Plan graphs & **GraphPlan &** SATPlan Chapter 11.4-11.7

Some material adapted from slides by Jean-Claude Latombe / Lise Getoor

GraphPlan: Basic idea

- Construct a *planning graph* that encodes constraints on possible plans
- Use graph to constrain search for a valid plan
- Planning graph can be built for each problem in a relatively short time
- Extract a solution from planning graph

Planning graph

- Directed, <u>leveled graph</u> with alternating layers of nodes
- Odd layers (*state levels*) represent candidate propositions that could possibly hold at step *i*
- Even layers (*action levels*) represent candidate actions that could possibly be executed at step *i*, including maintenance actions [do nothing]
- Arcs represent *preconditions*, adds and deletes
- Can only execute one real action at a step, but the data structure keeps track of all actions & states that are *possible*

GraphPlan properties

- STRIPS operators: conjunctive preconditions, no conditional or universal effects, no negations
 - Planning problem must be convertible to propositional representation
 - NO continuous variables, temporal constraints, ...
 - Problem size grows exponentially
- Finds "shortest" plans (by some definition)
- Sound, complete, and will terminate with failure if there is no plan

Having your cake & eating it too

Init(Have(Cake) ∧ ¬Eaten(Cake))

Goal(Have(Cake) \land Eaten(Cake))

Action(Eat(Cake) PRECOND: Have(Cake) EFFECT: ¬Have(Cake) ∧ Eaten(Cake))

Action(Bake(Cake) PRECOND: ¬Have(Cake) EFFECT: Have(Cake)

What actions and what literals?

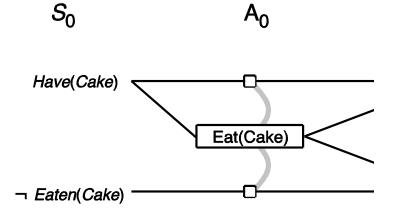
- Add an action in level A_i if *all* of its preconditions are present in level S_i
- Add a literal in level S_i if it is the effect of *some* action in level A_{i-1} (*including no-ops*)
- Level S₀ has all of the literals from initial state

 S_0

Have(Cake)

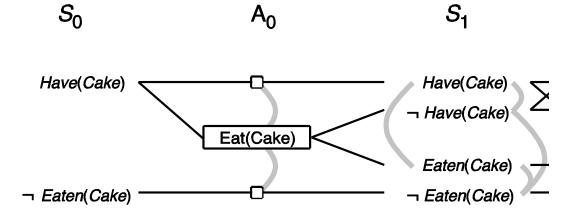
¬ Eaten(Cake)

• Level S₀ has all literals from initial state



A₀

- Level S_n has all literals from initial state
- Level A₀ has all actions whose preconditions are satisfied in S_0 , including no-ops



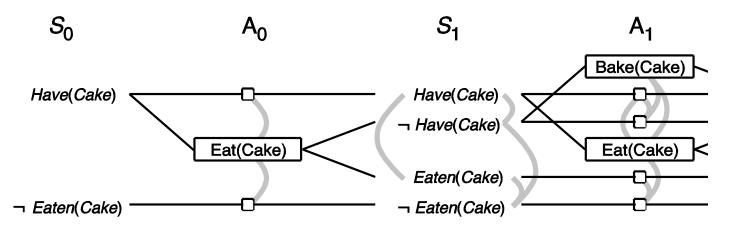
- Level S₀ has all literals from initial state
- Level A₀ has all actions whose preconditions are satisfied in S₀, including no-ops
- Actions connect preconditions to effects
- Gray arcs connect propositions that are mutex (mutually exclusive) & actions that are mutex

Mutex Arcs

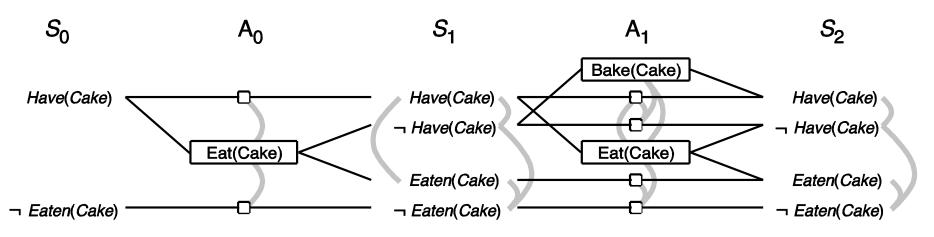
- Mutex arc between two actions indicates that it is impossible to perform the actions in parallel
- Mutex arc between two literals indicates that it is impossible to have these both true at this stage

