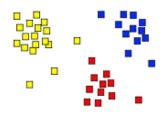

Some material adapted from slides by Andrew Moore, CMU

Yann LeCun on Unsupervised Learning

"Most of human and animal learning is *unsupervised learning*. If intelligence was a cake, unsupervised learning would be the cake, *supervised learning* would be the icing on the cake, and *reinforcement learning*

would be the cherry on the cake. ... We know how to make the icing and the cherry, but we don't know how to make the cake. We need to solve the unsupervised learning problem before we can even think of getting to true AI."*

* Yann LeCun (Head of Facebook AI, NYU CS Prof.) on AlphaGo's success and AI, 2016

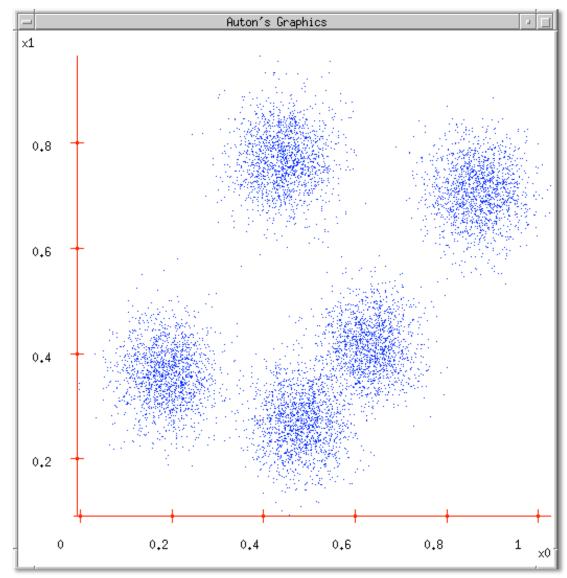

Unsupervised Learning

- Supervised learning used labeled data pairs (x, y) to learn a function f : X→y
- What if we don't have labels?
- No labels = unsupervised learning
- Only some points are labeled = semi-supervised
 learning

-Getting labels is expensive, so we only get a few

- Clustering is the unsupervised grouping of data points based on their similarity
- It can be used for knowledge discovery

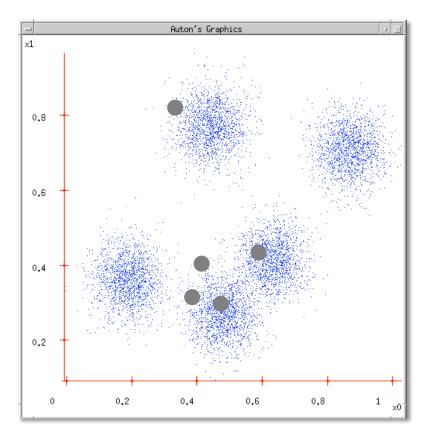
Clustering algorithms


- Many clustering algorithms
- Clustering typically done using a distance measure defined between instances or points
- Distance defined by instance feature space, so it works with numeric features
 - Requires encoding of categorial values; may benefit from normalization
- We'll look at three popular approaches
 - 1. Centroid-based clustering (e.g., Kmeans)
 - 2. Hierarchical clustering
 - 3. DBSCAN

Clustering Data

Given a collection of points (x,y), group them into one or more clusters based on their distance from one another

How many clusters are there?


How can we find them

(1) K-Means Clustering

- Randomly choose k cluster center locations, aka centroids
- Loop until convergence
 - assign one point to cluster of closest centroid
 - re-position cluster centroids
 based on its data assigned
- Convergence: no point is re-assigned to a different cluster

k = 5

- 1. k centerpoints are randomly initialized.
- 2. Observations are assigned to the closest centerpoint.
- 3. Centerpoints are moved to the center of their members.
- 4. Repeat steps 2 and 3 until no observation changes membership in step 2. Chris Albon

