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Basic Graph Definitions 

  A graph G = (V,E) consists of a finite set of 
vertices, V, and a finite set of edges, E.  

  Each edge is a pair (v,w) where v, w ∈ V. 
  V and E are sets, so each vertex v ∈ V is 

unique, and each edge e ∈ E is unique. 
  Edges are sometimes called arcs or lines. 
  Vertices are sometimes called nodes or 

points. 
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Graph Applications 

  Graphs can  be used to model a wide range 
of applications including 

  Intersections and streets within a city 
  Roads/trains/airline routes connecting cities/

countries 
  Computer networks 
  Electronic circuits 
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Basic Graph Definitions (2) 
  A directed graph is a graph in which the 

edges are ordered pairs.  
That is, (u,v) ≠ (v,u), u, v ∈ V.  
Directed graphs are sometimes called 
digraphs. 

  An undirected graph is a graph in which the 
edges are unordered pairs.  
That is, (u,v) = (v,u). 

  A sparse graph is one with “few” edges. 
That is |E| = O( |V| ) 

  A dense graph is one with “many” edges. 
That is |E| = O( |V|2 ) 
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Undirected Graph 

  All edges are two-way.  Edges are unordered 
pairs. 

  V = { 1, 2 ,3, 4, 5} 
  E = { (1,2), (2, 3), (3, 4), (2, 4), (4, 5), (5, 1) } 

2 

1 

3 4 

5 



UMBC CMSC 341 Graphs 6 

Directed Graph 
1 

5 2 

3 4 
 All edges are “one-way” as indicated by the arrows. 

Edges are ordered pairs. 

 V = { 1, 2, 3, 4, 5} 

 E = { (1, 2), (2, 4), (3, 2), (4, 3), (4, 5), (5, 4), (5, 1) } 
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A Single Graph with Multiple 
Components 
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Basic Graph Definitions (3) 

  Vertex w is adjacent to vertex v if and only if (v, w) 
∈ E.  

  For undirected graphs, with edge (v, w), and hence 
also (w, v), w is adjacent to v and v is adjacent to 
w. 

  An edge may also have: 
  weight or cost -- an associated value 
  label -- a unique name 

  The degree of a vertex, v, is the number of 
vertices adjacent to v. Degree is also called 
valence. 



Basic Graph Definitions (4) 

  For directed graphs vertex w is adjacent to vertex v if 
and only if (v, w) ∈ E. 

  Indegree of a vertex w is the number of edges (v,w). 
  OutDegree of a vertex w is the number of edges(w,v). 
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Paths in Graphs 
  A path in a graph is a sequence of vertices w1, w2, w3, …, wn 

such that (wi, wi+1) ∈ E for 1 ≤ i < n. 
  The length of a path in a graph is the number of edges on the 

path. The length of the path from a vertex to itself is 0. 
  A simple path is a path such that all vertices are distinct, except 

that the first and last may be the same. 
  A cycle in a graph is a path w1, w2, w3, …, wn , w ∈ V such that: 

  there are at least two vertices on the path 
  w1 = wn  (the path starts and ends on the same vertex) 
  if any part of the path contains the subpath wi, wj, wi, then each of 

the edges in the subpath is distinct (i. e., no backtracking along the 
same edge) 

  A simple cycle is one in which the path is simple. 
  A directed graph with no cycles is called a directed acyclic 

graph, often abbreviated as DAG 



Paths in Graphs (2) 

  How many simple paths from 1 to 4 and what 
are their lengths? 

1 

5 2 

3 4 

2 

1 

3 4 

5 



UMBC CMSC 341 Graphs 12 

Connectedness in Graphs 

  An undirected graph is connected if there is a path from 
every vertex to every other vertex. 

  A directed graph is strongly connected if there is a path 
from every vertex to every other vertex. 

  A directed graph is weakly connected if there would be 
a path from every vertex to every other vertex, 
disregarding the direction of the edges. 

  A complete graph is one in which there is an edge 
between every pair of vertices. 

  A connected component of a graph is any maximal 
connected subgraph. Connected components are 
sometimes simply called components. 
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Disjoint Sets and Graphs 

  Disjoint sets can be used to determine connected 
components of an undirected graph. 

  For each edge, place its two vertices (u and v) in the 
same set -- i.e. union( u, v ) 

  When all edges have been examined, the forest of sets 
will represent the connected components. 

