
Plan graphs &
GraphPlan &

SATPlan
Chapter 11.4-11.7

Some material adapted from slides by Jean-Claude Latombe / Lise Getoor



GraphPlan: Basic idea
• Construct a planning graph that encodes 

constraints on possible plans

• Use graph to constrain search for a valid plan

• Planning graph can be built for each problem 
in a relatively short time

• Extract a solution from planning graph



Planning graph
• Directed, leveled graph with alternating layers 

of nodes
• Odd layers (state levels) represent candidate 

propositions that could possibly hold at step i
• Even layers (action levels) represent candidate 

actions that could possibly be executed at step 
i, including maintenance actions [do nothing]

• Arcs represent preconditions, adds and deletes
• Can only execute one real action at a step, but 

the data structure keeps track of all actions & 
states that are possible

https://en.wikipedia.org/wiki/Level_structure


GraphPlan properties
• STRIPS operators: conjunctive preconditions, 

no conditional or universal effects, no 
negations
– Planning problem must be convertible to propositional 

representation
– NO continuous variables, temporal constraints, …
– Problem size grows exponentially

• Finds �shortest� plans (by some definition)
• Sound, complete, and will terminate with 

failure if there is no plan



Having your cake & eating it too
Init(Have(Cake) ∧ ¬Eaten(Cake) )

Goal(Have(Cake) Ù Eaten(Cake))

Action(Eat(Cake)
PRECOND: Have(Cake)
EFFECT: ¬Have(Cake) Ù Eaten(Cake))

Action(Bake(Cake)
PRECOND: ¬Have(Cake)
EFFECT: Have(Cake) 



What actions and what literals?

• Add an action in level Ai if all of its 
preconditions are present in level Si

• Add a literal in level Si if it is the effect of some
action in level Ai-1 (including no-ops)

• Level S0 has all of the literals from initial state



Planning Graph for Cake Example

• Level S0 has all literals from initial state



Planning Graph for Cake Example

• Level S0 has all literals from initial state
• Level A0 has all actions whose preconditions 

are satisfied in S0 , including no-ops



Planning Graph for Cake Example

• Level S0 has all literals from initial state
• Level A0 has all actions whose preconditions are 

satisfied in S0 , including no-ops
• Actions connect preconditions to effects
• Gray arcs connect propositions that are mutex 

(mutually exclusive) & actions that are mutex



Mutex Arcs

• Mutex arc between two actions indicates that 
it is impossible to perform the actions in 
parallel

• Mutex arc between two literals indicates that 
it is impossible to have these both true at this 
stage



Computing mutexes
• Mutex actions

– Inconsistent effects: two actions that lead to 
inconsistent effects

– Interference: an effect of first action negates 
precondition of other action

– Competing needs: a precondition of first action is 
mutex with a precondition of second action

• Mutex literals
– one literal is negation of the other one
– Inconsistency support: each pair of actions achieving 

the two literals are mutually exclusive



Planning Graph for Cake Example

• Actions connect preconditions to effects
• Gray arcs connect propositions that are mutex
• Actions at level Ai must have support from a 

set of literals in state Si that have no mutex 
relations among themselves



Planning Graph for Cake Example

• Actions at level Ai must have support from a set 
of literals in state Si that have no mutex 
relations among themselves
• Stop when the set of literals does has not 

changed



Planning Graph for Cake Example

• If all of the literals in the goal are in the final 
state and are non-mutex …
• We can try to extract a plan from the plan graph



GraphPlan
function GRAPHPLAN(problem) returns solution or failure

graph ß INITIAL-PLANNING-GRAPH(problem)
goals ß CONJUNCTS(problem.GOAL)
nogoods ß an empty hash table
for t = 0 to ¥ do

if goals all non-mutex in St of graph then
solution ß EXTRACT-SOLUTION(graph, goals, 

NUMLEVELS(graph), nogoods)
if graph and nogoods have both leveled off then return failure
graph ß EXPAND-GRAPH(graph, problem)

From Fig. 10.9, p. 383



Spare Tire Problem
Init(Tire(Flat) Ù Tire(Spare) Ù At(Flat,Axle) Ù At(Spare,Trunk))
Goal(At(Spare,Axle))
Action(Remove(obj,loc),

PRECOND: At(obj,loc),
EFFECT: ¬At(obj,loc) Ù At(obj,Ground))

Action(PutOn(t, Axle),
PRECOND: Tire(t) Ù At(t,Ground) Ù ¬At(Flat,Axle),
EFFECT: ¬At(t,Ground) Ù At(t,Axle))

Action(LeaveOvernight,
PRECOND: Æ,
EFFECT: ¬At(Spare,Ground) Ù ¬At(Spare,Axle) Ù ¬At(Spare,Trunk) Ù
¬At(Flat,Ground) Ù ¬At(Flat,Axle) Ù ¬At(Flat,Trunk))

From Fig. 10.2, p. 370



Spare Tire Planning Graph

From Fig. 10.10, p. 384



Planning graph for heuristic search

• Using the planning graph to estimate the 
number of actions to reach a goal

• If a literal does not appear in the final level of 
the planning graph, then there is no plan that 
achieve this literal!
– h = ∞



Heuristics
• max-level: take the maximum level where any literal of 

the goal first appears
– admissible

• level-sum: take the sum of the levels where any literal 
of the goal first appears
– not admissible, but generally efficient (specially for 

independent subplans)

• set-level: take the minimum level where all the literals 
of the goal appear and are free of mutex
– admissible



BlackBox Planner
STRIPS-based plan representation

Planning graph

CNF representation

CSP/SAT solver

CSP solution

Plan




