
CMSC 341

Graphs

UMBC CMSC 341 Graphs 2

Basic Graph Definitions

  A graph G = (V,E) consists of a finite set of
vertices, V, and a finite set of edges, E.

  Each edge is a pair (v,w) where v, w ∈ V.
  V and E are sets, so each vertex v ∈ V is

unique, and each edge e ∈ E is unique.
  Edges are sometimes called arcs or lines.
  Vertices are sometimes called nodes or

points.

UMBC CMSC 341 Graphs 3

Graph Applications

  Graphs can be used to model a wide range
of applications including

  Intersections and streets within a city
  Roads/trains/airline routes connecting cities/

countries
  Computer networks
  Electronic circuits

UMBC CMSC 341 Graphs 4

Basic Graph Definitions (2)
  A directed graph is a graph in which the

edges are ordered pairs.
That is, (u,v) ≠ (v,u), u, v ∈ V.
Directed graphs are sometimes called
digraphs.

  An undirected graph is a graph in which the
edges are unordered pairs.
That is, (u,v) = (v,u).

  A sparse graph is one with “few” edges.
That is |E| = O(|V|)

  A dense graph is one with “many” edges.
That is |E| = O(|V|2)

UMBC CMSC 341 Graphs 5

Undirected Graph

  All edges are two-way. Edges are unordered
pairs.

  V = { 1, 2 ,3, 4, 5}
  E = { (1,2), (2, 3), (3, 4), (2, 4), (4, 5), (5, 1) }

2

1

3 4

5

UMBC CMSC 341 Graphs 6

Directed Graph
1

5 2

3 4
 All edges are “one-way” as indicated by the arrows.

Edges are ordered pairs.

 V = { 1, 2, 3, 4, 5}

 E = { (1, 2), (2, 4), (3, 2), (4, 3), (4, 5), (5, 4), (5, 1) }

UMBC CMSC 341 Graphs 7

A Single Graph with Multiple
Components

7

6

9

8
2

1

3 4

5

UMBC CMSC 341 Graphs 8

Basic Graph Definitions (3)

  Vertex w is adjacent to vertex v if and only if (v, w)
∈ E.

  For undirected graphs, with edge (v, w), and hence
also (w, v), w is adjacent to v and v is adjacent to
w.

  An edge may also have:
  weight or cost -- an associated value
  label -- a unique name

  The degree of a vertex, v, is the number of
vertices adjacent to v. Degree is also called
valence.

Basic Graph Definitions (4)

  For directed graphs vertex w is adjacent to vertex v if
and only if (v, w) ∈ E.

  Indegree of a vertex w is the number of edges (v,w).
  OutDegree of a vertex w is the number of edges(w,v).

1

5 2

3 4

2

1

3 4

5

UMBC CMSC 341 Graphs 10

Paths in Graphs
  A path in a graph is a sequence of vertices w1, w2, w3, …, wn

such that (wi, wi+1) ∈ E for 1 ≤ i < n.
  The length of a path in a graph is the number of edges on the

path. The length of the path from a vertex to itself is 0.
  A simple path is a path such that all vertices are distinct, except

that the first and last may be the same.
  A cycle in a graph is a path w1, w2, w3, …, wn , w ∈ V such that:

  there are at least two vertices on the path
  w1 = wn (the path starts and ends on the same vertex)
  if any part of the path contains the subpath wi, wj, wi, then each of

the edges in the subpath is distinct (i. e., no backtracking along the
same edge)

  A simple cycle is one in which the path is simple.
  A directed graph with no cycles is called a directed acyclic

graph, often abbreviated as DAG

Paths in Graphs (2)

  How many simple paths from 1 to 4 and what
are their lengths?

1

5 2

3 4

2

1

3 4

5

UMBC CMSC 341 Graphs 12

Connectedness in Graphs

  An undirected graph is connected if there is a path from
every vertex to every other vertex.

  A directed graph is strongly connected if there is a path
from every vertex to every other vertex.

  A directed graph is weakly connected if there would be
a path from every vertex to every other vertex,
disregarding the direction of the edges.

  A complete graph is one in which there is an edge
between every pair of vertices.

  A connected component of a graph is any maximal
connected subgraph. Connected components are
sometimes simply called components.

UMBC CMSC 341 Graphs 13

Disjoint Sets and Graphs

  Disjoint sets can be used to determine connected
components of an undirected graph.

  For each edge, place its two vertices (u and v) in the
same set -- i.e. union(u, v)

  When all edges have been examined, the forest of sets
will represent the connected components.

