CMSC 341

Graphs

Basic Graph Definitions

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ consists of a finite set of vertices, V , and a finite set of edges, E .
- Each edge is a pair (v, w) where $\mathrm{v}, \mathrm{w} \in \mathrm{V}$.
$\square V$ and E are sets, so each vertex $v \in V$ is unique, and each edge $e \in E$ is unique.
\square Edges are sometimes called arcs or lines.
\square Vertices are sometimes called nodes or points.

Graph Applications

- Graphs can be used to model a wide range of applications including
- Intersections and streets within a city
- Roads/trains/airline routes connecting cities/ countries
- Computer networks
- Electronic circuits

Basic Graph Definitions (2)

- A directed graph is a graph in which the edges are ordered pairs.
That is, $(u, v) \neq(v, u), u, v \in V$.
Directed graphs are sometimes called digraphs.
- An undirected graph is a graph in which the edges are unordered pairs.
That is, $(u, v)=(v, u)$.
- A sparse graph is one with "few" edges.

That is |E| = O(|V|)

- A dense graph is one with "many" edges.

That is $|\mathrm{E}|=\mathrm{O}\left(|\mathrm{V}|^{2}\right)$

Undirected Graph

- All edges are two-way. Edges are unordered pairs.
- $V=\{1,2,3,4,5\}$
- $E=\{(1,2),(2,3),(3,4),(2,4),(4,5),(5,1)\}$

Directed Graph

- All edges are "one-way" as indicated by the arrows. Edges are ordered pairs.
- $V=\{1,2,3,4,5\}$
$-E=\{(1,2),(2,4),(3,2),(4,3),(4,5),(5,4),(5,1)\}$

A Single Graph with Multiple

Components

(6)

Basic Graph Definitions (3)

- Vertex w is adjacent to vertex vif and only if (v, w) $\in E$.
- For undirected graphs, with edge (v, w), and hence also (w, v), w is adjacent to v and v is adjacent to w.
- An edge may also have:
- weight or cost -- an associated value
- label -- a unique name
- The degree of a vertex, v, is the number of vertices adjacent to v . Degree is also called valence.

Basic Graph Definitions (4)

- For directed graphs vertex wis adjacent to vertex v if and only if $(v, w) \in E$.
- Indegree of a vertex w is the number of edges (v, w).
- OutDegree of a vertex w is the number of edges(w,v).

Paths in Graphs

- A path in a graph is a sequence of vertices $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$ such that $\left(w_{i}, w_{i+1}\right) \in E$ for $1 \leq i<n$.
- The length of a path in a graph is the number of edges on the path. The length of the path from a vertex to itself is 0 .
- A simple path is a path such that all vertices are distinct, except that the first and last may be the same.
- A cycle in a graph is a path $w_{1}, w_{2}, w_{3}, \ldots, w_{n}, w \in V$ such that:
- there are at least two vertices on the path
- $\mathrm{w}_{1}=\mathrm{w}_{\mathrm{n}}$ (the path starts and ends on the same vertex)
- if any part of the path contains the subpath w_{i}, w_{j}, w_{i}, then each of the edges in the subpath is distinct (i. e., no backtracking along the same edge)
- A simple cycle is one in which the path is simple.
- A directed graph with no cycles is called a directed acyclic graph, often abbreviated as DAG

Paths in Graphs (2)

- How many simple paths from 1 to 4 and what are their lengths?

Connectedness in Graphs

- An undirected graph is connected if there is a path from every vertex to every other vertex.
- A directed graph is strongly connected if there is a path from every vertex to every other vertex.
- A directed graph is weakly connected if there would be a path from every vertex to every other vertex, disregarding the direction of the edges.
- A complete graph is one in which there is an edge between every pair of vertices.
- A connected component of a graph is any maximal connected subgraph. Connected components are sometimes simply called components.

