Bayesian Reasoning

Chapter 13

Thomas Bayes, 1701-1761

Today's topics

-Review probability theory

- Bayesian inference
-From the joint distribution
-Using independence/factoring
-From sources of evidence
- Naïve Bayes algorithm for inference and classification tasks

Consider

- Your house has an alarm system
- It should go off if a burglar breaks into the house
- It can go off if there is an earthquake
- How can we predict what's happened if the alarm goes off?
-Someone has broken in!
-It's a minor earthquake

Probability theory 101

- Random variables
- Domain
- Atomic event: complete specification of state
- Prior probability: degree of belief without any other evidence or info
- Joint probability: matrix of combined probabilities of set of variables
- Alarm, Burglary, Earthquake
- Boolean (like these), discrete, continuous
- Alarm=T^Burglary=T^Earthquake=F alarm \wedge burglary $\wedge \neg$-arthquake
- $P($ Burglary $)=0.1$
$\mathrm{P}($ Alarm $)=0.1$
$P($ earthquake $)=0.000003$
- $\mathrm{P}($ Alarm, Burglary $)=$

	alarm	-alarm
burglary	.09	.01
-burglary	.1	.8

Probability theory 101

	alarm	-alarm
burglary	.09	.01
-burglary	.1	.8

- Conditional probability: prob. of effect given causes
- Computing conditional probs:
$-P(a \mid b)=P(a \wedge b) / P(b)$
$-P(b)$: normalizing constant
- Product rule:
$-P(a \wedge b)=P(a \mid b) * P(b)$
- Marginalizing:
$-P(B)=\Sigma_{a} P(B, a)$
$-P(B)=\Sigma_{a} P(B \mid a) P(a)$ (conditioning)
- $\mathrm{P}($ burglary \mid alarm $)=.47$ P(alarm | burglary) $=.9$
- $P($ burglary | alarm) $=$ P(burglary \wedge alarm) / P(alarm) $=.09 / .19=.47$
- $P($ burglary \wedge alarm $)=$ P(burglary | alarm) * P(alarm)
= . 47 * .19 = . 09
- $\mathrm{P}($ alarm $)=$
$\mathrm{P}($ alarm \wedge burglary $)+$
P(alarm $\wedge \neg$ burglary)
= . $09+.1$ = . 19

Example: Inference from the joint

	alarm		ᄀalarm	
	earthquake	ᄀearthquake	earthquake	ᄀearthquake
burglary	.01	.08	.001	.009
ᄀburglary	.01	.09	.01	.79

$P($ burglary | alarm $)=\alpha P($ burglary, alarm $)$
$=\alpha[P($ burglary, alarm, earthquake $)+P($ burglary, alarm, -earthquake $)$
$=\alpha[(.01, .01)+(.08, .09)]$
$=\alpha[(.09, .1)]$
Since $P($ burglary \mid alarm $)+P(\neg$ burglary \mid alarm $)=1, \alpha=1 /(.09+.1)=5.26$
(i.e., $\mathrm{P}($ alarm $)=1 / \alpha=.19-$ quizlet: how can you verify this?)
$\mathrm{P}($ burglary | alarm) $=.09 * 5.26=.474$
$\mathrm{P}(-$ burglary | alarm $)=.1 * 5.26=.526$

Consider

- A student has to take an exam
- She might be smart
- She might have studied
- She may be prepared for the exam
- How are these related?

Exercise:

Inference from the joint

p(smart study $\wedge ~ p r e p) ~$	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Queries:

- What is the prior probability of smart?
- What is the prior probability of study?
- What is the conditional probability of prepared, given study and smart?

Exercise:

Inference from the joint

p(smart study $\wedge ~ p r e p) ~$	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Queries:

- What is the prior probability of smart?
- What is the prior probability of study?
- What is the conditional probability of prepared, given study and smart?
$\mathrm{p}($ smart $)=.432+.16+.048+.16=0.8$

Exercise:

Inference from the joint

p(smart study $\wedge ~ p r e p) ~$	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Queries:

- What is the prior probability of smart?
- What is the prior probability of study?
- What is the conditional probability of prepared, given study and smart?