  Two vertices, x, y, are connected if and only if
find(x) = find(y)

UMBC CMSC 341 Graphs 14

Undirected Graph/Disjoint Set Example

Sets representing connected components
 { 1, 2, 3, 4, 5 }
 { 6 }
 { 7, 8, 9 }

7

6

9

8
2

1

3 4

5

UMBC CMSC 341 Graphs 15

DiGraph / Strongly Connected
Components

a g b

h d f c

i j e

UMBC CMSC 341 Graphs 16

A Graph ADT

  Has some data elements
  Vertices and Edges

  Has some operations
  getDegree(u) -- Returns the degree of vertex u

(outdegree of vertex u in directed graph)
  getAdjacent(u) -- Returns a list of the vertices

adjacent to vertex u (list of vertices that u points
to for a directed graph)

  isAdjacentTo(u, v) -- Returns TRUE if vertex v is
adjacent to vertex u, FALSE otherwise.

  Has some associated algorithms to be
discussed.

UMBC CMSC 341 Graphs 17

Adjacency Matrix Implementation

  Uses array of size |V| × |V| where each entry (i ,j) is
boolean
  TRUE if there is an edge from vertex i to vertex j
  FALSE otherwise
  store weights when edges are weighted

  Very simple, but large space requirement = O(|V|2)
  Appropriate if the graph is dense.
  Otherwise, most of the entries in the table are FALSE.
  For example, if a graph is used to represent a street

map like Manhattan in which most streets run E/W or N/
S, each intersection is attached to only 4 streets and |E|
< 4*|V|. If there are 3000 intersections, the table has
9,000,000 entries of which only 12,000 are TRUE.

UMBC CMSC 341 Graphs 18

Undirected Graph / Adjacency Matrix

1 2 3 4 5
1 0 1 0 0 1
2 1 0 1 1 0
3 0 1 0 1 0
4 0 1 1 0 1
5 1 0 0 1 0

2

1

3 4

5

UMBC CMSC 341 Graphs 19

Directed Graph / Adjacency Matrix

1 2 3 4 5
1 0 1 0 0 0
2 0 0 0 1 0
3 0 1 0 0 0
4 0 0 1 0 1
5 1 0 0 1 0

1

5 2

3 4

UMBC CMSC 341 Graphs 20

Weighted, Directed Graph / Adjacency
Matrix

1 2 3 4 5
1 0 2 0 0 0
2 0 0 0 6 0
3 0 7 0 0 0
4 0 0 3 0 2
5 8 0 0 5 0

5 2

3 4

8

1

 2

6
7

3

5
 2

UMBC CMSC 341 Graphs 21

Adjacency Matrix Performance

  Storage requirement:
O(|V|2)

  Performance:

getDegree (u)

isAdjacentTo(u, v)
getAdjacent(u)

UMBC CMSC 341 Graphs 22

Adjacency List Implementation

  If the graph is sparse, then keeping a list of adjacent
vertices for each vertex saves space. Adjacency
Lists are the commonly used representation. The
lists may be stored in a data structure or in the Vertex
object itself.
  Vector of lists: A vector of lists of vertices. The i-

th element of the vector is a list, Li, of the vertices
adjacent to vi.

  If the graph is sparse, then the space requirement is
O(|E| + |V|), “linear in the size of the graph”

  If the graph is dense, then the space requirement is
O(|V|2)

UMBC CMSC 341 Graphs 23

Vector of Lists

5 2

3 4

8
1

 2

6
7

3

5

2

2
4

3 5

1
2
3
4
5 1 4

2

UMBC CMSC 341 Graphs 24

Adjacency List Performance

  Storage requirement:
  Performance:

getDegree(u)

isAdjacentTo(u, v)

getAdjacent(u)

UMBC CMSC 341 Graphs 25

Graph Traversals

  Like trees, graphs can be traversed breadth-
first or depth-first.
  Use stack (or recursion) for depth-first traversal
  Use queue for breadth-first traversal

  Unlike trees, we need to specifically guard
against repeating a path from a cycle. Mark
each vertex as “visited” when we encounter it
and do not consider visited vertices more
than once.

UMBC CMSC 341 Graphs 26

Breadth-First Traversal
void bfs()
{

Queue<Vertex> q;
Vertex u, w;

for all v in V, d[v] = ∞ // mark each vertex unvisited
q.enqueue(startvertex); // start with any vertex
d[startvertex] = 0; // mark visited
while (!q.isEmpty()) {
 u = q.dequeue();
 for each Vertex w adjacent to u {
 if (d[w] == ∞) { // w not marked as visited
 d[w] = d[u]+1; // mark visited
 path[w] = u; // where we came from
 q.enqueue(w);
 }
 }
}

}

UMBC CMSC 341 Graphs 27

Breadth-First Example

v1

v2

v4

v3

v5

∞
uq

∞

∞

∞

∞

v1
0

1v1

1v1
v2

v3

2v2

v4

v1 v2 v3 v4

BFS Traversal

UMBC CMSC 341 Graphs 28

Unweighted Shortest Path Problem

  Unweighted shortest-path problem: Given as input
an unweighted graph, G = (V, E), and a
distinguished starting vertex, s, find the shortest
unweighted path from s to every other vertex in G.