Disjoint Sets and Graphs

- Disjoint sets can be used to determine connected components of an undirected graph.
- For each edge, place its two vertices (u and v) in the same set -- i.e. union(u, v)
- When all edges have been examined, the forest of sets will represent the connected components.
- Two vertices, x, y, are connected if and only if find $(x)=$ find (y)

Undirected Graph/Disjoint Set Example

(6)

Sets representing connected components
$\{1,2,3,4,5\}$
\{ 6 \}
$\{7,8,9\}$

DiGraph / Strongly Connected

 Components

A Graph ADT

- Has some data elements
- Vertices and Edges
- Has some operations
- getDegree(u) -- Returns the degree of vertex u (outdegree of vertex u in directed graph)
- getAdjacent(u) -- Returns a list of the vertices adjacent to vertex u (list of vertices that u points to for a directed graph)
- isAdjacentTo(u, v) -- Returns TRUE if vertex v is adjacent to vertex u, FALSE otherwise.
- Has some associated algorithms to be discussed.

Adjacency Matrix Implementation

- Uses array of size $|\mathrm{V}| \times|\mathrm{V}|$ where each entry (i, j) is boolean
- TRUE if there is an edge from vertex ito vertex j
- FALSE otherwise
- store weights when edges are weighted
- Very simple, but large space requirement $=\mathrm{O}\left(|\mathrm{V}|^{2}\right)$
- Appropriate if the graph is dense.
- Otherwise, most of the entries in the table are FALSE.
- For example, if a graph is used to represent a street map like Manhattan in which most streets run E/W or N/ S, each intersection is attached to only 4 streets and |E| $<4^{*}|\mathrm{~V}|$. If there are 3000 intersections, the table has $9,000,000$ entries of which only 12,000 are TRUE.

Undirected Graph / Adjacency Matrix

Directed Graph / Adjacency Matrix

Weighted, Directed Graph / Adjacency
Matrix

Adjacency Matrix Performance

- Storage requirement:
$\mathrm{O}\left(|\mathrm{V}|^{2}\right)$
- Performance:

getDegree (u)	
isAdjacentTo(u, v)	
getAdjacent(u)	

Adjacency List Implementation

- If the graph is sparse, then keeping a list of adjacent vertices for each vertex saves space. Adjacency Lists are the commonly used representation. The lists may be stored in a data structure or in the Vertex object itself.
- Vector of lists: A vector of lists of vertices. The ith element of the vector is a list, L_{i}, of the vertices adjacent to v_{i}.
- If the graph is sparse, then the space requirement is $\mathrm{O}(|E|+|V|)$, "linear in the size of the graph"
- If the graph is dense, then the space requirement is $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$

Vector of Lists

Adjacency List Performance

- Storage requirement:
- Performance:

getDegree(u)	
isAdjacentTo(u, v)	
getAdjacent(u)	

Graph Traversals

- Like trees, graphs can be traversed breadthfirst or depth-first.
- Use stack (or recursion) for depth-first traversal
- Use queue for breadth-first traversal
- Unlike trees, we need to specifically guard against repeating a path from a cycle. Mark each vertex as "visited" when we encounter it and do not consider visited vertices more than once.

Breadth-First Traversal

```
void bfs()
{
    Queue<Vertex> q;
    Vertex u, w;
    for all v in V, d[v] = \infty // mark each vertex unvisited
    q.enqueue(startvertex);
    // start with any vertex
    d[startvertex] = 0;
    // mark visited
while ( !q.isEmpty() ) {
            u = q.dequeue( );
            for each Vertex w adjacent to u {
            if (d[w] == \infty) { // w not marked as visited
                d[w] = d[u]+1; // mark visited
                path[w] = u; // where we came from
                q.enqueue(w);
            }
    }
    }
}
```


Breadth-First Example

Unweighted Shortest Path Problem

- Unweighted shortest-path problem: Given as input an unweighted graph, $G=(V, E)$, and a distinguished starting vertex, s , find the shortest unweighted path from s to every other vertex in G.
- After running BFS algorithm with s as starting vertex, the length of the shortest path length from s to i is given by $\mathrm{d}[\mathrm{i}]$. If $\mathrm{d}[\mathrm{i}]=\infty$, then there is no path from s to i. The path from s to i is given by traversing path[] backwards from i back to s.

