
1

Bayesian
Reasoning

Chapter 13
Thomas Bayes, 1701-1761

http://en.wikipedia.org/wiki/Thomas_Bayes
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Today’s topics
•Review probability theory
•Bayesian inference

–From the joint distribution
–Using independence/factoring
–From sources of evidence

•Naïve Bayes algorithm for inference and 
classification tasks



Consider

•Your house has an alarm system
•It should go off if a burglar breaks

into the house
•It can go off if there is an earthquake
•How can we predict what’s happened if the 

alarm goes off?
– Someone has broken in!
– It’s a minor earthquake
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Probability theory 101
• Random variables

– Domain

• Atomic event: 

complete 

specification of state

• Prior probability: 

degree of belief 

without any other 

evidence or info

• Joint probability: 

matrix of combined 

probabilities of set of 

variables

• Alarm, Burglary, Earthquake

– Boolean (like these), discrete, continuous

• Alarm=TÙBurglary=TÙEarthquake=F

alarm Ù burglary Ù ¬earthquake

• P(Burglary) = 0.1

P(Alarm) = 0.1

P(earthquake) = 0.000003

• P(Alarm, Burglary) =

alarm ¬alarm
burglary .09 .01

¬burglary .1 .8
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Probability theory 101

• Conditional probability: prob. 

of effect given causes

• Computing conditional probs:

– P(a | b) = P(a Ù b) / P(b)

– P(b): normalizing constant

• Product rule:

– P(a Ù b) = P(a | b) * P(b)

• Marginalizing:

– P(B) = ΣaP(B, a)

– P(B) = ΣaP(B | a) P(a) 

(conditioning)

• P(burglary | alarm) = .47

P(alarm | burglary) = .9

• P(burglary | alarm) =

P(burglary Ù alarm) / P(alarm)

= .09/.19 = .47

• P(burglary Ù alarm) = 

P(burglary | alarm) * P(alarm)

=  .47 * .19 = .09

• P(alarm) =

P(alarm Ù burglary) +

P(alarm Ù ¬burglary)

= .09+.1 = .19

alarm ¬alarm
burglary .09 .01

¬burglary .1 .8
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Example: Inference from the joint
alarm ¬alarm

earthquake ¬earthquake earthquake ¬earthquake
burglary .01 .08 .001 .009

¬burglary .01 .09 .01 .79

P(burglary | alarm) = α P(burglary, alarm)
= α [P(burglary, alarm, earthquake) + P(burglary, alarm, ¬earthquake)
= α [ (.01, .01) + (.08, .09) ]
= α [ (.09, .1) ]

Since P(burglary | alarm) + P(¬burglary | alarm) = 1, α = 1/(.09+.1) = 5.26
(i.e., P(alarm) = 1/α = .19 – quizlet: how can you verify this?)

P(burglary | alarm)    = .09 * 5.26  = .474

P(¬burglary | alarm)  = .1 * 5.26    = .526



Consider

•A student has to take an exam
•She might be smart
•She might have studied
•She may be prepared for the exam
•How are these related?
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Exercise:
Inference from the joint

Queries:
– What is the prior probability of smart?
– What is the prior probability of study?
– What is the conditional probability of prepared, given 
study and smart?

p(smart Ù
study Ù prep)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072
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Exercise:
Inference from the joint

Queries:
– What is the prior probability of smart?
– What is the prior probability of study?
– What is the conditional probability of prepared, given 
study and smart?

p(smart) = .432 + .16 + .048 + .16  = 0.8

p(smart Ù
study Ù prep)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072
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Exercise:
Inference from the joint

Queries:
– What is the prior probability of smart?
– What is the prior probability of study?
– What is the conditional probability of prepared, given 
study and smart?

p(smart Ù
study Ù prep)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072
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Exercise:
Inference from the joint

Queries:
– What is the prior probability of smart?
– What is the prior probability of study?
– What is the conditional probability of prepared, given 
study and smart?

p(study) = .432 + .048 + .084 + .036 = 0.6

p(smart Ù
study Ù prep)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072
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Exercise:
Inference from the joint

Queries:
– What is the prior probability of smart?
– What is the prior probability of study?
– What is the conditional probability of prepared, given 
study and smart?

p(smart Ù
study Ù prep)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072
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Exercise:
Inference from the joint

Queries:
– What is the prior probability of smart?
– What is the prior probability of study?
– What is the conditional probability of prepared, given study

and smart?
p(prepared|smart,study)= p(prepared,smart,study)/p(smart, study)
= .432 / (.432 + .048) 
= 0.9

p(smart Ù
study Ù prep)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072
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Independence
• When variables don’t affect each others’ probabil-

ities, they are independent; we can easily compute 
their joint & conditional probability:
Independent(A, B)  →  P(AÙB) = P(A) * P(B) or P(A|B) = P(A)

• {moonPhase, lightLevel} might be independent of 
{burglary, alarm, earthquake}
– Maybe not: burglars may be more active during a new 

moon because darkness hides their activity
– But if we know light level, moon phase doesn’t affect 

whether we are burglarized
– If burglarized, light level doesn’t affect if alarm goes off

• Need a more complex notion of independence and 
methods for reasoning about the relationships
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Exercise: Independence

Queries:
–Q1: Is smart independent of study?
–Q2: Is prepared independent of study?