  After running BFS algorithm with s as starting vertex,
the length of the shortest path length from s to i is
given by d[i]. If d[i] = ∞ , then there is no path from s
to i. The path from s to i is given by traversing path[]
backwards from i back to s.

UMBC CMSC 341 Graphs 29

Recursive Depth First Traversal

void dfs() {
 for (each v ∈ V)

 dfs(v)

}

void dfs(Vertex v)

{

 if (!v.visited)

 {

 v.visited = true;

 for each Vertex w adjacent to v

 if (!w.visited)

 dfs(w)

 }

}

UMBC CMSC 341 Graphs 30

DFS with explicit stack
void dfs()
{

 Stack<Vertex> s;

 Vertex u, w;

 s.push(startvertex);

 startvertex.visited = true;

 while (!s.isEmpty()) {

 u = s.pop();

 for each Vertex w adjacent to u {

 if (!w.visited) {

 w.visited = true;

 s.push(w);

 }

 }

}

UMBC CMSC 341 Graphs 31

DFS Example

v1

v2

v4

v3

v5

s v1 v2
v3

uv4

v1 v3 v2 v4

DFS Traversal

UMBC CMSC 341 Graphs 32

Traversal Performance

  What is the performance of DF and BF
traversal?

  Each vertex appears in the stack or queue
exactly once in the worst case. Therefore,
the traversals are at least O(|V|).
However, at each vertex, we must find the
adjacent vertices. Therefore, df- and bf-
traversal performance depends on the
performance of the getAdjacent
operation.

UMBC CMSC 341 Graphs 33

GetAdjacent

  Method 1: Look at every vertex (except u), asking
“are you adjacent to u?”
List<Vertex> L;

for each Vertex v except u

 if (v.isAdjacentTo(u))

 L.add(v);

  Assuming O(1) performance for add and
isAdjacentTo, then getAdjacent has O(|V|)
performance and traversal performance is O(|V2|).

UMBC CMSC 341 Graphs 34

GetAdjacent (2)
  Method 2: Look only at the edges which impinge on

u. Therefore, at each vertex, the number of vertices
to be looked at is D(u), the degree of the vertex

  This approach is O(D(u)). The traversal
performance is

 since getAdjacent is done O(|V|) times.
  However, in a disconnected graph, we must still look

at every vertex, so the performance is O(|V| + |E|).

)) ((
1

v D O
V

i
i = ∑

=
O (|E|)

UMBC CMSC 341 Graphs 35

Number of Edges
  Theorem: The number of edges in an undirected

graph G = (V,E) is O(|V|2)
  Proof: Suppose G is fully connected. Let p = |V|.
  Then we have the following situation:

 vertex connected to
 1 2,3,4,5,…, p
 2 1,3,4,5,…, p
 …
 p 1,2,3,4,…,p-1

  There are p * (p-1) / 2 = O(|V|2) edges.
  So O(|E|) = O(|V|2).

UMBC CMSC 341 Graphs 36

Weighted Shortest Path Problem
Single-source shortest-path problem:
 Given as input a weighted graph, G = (V, E), and a

distinguished starting vertex, s, find the shortest
weighted path from s to every other vertex in G.

Use Dijkstra’s algorithm
– Keep tentative distance for each vertex giving

shortest path length using vertices visited so far.
– Record vertex visited before this vertex (to allow

printing of path).
– At each step choose the vertex with smallest

distance among the unvisited vertices (greedy
algorithm).

UMBC CMSC 341 Graphs 37

Dijkstra’s Algorithm

  The pseudo code for Dijkstra’s algorithm assumes the
following structure for a Vertex object

class Vertex

{

 public List adj; //Adjacency list

 public boolean known;
 public DisType dist; //DistType is probably int

 public Vertex path;

 //Other fields and methods as needed

}

UMBC CMSC 341 Graphs 38

Dijkstra’s Algorithm
void dijksra(Vertex start)
{
 for each Vertex v in V {
 v.dist = Integer.MAX_VALUE;
 v.known = false;
 v.path = null;
 }

 start.distance = 0;

 while there are unknown vertices {
 v = unknown vertex with smallest distance
 v.known = true;
 for each Vertex w adjacent to v
 if (!w.known)
 if (v.dist + weight(v, w)< w.distance){
 decrease(w.dist to v.dist+weight(v, w))
 w.path = v;
 }
 }
}