Exercise:

Inference from the joint

p(smart \wedge study $\wedge ~ p r e p) ~$	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Queries:

- What is the prior probability of smart?
- What is the prior probability of study?
- What is the conditional probability of prepared, given study and smart?
$p($ study $)=.432+.048+.084+.036=0.6$

Exercise:

Inference from the joint

p(smart study $\wedge ~ p r e p) ~$	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Queries:

- What is the prior probability of smart?
- What is the prior probability of study?
- What is the conditional probability of prepared, given study and smart?

Exercise:

Inference from the joint

p(smart study ^ prep)	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Queries:

- What is the prior probability of smart?
- What is the prior probability of study?
- What is the conditional probability of prepared, given study and smart?
$\mathrm{p}($ prepared \mid smart,study $)=\mathrm{p}($ prepared,smart,study $) / \mathrm{p}($ smart, study $)$
$=.432 /(.432+.048)$
$=0.9$

Independence

- When variables don't affect each others' probabilities, they are independent; we can easily compute their joint \& conditional probability: Independent $(A, B) \rightarrow P(A \wedge B)=P(A) * P(B)$ or $P(A \mid B)=P(A)$
- \{moonPhase, lightLevel\} might be independent of \{burglary, alarm, earthquake\}
- Maybe not: burglars may be more active during a new moon because darkness hides their activity
- But if we know light level, moon phase doesn't affect whether we are burglarized
- If burglarized, light level doesn't affect if alarm goes off
- Need a more complex notion of independence and methods for reasoning about the relationships

Exercise: Independence

p(smart study ^ prep)	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Queries:

- Q1: Is smart independent of study?
-Q2: Is prepared independent of study?
How can we tell?

Exercise: Independence

p(smart study ^ prep)	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Q1: Is smart independent of study?

- You might have some intuitive beliefs based on your experience
- You can also check the data

Which way to answer this is better?

Exercise: Independence

p(smart ^ study ^ prep)	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Q1: Is smart independent of study?
Q1 true iff p(smart|study) == p(smart)
p(smart|study) $=$ p(smart,study $) / p($ study $)$
$=(.432+.048) / .6=0.8$
$0.8==0.8$, so smart is independent of study

Exercise: Independence

p(smart ^ study ^ prep)	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Q2: Is prepared independent of study?
-What is prepared?

- Q2 true iff

Exercise: Independence

p(smart study ^ prep)	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Q2: Is prepared independent of study?
Q2 true iff p (prepared|study) $==p$ (prepared) p(prepared|study) $=$ p(prepared,study)/p(study)
$=(.432+.084) / .6=.86$
$0.86 \neq 0.8$, so prepared not independent of study

Bayes' rule

Derived from the product rule:

$-P(A, B)=P(A \mid B) * P(B)$ \#from definition of conditional probability
$-P(B, A)=P(B \mid A) * P(A)$ \# from definition of conditional probability
$-P(A, B)=P(B, A) \quad$ \# since order is not important
So...

$P(A \mid B)=P(B \mid A)$ * $P(A)$
 P(B)

Useful for diagnosis!

- C is a cause, E is an effect:
$-\mathrm{P}(\mathrm{C} \mid \mathrm{E})=\mathrm{P}(\mathrm{E} \mid \mathrm{C}) * \mathrm{P}(\mathrm{C}) / \mathrm{P}(\mathrm{E})$

- Useful for diagnosis:
- E are (observed) effects and C are (hidden) causes,
- Often have model for how causes lead to effects P(E|C)
- May also have info (based on experience) on frequency of causes (P(C))
- Which allows us to reason abductively from effects to causes (P(C|E))