distance, centroids

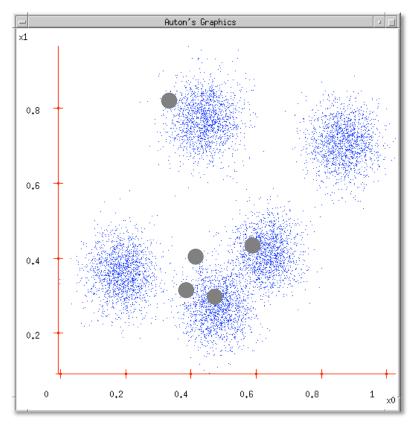
- Distance between points (X_0, Y_0, Z_0) and (X_1, Y_1, Z_1) is just sqrt $((X_0 X_1)^2 + (Y_0 Y_1)^2 + (Z_0 Z_1)^2)$
- In numpy: distance between two points

>>> import numpy as np

>>> p1 = np.array([0,-2,0,1]) ; p2 = np.array([0,1,2,1]))

>>> np.linalg.norm(p1 - p2)

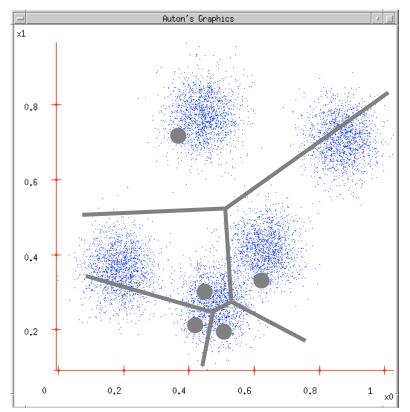
3.605551275463989


• Computing centroid of set of points easy

>>> points = np.array([[1,2,3], [2,1,1], [3,1,0]]) # 3D points
>>> centroid = np.mean(points, axis=0) # mean across columns
>>> centroid
array([2.0, 1.33, 1.33])

(1) K-Means Clustering

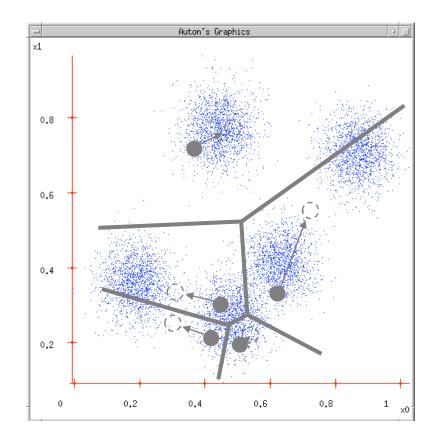
- Randomly choose k cluster center locations, aka centroids
- Loop until convergence
 - assign one point to cluster of the closest centroid
 - re-estimate cluster centroids
 based on its data assigned
- Convergence: no point is assigned to a different cluster


k = 5

K-Means Clustering

K-Means (k, data)

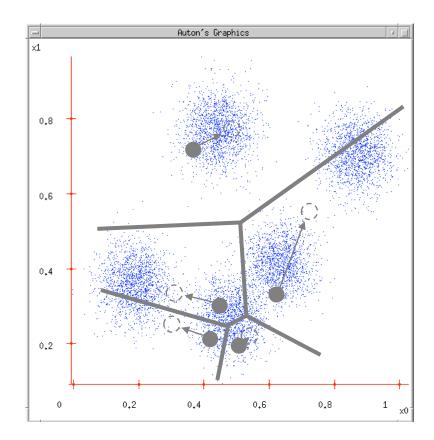
- Randomly choose k cluster center locations (centroids)
- Loop until convergence
 - Assign each point to the cluster of closest centroid
 - Re-estimate cluster centroids based on data assigned to each
- Convergence: no point is assigned to a different cluster