UMBC CMSC 341 Graphs 39

Dijkstra Example

v1 v7 v2

v8 v4 v6 v3

v9 v10 v5

1

3

4

3 1

1

2 7

3

4

1

2

5

6

UMBC CMSC 341 Graphs 40

Correctness of Dijkstra’s Algorithm
  The algorithm is correct because of a property of

shortest paths:
  If Pk = v1, v2, ..., vj, vk, is a shortest path from v1 to vk,

then Pj = v1, v2, ..., vj, must be a shortest path from v1 to
vj. Otherwise Pk would not be as short as possible since
Pk extends Pj by just one edge (from vj to vk)

  Also, Pj must be shorter than Pk (assuming that all
edges have positive weights). So the algorithm must
have found Pj on an earlier iteration than when it found
Pk.

  i.e. Shortest paths can be found by extending earlier
known shortest paths by single edges, which is what the
algorithm does.

UMBC CMSC 341 Graphs 41

Running Time of Dijkstra’s Algorithm

  The running time depends on how the vertices are manipulated.
  The main ‘while’ loop runs O(|V|) times (once per vertex)
  Finding the “unknown vertex with smallest distance” (inside the while

loop) can be a simple linear scan of the vertices and so is also O(|
V|). With this method the total running time is O (|V|2). This is
acceptable (and perhaps optimal) if the graph is dense
(|E| = O (|V|2)) since it runs in linear time on the number of edges.

  If the graph is sparse, (|E| = O (|V|)), we can use a priority queue
to select the unknown vertex with smallest distance, using the
deleteMin operation (O(lg |V|)). We must also decrease the path
lengths of some unknown vertices, which is also O(lg|V|). The
deleteMin operation is performed for every vertex, and the
“decrease path length” is performed for every edge, so the running
time is
O(|E| lg|V| + |V|lg|V|) = O((|V|+|E|) lg|V|) = O(|E| lg|V|) if all vertices
are reachable from the starting vertex

UMBC CMSC 341 Graphs 42

Dijkstra and Negative Edges

  Note in the previous discussion, we made the
assumption that all edges have positive weight. If any
edge has a negative weight, then Dijkstra’s algorithm
fails. Why is this so?

  Suppose a vertex, u, is marked as “known”. This means
that the shortest path from the starting vertex, s, to u has
been found.

  However, it’s possible that there is negatively weighted
edge from an unknown vertex, v, back to u. In that case,
taking the path from s to v to u is actually shorter than
the path from s to u without going through v.

  Other algorithms exist that handle edges with negative
weights for weighted shortest-path problem.

UMBC CMSC 341 Graphs 43

Directed Acyclic Graphs

  A directed acyclic graph is a directed graph
with no cycles.

  A strict partial order R on a set S is a binary
relation such that
  for all a∈S, aRa is false (irreflexive property)
  for all a,b,c ∈S, if aRb and bRc then aRc is true

(transitive property)
  To represent a partial order with a DAG:

  represent each member of S as a vertex
  for each pair of vertices (a,b), insert an edge from

a to b if and only if aRb

UMBC CMSC 341 Graphs 44

More Definitions

  Vertex i is a predecessor of vertex j if and only if there is
a path from i to j.

  Vertex i is an immediate predecessor of vertex j if and
only if (i, j) is an edge in the graph.

  Vertex j is a successor of vertex i if and only if there is a
path from i to j.

  Vertex j is an immediate successor of vertex i if and
only if (i, j) is an edge in the graph.

  The indegree of a vertex, v, is the number of edges (u,
v), i.e. the number of edges that come “into” v.

UMBC CMSC 341 Graphs 45

Topological Ordering
  A topological ordering of the vertices of a

DAG G = (V,E) is a linear ordering such that,
for vertices i, j ∈V, if i is a predecessor of j,
then i precedes j in the linear order,
i.e. if there is a path from vi to vj, then vi
comes before vj in the linear order

UMBC CMSC 341 Graphs 46

Topological Sort

UMBC CMSC 341 Graphs 47

TopSort Example

1

6 7

2

8 9 10

3 4 5

UMBC CMSC 341 Graphs 48

Running Time of TopSort

1.  At most, each vertex is enqueued just once, so
there are O(|V|) constant time queue
operations.

2.  The body of the for loop is executed at most
once per edges = O(|E|)

3.  The initialization is proportional to the size of the
graph if adjacency lists are used and so is
 O(|E| + |V|)

4.  The total running time is therefore O (|E| + |V|)

