system – jobs

– Time-shared systems – user programs or tasks

• Textbook uses the terms job and process almost
interchangeably.

• Process – a program in execution; process execution must
progress in a sequential fashion.

• A process includes:

– program counter

– stack

– data section

Operating System Concepts 4.2 Silberschatz and Galvin c©1998



'

&

$

%

Process State

• As a process executes, it changes state.
– new: The process is being created.
– running: Instructions are being executed.
– waiting: The process is waiting for some event to occur.
– ready: The process is waiting to be assigned to a processor.
– terminated: The process has finished execution.

• Diagram of process state:

exitadmitted interrupt

scheduler dispatch
I/O or event waitI/O or event completion

waiting

ready running

new terminated

Operating System Concepts 4.3 Silberschatz and Galvin c©1998

'

&

$

%

Process Control Block (PCB)

Information associated with each process.

• Process state

• Program counter

• CPU registers

• CPU scheduling information

• Memory-management information

• Accounting information

• I/O status information

Operating System Concepts 4.4 Silberschatz and Galvin c©1998



'

&

$

%

Process Scheduling Queues

• Job queue – set of all processes in the system.

• Ready queue – set of all processes residing in main memory,
ready and waiting to execute.

• Device queues – set of processes waiting for an I/O device.

• Process migration between the various queues.

ready queue
endenter

job queue

I/O waitingI/O

CPU

queue(s)

Operating System Concepts 4.5 Silberschatz and Galvin c©1998

'

&

$

%

Schedulers

• Long-term scheduler (or job scheduler) – selects which
processes should be brought into the ready queue.

• Short-term scheduler (or CPU scheduler) – selects which
process should be executed next and allocates CPU.

end
long term short term

I/O waiting
queue(s)I/O

ready queue CPU

Operating System Concepts 4.6 Silberschatz and Galvin c©1998



'

&

$

%

Schedulers (Cont.)

• Short-term scheduler is invoked very frequently (milliseconds)
⇒ (must be fast).

• Long-term scheduler is invoked very infrequently (seconds,
minutes) ⇒ (may be slow).

• The long-term scheduler controls the degree of
multiprogramming.

• Processes can be described as either:

– I/O-bound process – spends more time doing I/O than
computations; many short CPU bursts.

– CPU-bound process – spends more time doing
computations; few very long CPU bursts.

Operating System Concepts 4.7 Silberschatz and Galvin c©1998

'

&

$

%

Context Switch

• When CPU switches to another process, the system must save
the state of the old process and load the saved state for the
new process.

• Context-switch time is overhead; the system does no useful
work while switching.

• Time dependent on hardware support.

Operating System Concepts 4.8 Silberschatz and Galvin c©1998



'

&

$

%

Process Creation

• Parent process creates children processes, which, in turn
create other processes, forming a tree of processes.

• Resource sharing

– Parent and children share all resources.

– Children share subset of parent’s resources.

– Parent and child share no resources.

• Execution

– Parent and children execute concurrently.

– Parent waits until children terminate.

Operating System Concepts 4.9 Silberschatz and Galvin c©1998

'

&

$

%

Process Creation (Cont.)

• Address space

– Child duplicate of parent.

– Child has a program loaded into it.

• UNIX examples

– fork system call creates new process.

– execve system call used after a fork to replace the
process’ memory space with a new program.

Operating System Concepts 4.10 Silberschatz and Galvin c©1998



'

&

$

%

Process Termination

• Process executes last statement and asks the operating
system to delete it (exit ).

– Output data from child to parent (via wait ).

– Process’ resources are deallocated by operating system.

• Parent may terminate execution of children processes (abort ).

– Child has exceeded allocated resources.

– Task assigned to child is no longer required.

– Parent is exiting.
∗ Operating system does not allow child to continue if its

parent terminates.

∗ Cascading termination.

Operating System Concepts 4.11 Silberschatz and Galvin c©1998

'

&

$

%

Cooperating Processes

• Independent process cannot affect or be affected by the
execution of another process.

• Cooperating process can affect or be affected by the execution
of another process.

• Advantages of process cooperation:

– Information sharing

– Computation speed-up

– Modularity

– Convenience

Operating System Concepts 4.12 Silberschatz and Galvin c©1998



'

&

$

%

Producer-Consumer Problem

• Paradigm for cooperating processes; producer process
produces information that is consumed by a consumer
process.

– unbounded-buffer places no practical limit on the size of the
buffer.

– bounded-buffer assumes that there is a fixed buffer size.

Operating System Concepts 4.13 Silberschatz and Galvin c©1998

'

&

$

%

Bounded-Buffer – Shared-Memory Solution

• Shared data

var n;
type item = ... ;
var buffer: array [0..n−1] of item;

in, out: 0..n−1;

• Producer process

repeat
...

produce an item in nextp
...

while in+1 mod n = out do no-op;
buffer[in] := nextp;
in := in+1 mod n;

until false;

Operating System Concepts 4.14 Silberschatz and Galvin c©1998



'

&

$

%

Bounded-Buffer (Cont.)

• Consumer process

repeat
while in = out do no-op;
nextc := buffer[out];
out := out+1 mod n;

...
consume the item in nextc

...
until false;

• Solution is correct, but can only fill up n − 1 buffer.

Operating System Concepts 4.15 Silberschatz and Galvin c©1998

'

&

$

%

Threads

• A thread (or lightweight process) is a basic unit of CPU
utilization; it consists of:

– program counter

– register set

– stack space

• A thread shares with its peer threads its:

– code section

– data section

– operating-system resources

collectively known as a task.

