Reasoning with Bayesian Belief Networks

Overview

- Bayesian Belief Networks (BBNs) can reason with networks of propositions and associated probabilities
- Useful for many AI problems
 - Diagnosis
 - Expert systems
 - Planning
 - Learning

BBN Definition

- AKA Bayesian Network, Bayes Net
- A graphical model (as a DAG) of probabilistic relationships among a set of random variables
- Links represent direct influence of one variable on another

Recall Bayes Rule

$$P(H,E) = P(H | E)P(E) = P(E | H)P(H)$$

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

Note the symmetry: we can compute the probability of a hypothesis given its evidence and vice versa

Simple Bayesian Network

P(S=no)	0.80
P(S=light)	0.15
P(S=heavy)	0.05

 $C \in \{none, benign, malignant\}$

Smoking=	no	light	heavy
P(C=none)	0.96	0.88	0.60
P(C=benign)	0.03	0.08	0.25
P(C=malig)	0.01	0.04	0.15

Nodes represent variables

- Does gender cause smoking?
- Influence might be a more appropriate term

Independence

Age and Gender are independent.

$$P(A,G) = P(G) * P(A)$$

$$P(A \mid G) = P(A)$$

$$P(G \mid A) = P(G)$$

$$P(A,G) = P(G|A) P(A) = P(G)P(A)$$

$$P(A,G) = P(A \mid G) P(G) = P(A)P(G)$$

Conditional Independence

Cancer is independent of Age and Gender given Smoking

 $P(C \mid A,G,S) = P(C \mid S)$

Conditional Independence: Naïve Bayes

Serum Calcium and Lung
Tumor are dependent

Serum Calcium is independent of Lung Tumor, given Cancer

$$P(L \mid SC,C) = P(L \mid C)$$

 $P(SC \mid L,C) = P(SC \mid C)$

Naïve Bayes assumption: evidence (e.g., symptoms) is independent given the disease. This make it easy to combine evidence

Explaining Away

Exposure to Toxics and Smoking are independent

Exposure to Toxics is dependent on Smoking, given Cancer

P(E=heavy | C=malignant) > P(E=heavy | C=malignant, S=heavy)

- Explaining away: reasoning pattern where confirmation of one causereduces need to invoke alternatives
- Essence of Occam's Razor (prefer hypothesis with fewest assumptions)
- Relies on independence of causes

Conditional Independence

A variable (node) is conditionally independent of its non-descendants given its parents

Another non-descendant

A variable is conditionally independent of its non-descendants given its parents

Cancer is independent of *Diet* given *Exposure* to *Toxics* and *Smoking*

BBN Construction

The knowledge acquisition process for a BBN involves three steps

KA1: Choosing appropriate variables

KA2: Deciding on the network structure

KA3: Obtaining data for the conditional probability tables

KA1: Choosing variables

Variable values can be integers, reals or enumerations

Variable should have collectively exhaustive, mutually

Error Occurred

No Error

exclusive values

$$x_1 \lor x_2 \lor x_3 \lor x_4$$

$$\neg (x_i \land x_j) \quad i \neq j$$

They should be values, not probabilities

Heuristic: Knowable in Principle

Example of good variables

- Weather: {Sunny, Cloudy, Rain, Snow}
- Gasoline: Cents per gallon {0,1,2...}
- Temperature: { ≥ 100°F , < 100°F}</p>
- User needs help on Excel Charting: {Yes, No}
- User's personality: {dominant, submissive}

KA2: Structuring

KA3: The Numbers

- For each variable we have a table of probability of its value for values of its parents
- For variables w/o parents, we have prior probabilities

$$S \in \{no, light, heavy\}$$

 $C \in \{none, benign, malignant\}$

smoking priors		
no	0.80	
light	0.15	
heavy	0.05	

	smoking		
cancer	no	light	heavy
none	0.96	0.88	0.60
benign	0.03	0.08	0.25
malignant	0.01	0.04	0.15

KA3: The numbers

- Second decimal usually doesn't matter
- Relative probabilities are important

🖺 Assess probabilities for: I-Typ	ingSpe	ed_avg		_ 🗆 ×
I-TypingSpeed				
E-Arousal	Fast	Normal	Slow	
Passive	.20	.28	.52	
Neutral	.33	.33	.33	
Excited	.56	.27	.16	
Cancel				

- Zeros and ones are often enough
- Order of magnitude is typical: 10⁻⁹ vs 10⁻⁶
- Sensitivity analysis can be used to decide accuracy needed

Three kinds of reasoning

BBNs support three main kinds of reasoning:

- Predicting conditions given predispositions
- Diagnosing conditions given symptoms (and predisposing)
- Explaining a condition by one or more predispositions

To which we can add a fourth:

 Deciding on an action based on probabilities of the conditions

Predictive Inference

Predictive and diagnostic combined

Explaining away

 If we see a lung tumor, the probability of heavy smoking and of exposure to toxics both go up

 If we then observe heavy smoking, the probability of exposure to toxics goes back down

Decision making

- A decision is a medical domain might be a choice of treatment (e.g., radiation or chemotherapy)
- Decisions should be made to maximize expected utility
- View decision making in terms of
 - Beliefs/Uncertainties
 - Alternatives/Decisions
 - Objectives/Utilities

A Decision Problem

Should I have my party inside or outside?

Value Function

A numerical score over all possible states of the world allows BBN to be used to make decisions

Location?	Weather?	Value
in	dry	\$50
in	wet	\$60
out	dry	\$100
out	wet	\$0

Two software tools

- <u>Netica</u>: Windows app for working with Bayesian belief networks and influence diagrams
 - A commercial product but free for small networks
 - Includes a graphical editor, compiler, inference engine, etc.
- <u>Samiam</u>: Java system for modeling and reasoning with Bayesian networks
 - Includes a GUI and reasoning engine

Decision Making with BBNs

- Today's weather forecast might be either sunny, cloudy or rainy
- •Should you take an umbrella when you leave?
- Your decision depends only on the forecast
 - -The forecast "depends on" the actual weather
- Your satisfaction depends on your decision and the weather
 - Assign a utility to each of four situations: (rain|no rain) x (umbrella, no umbrella)

Decision Making with BBNs

- Extend the BBN framework to include two new kinds of nodes: Decision and Utility
- A Decision node computes the expected utility of a decision given its parent(s), e.g., forecast, an a valuation
- A **Utility** node computes a utility value given its parents, e.g. a decision and weather
 - We can assign a utility to each of four situations: (rain|no rain) x (umbrella, no umbrella)
 - The value assigned to each is probably subjective