Recursive Depth First Traversal

```
void dfs() {
    for (each v G V)
        dfs(v)
}
void dfs(Vertex v)
{
    if (!v.visited)
    {
            v.visited = true;
            for each Vertex w adjacent to v
                        if ( !w.visited )
                        dfs(w)
    }
}
```


DFS with explicit stack

```
void dfs()
{
    Stack<Vertex> s;
    Vertex u, w;
    s.push(startvertex);
    startvertex.visited = true;
    while ( !s.isEmpty() ) {
        u = s.pop();
            for each Vertex w adjacent to u {
            if (!w.visited) {
                            w.visited = true;
                            s.push(w) ;
        }
    }
}
```


DFS Example

Traversal Performance

- What is the performance of DF and BF traversal?
- Each vertex appears in the stack or queue exactly once in the worst case. Therefore, the traversals are at least $\mathrm{O}(|\mathrm{V}|)$. However, at each vertex, we must find the adjacent vertices. Therefore, df- and bftraversal performance depends on the performance of the getAdjacent operation.

GetAdjacent

- Method 1: Look at every vertex (except u), asking "are you adjacent to u?"

```
List<Vertex> L;
for each Vertex v except u
    if (v.isAdjacentTo(u))
        L.add(v);
```

- Assuming $O(1)$ performance for add and isAdjacentTo, then getAdjacent has $\mathrm{O}(|\mathrm{V}|)$ performance and traversal performance is $\mathrm{O}\left(\left|\mathrm{V}^{2}\right|\right)$.

GetAdjacent (2)

- Method 2: Look only at the edges which impinge on u. Therefore, at each vertex, the number of vertices to be looked at is $D(u)$, the degree of the vertex
- This approach is $O(D(u))$. The traversal performance is

$$
O\left(\sum_{i=1}^{|V|} D\left(v_{i}\right)\right)=O(|\mathrm{E}|)
$$

since getAdjacent is done $\mathrm{O}(|\mathrm{V}|)$ times.

- However, in a disconnected graph, we must still look at every vertex, so the performance is $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$.

Number of Edges

- Theorem: The number of edges in an undirected graph $G=(V, E)$ is $O\left(|V|^{2}\right)$
- Proof: Suppose G is fully connected. Let $\mathrm{p}=|\mathrm{V}|$.
- Then we have the following situation:

vertex	connected to
1	$2,3,4,5, \ldots, \mathrm{p}$
2	$1,3,4,5, \ldots, \mathrm{p}$
\ldots	
p	$1,2,3,4, \ldots, \mathrm{p}-1$

- There are $p^{*}(p-1) / 2=O\left(|V|^{2}\right)$ edges.
- So $O(|E|)=O\left(|V|^{2}\right)$.

Weighted Shortest Path Problem

Single-source shortest-path problem:
Given as input a weighted graph, G = (V, E), and a distinguished starting vertex, s, find the shortest weighted path from s to every other vertex in G.
Use Dijkstra's algorithm

- Keep tentative distance for each vertex giving shortest path length using vertices visited so far.
- Record vertex visited before this vertex (to allow printing of path).
- At each step choose the vertex with smallest distance among the unvisited vertices (greedy algorithm).

Dijkstra's Algorithm

- The pseudo code for Dijkstra's algorithm assumes the following structure for a Vertex object

```
class Vertex
{
    public List adj; //Adjacency list
    public boolean known;
    public DisType dist; //DistType is probably int
    public Vertex path;
    //Other fields and methods as needed
}
```

```
Dijkstra's Algorithm
void dijksra(Vertex start)
{
    for each Vertex v in V {
        v.dist = Integer.MAX_VALUE;
        v.known = false;
        v.path = null;
    }
    start.distance = 0;
```

 while there are unknown vertices \{
 \(\mathrm{v}=\) unknown vertex with smallest distance
 v.known = true;
 for each Vertex w adjacent to v
 if (!w.known)
 if (v.dist + weight(v, w) < w.distance) \{
 decrease(w.dist to v.dist+weight(v, w))
 w.path = v;
 \}
\}

Dijkstra Example

Correctness of Dijkstra's Algorithm

- The algorithm is correct because of a property of shortest paths:
- If $P_{k}=v_{1}, v_{2}, \ldots, v_{j}, v_{k}$, is a shortest path from v_{1} to v_{k}, then $P_{j}=v_{1}, v_{2}, \ldots, v_{j}$, must be a shortest path from v_{1} to v_{j}. Otherwise P_{k} would not be as short as possible since P_{k} extends P_{j} by just one edge (from v_{j} to v_{k})
- Also, P_{j} must be shorter than P_{k} (assuming that all edges have positive weights). So the algorithm must have found P_{j} on an earlier iteration than when it found P_{k}.
- i.e. Shortest paths can be found by extending earlier known shortest paths by single edges, which is what the algorithm does.