How can we tell? 

p(smart Ù
study Ù prep)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072
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Exercise: Independence

Q1: Is smart independent of study?
• You might have some intuitive beliefs based on 

your experience
• You can also check the data

Which way to answer this is better?

p(smart Ù
study Ù prep)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072
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Exercise: Independence

Q1: Is smart independent of study?
Q1 true iff p(smart|study) == p(smart)
p(smart|study) = p(smart,study)/p(study) 

= (.432 + .048) / .6 =  0.8
0.8 == 0.8, so smart is independent of study

p(smart Ù
study Ù prep)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072
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Exercise: Independence

Q2: Is prepared independent of study?
•What is prepared?
•Q2 true iff

p(smart Ù
study Ù prep)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072



Exercise: Independence

Q2: Is prepared independent of study?
Q2 true iff p(prepared|study) == p(prepared)
p(prepared|study) = p(prepared,study)/p(study)

= (.432 + .084) / .6 = .86
0.86 ≠ 0.8, so prepared not independent of study

p(smart Ù
study Ù prep)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072
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Bayes’ rule
Derived from the product rule:

– P(A, B) = P(A|B) * P(B) # from definition of conditional probability

– P(B, A) = P(B|A) * P(A) # from definition of conditional probability

– P(A, B) = P(B, A)            # since order is not important

So…

P(A|B) = P(B|A) * P(A)
P(B)
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Useful for diagnosis!
•C is a cause, E is an effect:

– P(C|E) = P(E|C) * P(C) / P(E)

•Useful for diagnosis: 
– E are (observed) effects and C are (hidden) causes, 

– Often have model for how causes lead to effects P(E|C)

– May also have info (based on experience) on frequency 
of causes (P(C))

– Which allows us to reason abductively from effects to 
causes (P(C|E))



Ex: meningitis and stiff neck
•Meningitis (M) can cause stiff neck (S), though 

there are other causes too
•Use S as a diagnostic symptom and estimate 

p(M|S)
•Studies can estimate p(M), p(S) & p(S|M), e.g.      

p(M)=0.7, p(S)=0.01, p(M)=0.00002
•Harder to directly gather data on p(M|S)
•Applying Bayes’ Rule:

p(M|S) = p(S|M) * p(M) / p(S) = 0.0014
26



Reasoning from evidence to a cause 
• In the setting of diagnostic/evidential reasoning

– Know prior probability of hypothesis
conditional probability 

– Want to compute the posterior probability
• Bayes�s theorem:

onsanifestatievidence/m                                      

hypotheses                                             

1 mj

i

EEE

 H

P(Hi | Ej ) = P(Hi )*P(Ej |Hi ) / P(Ej )

)( iHP

)|( ij HEP

)|( ij HEP

)|( ji EHP

)( iHP
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Simple Bayesian diagnostic reasoning
• Naive Bayes classifier
• Knowledge base:

– Evidence / manifestations: E1, … Em

– Hypotheses / disorders: H1, … Hn

Note: Ej and Hi are binary; hypotheses are mutually 
exclusive (non-overlapping) and exhaustive (cover all 
possible cases)

– Conditional probabilities: P(Ej | Hi), i = 1, … n; j = 1, … m

• Cases (evidence for a particular instance): E1, …, El

• Goal: Find the hypothesis Hi with highest posterior
– Maxi P(Hi | E1, …, El)

http://en.wikipedia.org/wiki/Naive_Bayes_classifier
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Simple Bayesian diagnostic reasoning
• Bayes’ rule:

P(Hi | E1… Em) = P(E1…Em | Hi) P(Hi) / P(E1… Em)

• Assume each evidence Ei is conditionally indepen-
dent of the others, given a hypothesis Hi, then:

P(E1…Em | Hi) = Õm
j=1 P(Ej | Hi)

• If only care about relative probabilities for Hi, then:

P(Hi | E1…Em) = α P(Hi) Õm
j=1 P(Ej | Hi)
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Limitations
•Can’t easily handle multi-fault situations or

cases where intermediate (hidden) causes exist:

– Disease D causes syndrome S, which causes 

correlated manifestations M1 and M2

•Consider composite hypothesis H1ÙH2, where H1 &

H2 independent. What’s relative posterior?

P(H1 Ù H2 | E1, …, El) = α P(E1, …, El | H1 Ù H2) P(H1 Ù
H2)

= α P(E1, …, El | H1 Ù H2) P(H1) P(H2)

= α Õl
j=1 P(Ej | H1 Ù H2) P(H1) P(H2)

•How do we compute P(Ej | H1ÙH2) ?



Summary
•Probability a rigorous formalism for uncertain 

knowledge
•Joint probability distribution specifies probability 

of every atomic event
•Answer queries by summing over atomic events
•Must reduce joint size for non-trivial domains
•Bayes rule: compute from known conditional 

probabilities, usually in causal direction
•Independence & conditional independence

provide tools
•Next: Bayesian belief networks
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