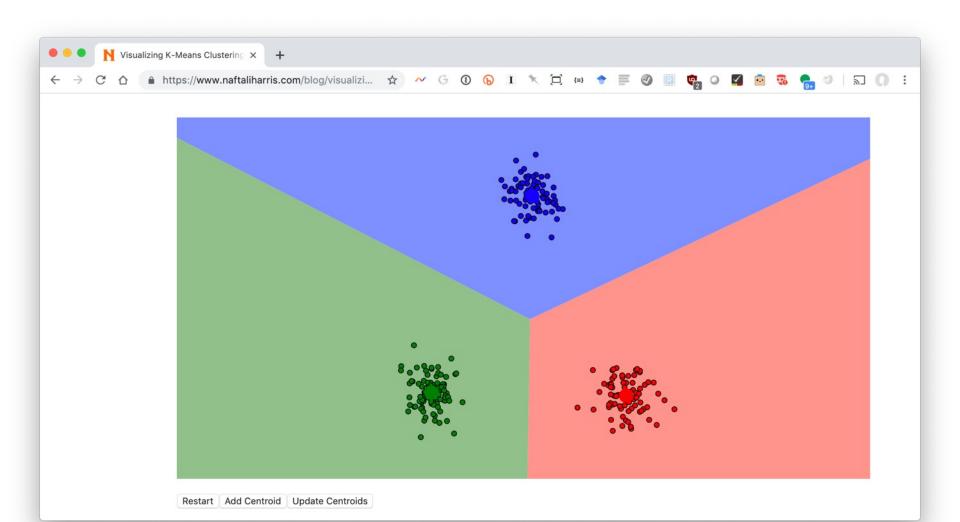


<u>veroni diagram</u>: add lines for regions of points closest to each centroid

K-Means Clustering

K-Means (k, data)

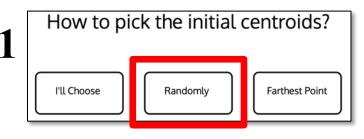

- Randomly choose k cluster center locations (centroids)
- Loop until convergence
 - Assign each point to the cluster of closest centroid
 - Re-estimate cluster centroids based on data assigned to each
- Convergence: no point is assigned to a different cluster

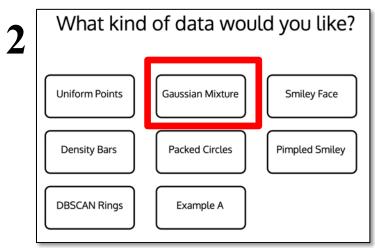

K-Means Clustering

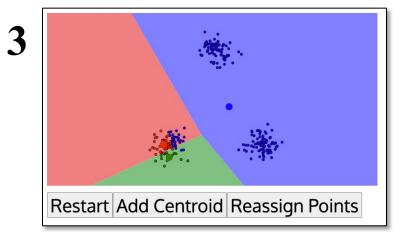
K-Means (k, data)

- Randomly choose k cluster center locations (centroids)
- Loop until convergence
 - Assign each point to the cluster of closest centroid
 - Re-estimate cluster centroids based on data assigned to each
- Convergence: no point is assigned to a different cluster

Visualizing k-means


Visualizing k-means


Visualizing k-means


Interactively experiment with Kmeans clustering

- 1. Three ways to assign positions of initial centroids
- 2. Eight ways to generate data points to be clustered
- 3. You choose the value of k when adding centroids
- 4. Then walk through the iterations of the k-means algorithm

It can also demonstrate the DBSCAN clustering algorithm

Clustering the Iris Data

- Let's try using unsupervised clustering on the Iris Data
- First on Weka
- Then using scikit learn on Colab

		Weka Explorer					
Preprocess Classify Cluster Associate Select att	ributes Visualize						
Clusterer							
Choose SimpleKMeans -init 0 -max-candidates	100 -periodic-pruning	g 10000 -min-density 2.0 -t1	-1.25 -t2 -1.0) -N 3 -A "weka.c	ore.EuclideanDistance	e -R first-	
Cluster mode	Clusterer output						
• Use training set	MICHINI CLUSTEL Sum of Squared Citors, /101/4500525055/4						
Supplied test set Set	Initial starting points (random):						
Supplied test set		g points (random).					
O Percentage split % 66	Cluster 0: 6.1,2.9,4.7,1.4,Iris-versicolor						
○ Classes to clusters evaluation	Cluster 1: 6.2,2.9,4.3,1.3,Iris-versicolor Cluster 2: 6.9,3.1,5.1,2.3,Iris-virginica						
(Nom) class							
Store clusters for visualization	Missing values	globally replaced with me	an/mode				
J	Final cluster o	entroids:					
			Cluster#				
Ignore attributes	Attribute	Full Data	0	1	2		
Start Stop		(150.0)	(50.0)	(50.0)	(50.0) ========		
	sepallength	5.8433	5.936	5.006	6.588		
Result list (right-click for options)	sepalwidth petallength	3.054 3.7587	2.77 4.26	3.418	2.974 5.552		
11:17:51 - SimpleKMeans	petalwidth	1.1987	1.326	1.464 0.244	2.026		
	class	Iris-setosa Iris-			Iris-virginica		
	Time taken to build model (full training data) : 0 seconds						
	=== Model and evaluation on training set ===						
	Clustered Insta	nces					
	0 50 (33	%)					
	1 50 (33						
	2 50 (33	*)					
						•	
	•					7	
Status							