Running Time of Dijkstra's Algorithm

- The running time depends on how the vertices are manipulated.
- The main 'while' loop runs $\mathrm{O}(|\mathrm{V\mid}|)$ times (once per vertex)
- Finding the "unknown vertex with smallest distance" (inside the while loop) can be a simple linear scan of the vertices and so is also O (| $\mathrm{V} \mid)$. With this method the total running time is $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$. This is acceptable (and perhaps optimal) if the graph is dense ($|\mathrm{E}|=\mathrm{O}\left(|\mathrm{V}|^{2}\right)$) since it runs in linear time on the number of edges.
- If the graph is sparse, ($|\mathrm{E}|=\mathrm{O}(|\mathrm{V}|)$), we can use a priority queue to select the unknown vertex with smallest distance, using the deleteMin operation $(\mathrm{O}(\lg |\mathrm{V}|))$. We must also decrease the path lengths of some unknown vertices, which is also $\mathrm{O}(\lg |\mathrm{V}|)$. The deleteMin operation is performed for every vertex, and the "decrease path length" is performed for every edge, so the running time is
$\mathrm{O}(|\mathrm{E}| \mathrm{Ig}|\mathrm{V}|+|\mathrm{V}| \mathrm{Ig}|\mathrm{V}|)=\mathrm{O}((|\mathrm{V}|+|\mathrm{E}|) \lg |\mathrm{V}|)=\mathrm{O}(|\mathrm{E}| \lg |\mathrm{V}|)$ if all vertices are reachable from the starting vertex

Dijkstra and Negative Edges

- Note in the previous discussion, we made the assumption that all edges have positive weight. If any edge has a negative weight, then Dijkstra's algorithm fails. Why is this so?
- Suppose a vertex, u, is marked as "known". This means that the shortest path from the starting vertex, s, to u has been found.
- However, it's possible that there is negatively weighted edge from an unknown vertex, v, back to u. In that case, taking the path from s to v to u is actually shorter than the path from s to u without going through v.
- Other algorithms exist that handle edges with negative weights for weighted shortest-path problem.

Directed Acyclic Graphs

- A directed acyclic graph is a directed graph with no cycles.
- A strict partial order R on a set S is a binary relation such that
- for all $a \in S$, $a R a$ is false (irreflexive property)
a for all $a, b, c \in S$, if $a R b$ and $b R c$ then $a R c$ is true (transitive property)
- To represent a partial order with a DAG:
- represent each member of S as a vertex
- for each pair of vertices (a, b), insert an edge from a to b if and only if $a R b$

More Definitions

- Vertex i is a predecessor of vertex j if and only if there is a path from i to j.
- Vertex i is an immediate predecessor of vertex j if and only if (i, j) is an edge in the graph.
- Vertex j is a successor of vertex i if and only if there is a path from i to j.
- Vertex j is an immediate successor of vertex if and only if (i, j) is an edge in the graph.
- The indegree of a vertex, v, is the number of edges (u, v), i.e. the number of edges that come "into" v.

Topological Ordering

- A topological ordering of the vertices of a DAG $G=(V, E)$ is a linear ordering such that, for vertices $i, j \in V$, if i is a predecessor of j, then i precedes j in the linear order, i.e. if there is a path from v_{i} to v_{j}, then v_{i} comes before v_{j} in the linear order

Topological Sort

```
void topsort( ) throws CycleFoundException
{
    Queue<Vertex> q = new Queue<Vertex>( );
    int counter = 0;
    for each Vertex v
        if( v.indegree == 0 )
            q.enqueue( v );
    while( !q.isEmpty( ) )
    {
        Vertex v = q.dequeue( );
        v.topNum = ++counter; // Assign next number
        for each Vertex w adjacent to v
            if( --w.indegree == 0 )
            q.enqueue( w );
    }
    if( counter != NUM_VERTICES )
        throw new CycleFoundException( );
}
```


TopSort Example

Running Time of TopSort

1. At most, each vertex is enqueued just once, so there are $\mathrm{O}(|\mathrm{V}|)$ constant time queue operations.
2. The body of the for loop is executed at most once per edges $=\mathrm{O}(|E|)$
3. The initialization is proportional to the size of the graph if adjacency lists are used and so is $\mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)$
4. The total running time is therefore $\mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)$