Computing mutexes

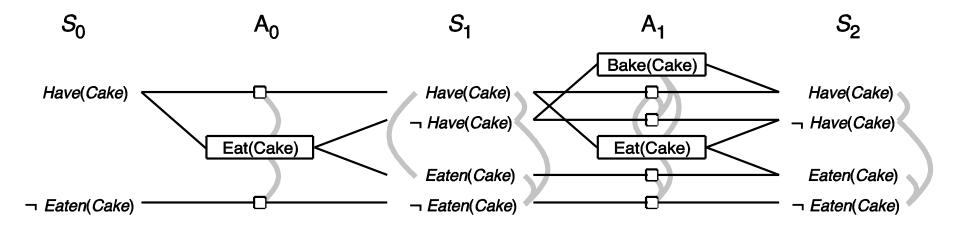
- Mutex actions
 - Inconsistent effects: two actions that lead to inconsistent effects
 - Interference: an effect of first action negates precondition of other action
 - Competing needs: a precondition of first action is mutex with a precondition of second action
- Mutex literals
 - one literal is negation of the other one
 - Inconsistency support: each pair of actions achieving the two literals are mutually exclusive



- Actions connect preconditions to effects
- Gray arcs connect propositions that are mutex
- Actions at level A_i must have support from a set of literals in state S_i that have no mutex relations among themselves



- Actions at level A_i must have support from a set of literals in state S_i that have no mutex relations among themselves
- Stop when the set of literals does has not changed



- If all of the literals in the goal are in the final state and are non-mutex ...
- We can try to extract a plan from the plan graph

GraphPlan

function GRAPHPLAN(problem) returns solution or failure

 $graph \leftarrow \text{INITIAL-PLANNING-GRAPH}(problem)$ $goals \leftarrow \text{CONJUNCTS}(problem.GOAL)$ $nogoods \leftarrow \text{an empty hash table}$ $for t = 0 \text{ to } \infty \text{ do}$ $if \ goals \ all \ non-mutex \ in \ S_t \ of \ graph \ \textbf{then}$ $solution \leftarrow \text{EXTRACT-SOLUTION}(graph, \ goals,$ $\text{NUMLEVELS}(graph), \ nogoods)$ $if \ graph \ and \ nogoods \ have \ both \ leveled \ off \ \textbf{then return} \ failure$ $graph \leftarrow \text{EXPAND-GRAPH}(graph, \ problem)$

Spare Tire Problem

Init(Tire(Flat) \land Tire(Spare) \land At(Flat,Axle) \land At(Spare,Trunk))

Goal(At(Spare,Axle))

Action(Remove(obj,loc),

PRECOND: At(obj,loc),

EFFECT: ¬At(obj,loc) ∧ At(obj,Ground))

Action(PutOn(t, Axle),

PRECOND: Tire(t) \land At(t,Ground) $\land \neg$ At(Flat,Axle),

EFFECT: ¬At(t,Ground) ∧ At(t,Axle))

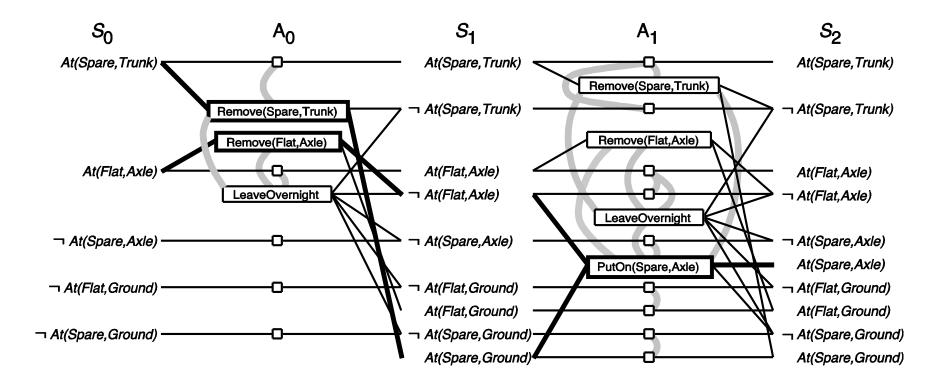
Action(LeaveOvernight,

PRECOND: \emptyset ,

EFFECT: \neg At(Spare,Ground) $\land \neg$ At(Spare,Axle) $\land \neg$ At(Spare,Trunk) \land

 \neg At(Flat,Ground) $\land \neg$ At(Flat,Axle) $\land \neg$ At(Flat,Trunk))

Spare Tire Planning Graph



From Fig. 10.10, p. 384

Planning graph for heuristic search

• Using the planning graph to estimate the number of actions to reach a goal

• If a literal does not appear in the final level of the planning graph, then there is no plan that achieve this literal!

 $-h = \infty$

Heuristics

- **max-level:** take the maximum level where any literal of the goal first appears
 - admissible
- **level-sum:** take the sum of the levels where any literal of the goal first appears
 - not admissible, but generally efficient (specially for independent subplans)
- **set-level:** take the minimum level where all the literals of the goal appear and are free of mutex
 - admissible

BlackBox Planner