• A traditional or heavyweight process is equal to a task with one
thread.

Operating System Concepts 4.16 Silberschatz and Galvin c©1998



'

&

$

%

Threads (Cont.)

• In a multiple threaded task, while one server thread is blocked
and waiting, a second thread in the same task can run.

– Cooperation of multiple threads in same job confers higher
throughput and improved performance.

– Applications that require sharing a common buffer (i.e.,
producer–consumer) benefit from thread utilization.

• Threads provide a mechanism that allows sequential
processes to make blocking system calls while also achieving
parallelism.

• Kernel-supported threads (Mach and OS/2).

• User-level threads; supported above the kernel, via a set of
library calls at the user level (Project Andrew from CMU).

• Hybrid approach implements both user-level and
kernel-supported threads (Solaris 2).

Operating System Concepts 4.17 Silberschatz and Galvin c©1998

'

&

$

%

Threads (Cont.)

task

data segment

text segment

threads

program 
counter

Operating System Concepts 4.18 Silberschatz and Galvin c©1998



'

&

$

%

Thread Support in Solaris 2

• Solaris 2 is a version of UNIX with support for threads at the
kernel and user levels, symmetric multiprocessing, and
real-time scheduling.

• LWP – intermediate level between user-level threads and
kernel-level threads.

• Resource needs of thread types:
– Kernel thread: small data structure and a stack; thread

switching does not require changing memory access
information – relatively fast.

– LWP: PCB with register data, accounting and memory
information; switching between LWPs is relatively slow.

– User-level thread: only needs stack and program counter;
no kernel involvement means fast switching. Kernel only
sees the LWPs that support user-level threads.

Operating System Concepts 4.19 Silberschatz and Galvin c©1998

'

&

$

%

Threads in Solaris 2

task 1 task 2 task 3

user-level thread

lightweight process

kernel

CPU

kernel thread

Operating System Concepts 4.20 Silberschatz and Galvin c©1998



'

&

$

%

Interprocess Communication (IPC)

• Mechanism for processes to communicate and to synchronize
their actions.

• Message system – processes communicate with each other
without resorting to shared variables.

• IPC facility provides two operations:

– send (message) – message size fixed or variable
– receive (message)

• If P and Q wish to communicate, they need to:

– establish a communication link between them
– exchange messages via send/receive

• Implementation of communication link

– physical (e.g., shared memory, hardware bus)
– logical (e.g., logical properties)

Operating System Concepts 4.21 Silberschatz and Galvin c©1998

'

&

$

%

Implementation Questions

• How are links established?

• Can a link be associated with more than two processes?

• How many links can there be between every pair of
communicating processes?

• What is the capacity of a link?

• Is the size of a message that the link can accommodate fixed
or variable?

• Is a link unidirectional or bidirectional?

Operating System Concepts 4.22 Silberschatz and Galvin c©1998



'

&

$

%

Direct Communication

• Processes must name each other explicitly:

– send (P, message) – send a message to process P

– receive (Q, message) – receive a message from process Q

• Properties of communication link

– Links are established automatically.

– A link is associated with exactly one pair of communicating
processes.

– Between each pair there exists exactly one link.

– The link may be unidirectional, but is usually bidirectional.

Operating System Concepts 4.23 Silberschatz and Galvin c©1998

'

&

$

%

Indirect Communication

• Messages are directed and received from mailboxes (also
referred to as ports).

– Each mailbox has a unique id.
– Processes can communicate only if they share a mailbox.

• Properties of communication link

– Link established only if processes share a common mailbox
– A link may be associated with many processes.
– Each pair of processes may share several communication

links.
– Link may be unidirectional or bidirectional.

• Operations

– create a new mailbox
– send and receive messages through mailbox
– destroy a mailbox

Operating System Concepts 4.24 Silberschatz and Galvin c©1998



'

&

$

%

Indirect Communication (Continued)

• Mailbox sharing

– P1, P2, and P3 share mailbox A.

– P1 sends; P2 and P3 receive.

– Who gets the message?

• Solutions

– Allow a link to be associated with at most two processes.

– Allow only one process at a time to execute a receive
operation.

– Allow the system to select arbitrarily the receiver. Sender is
notified who the receiver was.

Operating System Concepts 4.25 Silberschatz and Galvin c©1998

'

&

$

%

Buffering

• Queue of messages attached to the link; implemented in one
of three ways.

1. Zero capacity – 0 messages
Sender must wait for receiver (rendezvous).

2. Bounded capacity – finite length of n messages
Sender must wait if link full.

3. Unbounded capacity – infinite length
Sender never waits.

Operating System Concepts 4.26 Silberschatz and Galvin c©1998



'

&

$

%

Exception Conditions – Error Recovery

• Process terminates

• Lost messages

• Scrambled Messages

Operating System Concepts 4.27 Silberschatz and Galvin c©1998


	 Process Concept
	Process State
	Process Control Block (PCB)
	Process Scheduling Queues
	Schedulers
	Schedulers (Cont.)
	Context Switch
	Process Creation
	Process Creation (Cont.)
	Process Termination
	Cooperating Processes
	Producer-Consumer Problem
	Bounded-Buffer -- Shared-Memory Solution
	Bounded-Buffer (Cont.)
	Threads
	Threads (Cont.)
	Threads (Cont.)
	Thread Support in Solaris 2
	Threads in Solaris 2
	Interprocess Communication (IPC)
	Implementation Questions
	Direct Communication
	Indirect Communication
	Indirect Communication (Continued)
	Buffering
	Exception Conditions -- Error Recovery