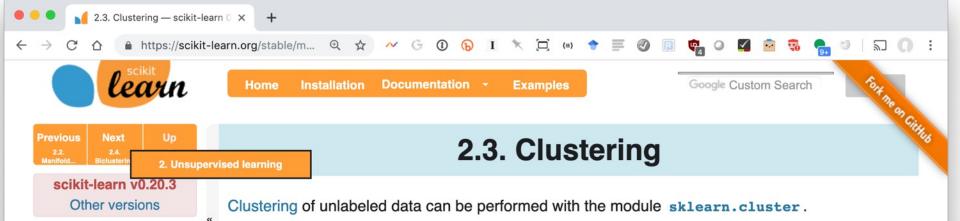
×0

	We	ka Explorer				
Preprocess Classify Cluster Associate Select att	ributes Visualize					
Clusterer						
Choose SimpleKMeans -init 0 -max-candidates 1	100 -periodic-pruning 100	000 -min-density 2.0 -t1	1.25 -t2 -1.0	-N 3 -A "weka.core.E	uclideanDistance ·	-R first-
Cluster mode	Clusterer output					
• Use training set	HICHIN CLUSTEL SUM OF SQUAREA CITOLS, 7.017450052505574					
O Supplied test set Set	Initial starting points (random):					
 Percentage split % 66 Classes to clusters evaluation (Nom) class 	Cluster 1: 6.2,2.9	,4.7,1.4,Iris-versico ,4.3,1.3,Iris-versico ,5.1,2.3,Iris-virgini	lor			
Store clusters for visualization	Missing values glob	bally replaced with m	ean/mode			
Store clusters for visualization	Final cluster cent	roids:				
Ignore attributes	Attribute	Full Data	Cluster#	1	2	
	Attribute	(150.0)	(50.0)	1 (50.0)	2 (50.0)	
Start Stop Result list (right-click for options) 11:17:51 - SimpleKMeans	======================================	5.8433 3.054 3.7587 1.1987 Iris-setosa Iris	5.936 2.77 4.26 1.326 -versicolor	5.006 3.418 1.464 0.244 Iris-setosa Iri	6.588 2.974 5.552 2.026 s-virginica	
	Time taken to build	d model (full training	g data) : 0 sec	onds		
Getting result		uation on training se	P	erfect resu		
			fo	rgot to ren	nove grou	ind
that are too g	000 (33%)			uth nomina	<u> </u>	
is usually a re						\sim
is usually a lo		7		elect "Class	ses to	
flag			c1	uster evalu	ation" to	5
OK IIIII				entify that		: 0

Preprocess Classify Cluster Associate Select attributes Visualize

Clusterer

Choose SimpleKMeans -init 0 -max-candidates 100 -periodic-pruning 10000 -min-density 2.0 -t1 -1.25 -t2 -1.0 -N 3 -A "weka.core.EuclideanDistance -R first-


