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Random Forest

•Can often improve performance of decision 
tree classifiers using a set of decision trees 
(a forest)

•Each tree trained on a random subset of 
training data

•Classify a data instance using all trees
•Combine answers to make classification

–E.g., vote for most common class

https://en.wikipedia.org/wiki/Random_forest




cf. Wisdom of the Crowd

•Statistician Francis Galton observed a 1906 
contest to guess an ox’s weight at a country 
fair. 800 people entered. He noted that their 
average guess (1,197lb) was very close to the 
actual weight (1,198lb)

•When getting human annotations training 
data for machine learning, standard practice 
is get ≥ 3 annotations and take majority vote

cf. abbreviation (short for Latin: confer/conferatur) refer reader to other material to make a comparison

https://en.wikipedia.org/wiki/Wisdom_of_the_crowd
https://en.wikipedia.org/wiki/Latin_language


Random Forests Benefits

•Decision trees not the strongest modeling 
approach

•Random forests make them much stronger 
•=> more robust than a single decision tree

–Limits overfitting to given dataset
–Reduces errors due to training data bias
–Stable performance if some noise added 

to training data



Bagging
•Idea can be used on any classifier!
•Improve classification by combining classify-

cations of randomly selected training 
subsets

•Bagging = Bootstrap aggregating
An ensemble meta-algorithm that can improve 
stability & accuracy of algorithms for statistical 
classification and regression

•Helps avoid overfitting
•AKA ensembling

https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://en.wikipedia.org/wiki/Ensemble_learning




Choosing training data subsets

•Classic bagging: select random subset of 
training instances with replacement

•Pasting: select random subset of training 
instances (i.e., without replacement)

•Random Subspaces: use all training instances, 
but with a random subset of features

•Random Patches: random subset of instances 
and random subset of features

•Best? depends on problem, training data,  
algorithm

https://www.emathzone.com/tutorials/basic-statistics/sampling-with-replacement.html


Examples

•Two examples using Weka
– UCI Auto mpg prediction dataset

• 398 instances, 
– UCI Adult income prediction dataset

• ~49,000 instances

•RandomForest improves over J48 for 
the smaller dataset, but not for the 
larger one

•Takeaway: more data is always best



UCI Auto MGP Dataset

398 instances with 8 attributes from 1983:
1. mpg: continuous; 2. cylinders: multi-valued discrete; 
3. displacement: continuous; 4. horsepower: 
continuous; 5. weight: continuous; 6. acceleration: 
continuous; 7. model year: multi-valued discrete; 8. 
origin: multi-valued discrete; 9. car name: string 
(unique for each instance)Predict MPG

from other 7
attributes Arff training data (240); test data (132) 

https://archive-beta.ics.uci.edu/ml/datasets/auto+mpg
https://github.com/UMBC-CMSC-671-F21/code/blob/main/ML/auto-mpg.arff
https://github.com/UMBC-CMSC-671-F21/code/blob/main/ML/auto-mpg-test.arff


Avg F1 = 0.98 very high!



Avg F1 = 1.0 perfect!



100% … Wait, What ?

•Results are too good to be true!
– Something must be wrong

•ML results tend to be asymptotic
– Asymptotic lines approach a final value but 

typically never reach it 

•Closer you get to F1=1.0, the harder it is to 
improve

•What did we do wrong?



Results are too good 

•Relatively small dataset allows construction 
of a DT model that does very well

•Using Random Forest still got perfect results!
•We trained and tested on the same data!
•Very poor methodology since it overfits to 

this particular training set
•This training dataset has a separate test data 

set
– We can also try 10-fold cross validation



Avg F1 = 0.843 good



Avg F1 = 0.867 better



New AUTO MPG Results

•Using an independent test set shows more 
realistic balanced F1 score of .843

•Using Random Forest raises this to .867
•While the increase is not large, it is probably 

statistically significant (i.e., not random)
•F1 scores this high are almost always 

difficult to increase dramatically
– Human scores for many tasks are often in this 

range (i.e., 0.8 – 0.9)



UCI Adult Census Income Dataset

~49K instances with 15 attributes from 1994:
1. >50K: binary; age: continuous. workclass: 
Private, Self-emp-not-inc, Self-emp-inc, Federal-
gov, Local-gov, State-gov, Without-pay, Never-
worked. fnlwgt: continuous. education: Bachelors, 
Some-college, 11th, HS-grad, Prof-school, …Predict income

>50k from 15
attributes Arff data

https://archive-beta.ics.uci.edu/ml/datasets/adult
https://raw.githubusercontent.com/UMBC-CMSC-671-F21/code/main/ML/adult.arff






Result

•Significant increase on F1 scores when both 
trained and evaluated on training set

•This is considered to be poor methodology 
since it overfits to the particular training set



Create train and test collection

•Train has ~95% of data, test 5%
•Train models for J48 and random forest 

using train dataset
•Test on test data set
•…



F = 0.856



F = 0.853



Create train and test collection

•Train has ~95% of data, test 5%
•Trained models for J48 and random forest 

using train dataset
•Tested on test data set
•Results were that random forest was (at 

best) about the same as J48
•Large dataset reduced problem of 

overfitting, so random forest did not help



Conclusions
•Bagging helps, especially if training data 

adequate, but not as large as it should be
– With lots of data, overfitting less of a problem, so 

bagging may not help

•While we explore it using decision trees, it can 
be applied to any classifier
– Scikit-learn has a general module for bagging

•In general, using any of several ensemble
approaches to classification often helpful

•Training neural networks uses a different 
approach (dropout) to control overfitting

https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Dilution_(neural_networks)


Conclusions
•Wait, there’s more…
•A classification problem can change over time

– E.g.: recognizing a spam message from its content 
and metadata

•We showed that an ensemble approach can 
detect a change in the nature of spam
– Which tells us its time to retrain with new data
– D. Chinavle, P. Kolari, T. Oates, and T. Finin, Ensembles in 

Adversarial Classification for Spam, ACM CIKM, 2009. link

https://ebiquity.umbc.edu/paper/html/id/461


Recognizing Concept Drift
•Build ensemble of five models to classify

spam comments left on a blog at time T1
•Note the relative level of agreement
•Detect when one of the models starts to 

diverge from the others at time T2
– Time to get new data and retrain
– Examining disagreements can be enlightening

•We used temporal data spanning several years 
to verify its effectiveness
– E.g., spam’s focus shift from viagra to weight loss