Ex: meningitis and stiff neck

- Meningitis (M) can cause stiff neck (S), though there are other causes too
- Use S as a diagnostic symptom and estimate p(M|S)
- Studies can estimate $p(M), p(S) \& p(S \mid M)$, e.g. $p(M)=0.7, p(S)=0.01, p(M)=0.00002$
- Harder to directly gather data on $\mathrm{p}(\mathrm{M} \mid \mathrm{S})$
- Applying Bayes' Rule:

$$
p(M \mid S)=p(S \mid M) * p(M) / p(S)=0.0014
$$

Reasoning from evidence to a cause

- In the setting of diagnostic/evidential reasoning

hypotheses
evidence/manifestations
- Know prior probability of hypothesis

$$
\begin{aligned}
& P\left(H_{i}\right) \\
& P\left(E_{j} \mid H_{i}\right)
\end{aligned}
$$

- Want to compute the posterior probability $\boldsymbol{P}\left(\boldsymbol{H}_{i} \mid \boldsymbol{E}_{j}\right)$
- Bayes' s theorem:

$$
P\left(H_{i} \mid E_{j}\right)=P\left(H_{i}\right) * P\left(E_{j} \mid H_{i}\right) / P\left(E_{j}\right)
$$

Simple Bayesian diagnostic reasoning

- Naive Bayes classifier
- Knowledge base:
- Evidence / manifestations: $\mathrm{E}_{1}, \ldots \mathrm{E}_{\mathrm{m}}$
- Hypotheses / disorders: $\mathrm{H}_{1}, \ldots \mathrm{H}_{\mathrm{n}}$

Note: E_{j} and H_{i} are binary; hypotheses are mutually exclusive (non-overlapping) and exhaustive (cover all possible cases)

- Conditional probabilities: $P\left(E_{j} \mid H_{i}\right), i=1, \ldots n ; j=1, \ldots m$
- Cases (evidence for a particular instance): $\mathrm{E}_{1}, \ldots, \mathrm{E}_{1}$
- Goal: Find the hypothesis H_{i} with highest posterior
- Max ${ }_{i} P\left(H_{i} \mid E_{1}, \ldots, E_{1}\right)$

Simple Bayesian diagnostic reasoning

- Bayes' rule:

$$
P\left(H_{i} \mid E_{1} \ldots E_{m}\right)=P\left(E_{1} \ldots E_{m} \mid H_{i}\right) P\left(H_{i}\right) / P\left(E_{1} \ldots E_{m}\right)
$$

- Assume each evidence E_{i} is conditionally independent of the others, given a hypothesis H_{i}, then:

$$
P\left(E_{1} \ldots E_{m} \mid H_{i}\right)=\prod_{j=1}^{m} P\left(E_{j} \mid H_{i}\right)
$$

- If only care about relative probabilities for H_{i}, then:

$$
P\left(H_{i} \mid E_{1} \ldots E_{m}\right)=\alpha P\left(H_{i}\right) \prod_{j=1}^{m_{j}} P\left(E_{j} \mid H_{i}\right)
$$

Limitations

- Can't easily handle multi-fault situations or cases where intermediate (hidden) causes exist:
- Disease D causes syndrome S, which causes correlated manifestations M_{1} and M_{2}
- Consider composite hypothesis $\mathrm{H}_{1} \wedge \mathrm{H}_{2}$, where H_{1} \& H_{2} independent. What's relative posterior?
$P\left(H_{1} \wedge H_{2} \mid E_{1}, \ldots, E_{1}\right)=\alpha P\left(E_{1}, \ldots, E_{1} \mid H_{1} \wedge H_{2}\right) P\left(H_{1} \wedge\right.$
H_{2})

$$
\begin{aligned}
& =\alpha P\left(E_{1}, \ldots, E_{1} \mid H_{1} \wedge H_{2}\right) P\left(H_{1}\right) P\left(H_{2}\right) \\
& =\alpha \prod_{j=1}^{1} P\left(E_{j} \mid H_{1} \wedge H_{2}\right) P\left(H_{1}\right) P\left(H_{2}\right)
\end{aligned}
$$

- How do we compute $P\left(E_{j} \mid H_{1} \wedge H_{2}\right)$?

Summary

- Probability a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Answer queries by summing over atomic events
- Must reduce joint size for non-trivial domains
- Bayes rule: compute from known conditional probabilities, usually in causal direction
- Independence \& conditional independence provide tools
- Next: Bayesian belief networks