Weka Explorer

Cluster mode	Clusterer output	
 Use training set Supplied test set Percentage split Classes to clusters evaluation 	sepallength 5.8433 5.8885 5.006 6.8462 sepalwidth 3.054 2.7377 3.418 3.0821 petallength 3.7587 4.3967 1.464 5.7026 petalwidth 1.1987 1.418 0.244 2.0795	ĺ
(Nom) class ▼ Store clusters for visualization Ignore attributes	Time taken to build model (full training data) : 0 : === Model and evaluation on training set === Clustered Instances	but
Start Stop Result list (right-click for options) 11:17:51 - SimpleKMeans	$\begin{array}{c} 0 & 61 & (41\%) \\ 1 & 50 & (33\%) \\ 2 & 39 & (26\%) \end{array}$ • Accuracy ~ 879 • Confusion with	%
11:21:09 – SimpleKMeans	Class attribute: class Classes to Clusters: 0 1 2 < assigned to cluster 0 50 0 Iris-setosa 47 0 3 Iris-versicolor 14 0 36 Iris-virginica	
	Cluster 0 < Iris-versicolor Cluster 1 < Iris-setosa Cluster 2 < Iris-virginica Incorrectly clustered instances : 17.0 11.3333 %	
		/ ►

Log

x 0

Status OK

in the labels attribute.

MiniBatchKMeansAffinityPropagation

sklearn.metrics.pairwise module.

Input data

Each clustering algorithm comes in two variants: a class, that implements the fit method to learn

corresponding to the different clusters. For the class, the labels over the training data can be found

One important thing to note is that the algorithms implemented in this module can take different

kinds of matrix as input. All the methods accept standard data matrices of shape

SpectralClustering and DBSCAN one can also input similarity matrices of shape

[n samples, n features]. These can be obtained from the classes in the

[n samples, n samples]. These can be obtained from the functions in the

SpectralClustering

sklearn.feature_extraction module.For AffinityPropagation,

the clusters on train data, and a function, that, given train data, returns an array of integer labels

Please **cite us** if you use the software.

2.3. Clustering

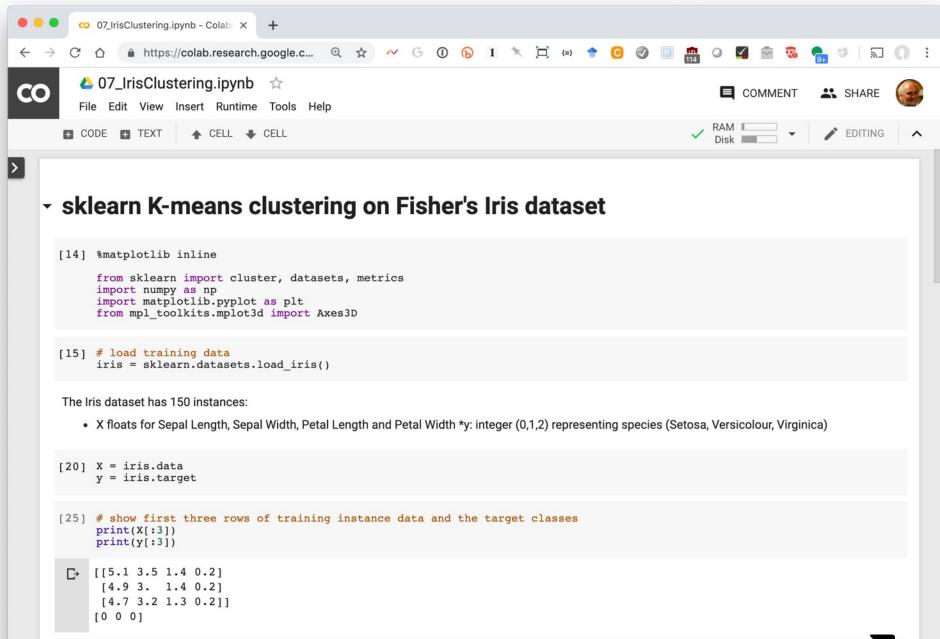
- 2.3.1. Overview of clustering methods
- 2.3.2. K-means
- 2.3.2.1. Mini Batch K-Means
- 2.3.3. Affinity Propagation
- 2.3.4. Mean Shift
- 2.3.5. Spectral clustering
- 2.3.5.1. Different label assignment strategies
- 2.3.5.2. Spectral Clustering Graphs

2.3.6. Hierarchical clustering

- 2.3.6.1. Different linkage type: Ward, complete, average, and single linkage
- 2.3.6.2. Adding connectivity constraints
- 2.3.6.3. Varying the metric
- 2.3.7. DBSCAN
- 2.3.8. Birch

https://scikit-learn.org/stable/unsupervised_learning.html

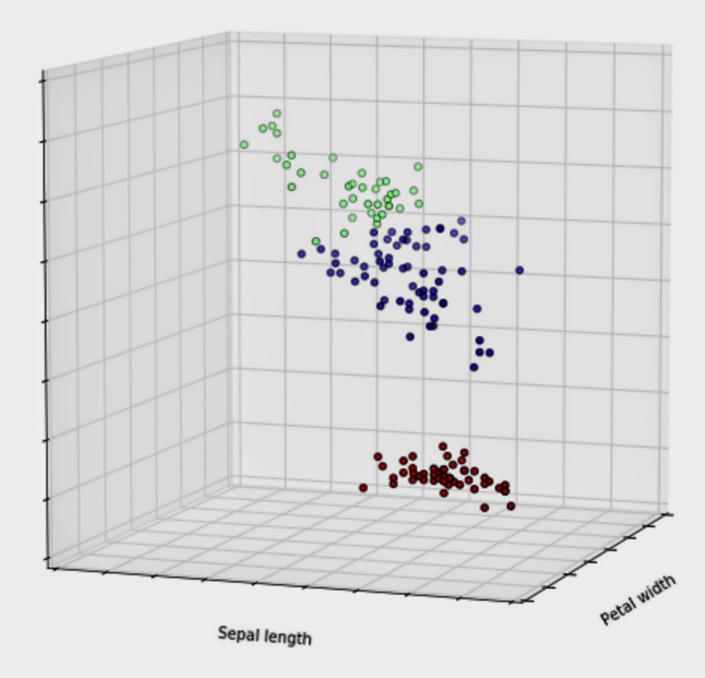
2.3.1. Overview of clustering methods


MeanShift

Ward AgglomerativeClustering DBSCAN

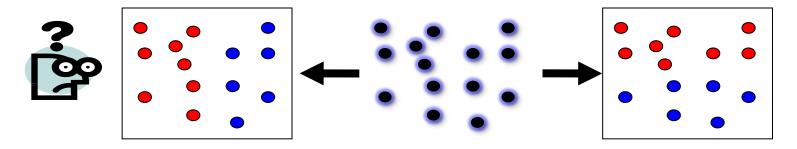
Birch Gaussia

GaussianMixture

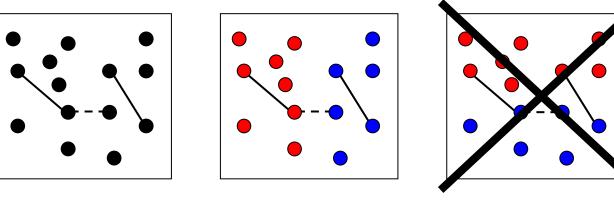


[27] # show all values for ground truth class (0,1,2) print(y)

Petal length



Problems with K-Means


- Only works for numeric data (typically reals)
- Very sensitive to the initial points
 - -fix: Do many runs, each with different initial centroids
 - fix: Seed centroids with non-random method, e.g., farthest-first sampling
- Sensitive to outliers
 - -fix: identify and remove outliers
- Must manually choose k
 - -E.g.: find three
 - -Learn optimal k using some performance measure

Problems with K-Means

• How do you tell it which clustering you want?

Constrained clustering technique provides hints

——Same-cluster constraint – – – Different-cluster constraint (must-link) (cannot-link)

K-means Clustering Summary

- Clustering useful & effective for many tasks
- K-means clustering one of simplest & fastest techniques, but
 - Requires knowing how many clusters is right
 - Doesn't handle outliers well
- There are many other clustering options
 - E.g., DBSCAN, Hierarchical clustering, ...