  Two vertices, x, y,  are connected if and only if  
find( x ) = find( y ) 
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Undirected Graph/Disjoint Set Example 

Sets representing connected components 
  { 1, 2, 3, 4, 5 } 
 { 6 } 
 { 7, 8, 9 } 
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DiGraph / Strongly Connected 
Components 
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A Graph ADT 

  Has some data elements 
  Vertices and Edges 

  Has some operations 
  getDegree( u ) -- Returns the degree of vertex u 

(outdegree of vertex u in directed graph) 
  getAdjacent( u ) -- Returns a list of the vertices 

adjacent to  vertex u (list of vertices that u points 
to for a directed graph) 

  isAdjacentTo( u, v )  -- Returns TRUE if vertex v is 
adjacent to vertex u, FALSE otherwise. 

  Has some associated algorithms to be 
discussed. 
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Adjacency Matrix Implementation 

  Uses array of size |V| × |V| where each entry (i ,j) is 
boolean  
  TRUE if there is an edge from vertex i to vertex j 
  FALSE otherwise 
  store weights when edges are weighted 

  Very simple, but large space requirement = O(|V|2) 
  Appropriate if the graph is dense. 
  Otherwise, most of the entries in the table are FALSE. 
  For example, if  a graph is used to represent a street 

map like Manhattan in which most streets run E/W or N/
S, each intersection is attached to only 4 streets and |E|  
< 4*|V|.  If there are 3000 intersections, the table has 
9,000,000 entries of which only 12,000 are TRUE. 
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Undirected Graph / Adjacency Matrix 

1 2 3 4 5
1 0 1 0 0 1
2 1 0 1 1 0
3 0 1 0 1 0
4 0 1 1 0 1
5 1 0 0 1 0

2 

1 

3 4 

5 



UMBC CMSC 341 Graphs 19 

Directed Graph / Adjacency Matrix 

1 2 3 4 5
1 0 1 0 0 0
2 0 0 0 1 0
3 0 1 0 0 0
4 0 0 1 0 1
5 1 0 0 1 0
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Weighted, Directed Graph / Adjacency 
Matrix 

1 2 3 4 5
1 0 2 0 0 0
2 0 0 0 6 0
3 0 7 0 0 0
4 0 0 3 0 2
5 8 0 0 5 0
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Adjacency Matrix Performance 

  Storage requirement: 
O( |V|2 ) 

  Performance: 

getDegree ( u ) 

isAdjacentTo( u, v ) 
getAdjacent( u ) 
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Adjacency List Implementation 

  If the graph is sparse, then keeping a list of adjacent 
vertices for each vertex saves space.  Adjacency 
Lists are the commonly used representation.  The 
lists may be stored in a data structure or in the Vertex 
object itself. 
  Vector of lists: A vector of lists of vertices.  The i-

th element of the vector is a list, Li,  of the vertices 
adjacent to vi. 

  If the graph is sparse, then the space requirement is  
O( |E| + |V| ), “linear in the size of the graph” 

  If the graph is dense, then the space requirement is 
O( |V|2 ) 
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Vector of  Lists 
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Adjacency List Performance 

  Storage requirement: 
  Performance:   

getDegree( u ) 

isAdjacentTo( u, v ) 

getAdjacent( u ) 
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Graph Traversals 

  Like trees, graphs can be traversed breadth-
first or depth-first. 
  Use stack (or recursion) for depth-first traversal 
  Use queue for breadth-first traversal 

  Unlike trees, we need to specifically guard 
against repeating a path from a cycle. Mark 
each vertex as “visited” when we encounter it 
and do not consider visited vertices more 
than once. 
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Breadth-First Traversal 
void bfs() 
{ 

Queue<Vertex> q; 
Vertex u, w; 

for all v in V, d[v] = ∞  // mark each vertex unvisited 
q.enqueue(startvertex);   // start with any vertex 
d[startvertex] = 0;  // mark visited 
while ( !q.isEmpty() ) { 
  u = q.dequeue( ); 
  for each Vertex w adjacent to u { 
   if (d[w] == ∞) { // w not marked as visited 
      d[w] = d[u]+1; // mark visited 
       path[w] = u;   // where we came from 
        q.enqueue(w); 
   } 
  } 
} 

} 
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Breadth-First Example 
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Unweighted Shortest Path Problem 

  Unweighted shortest-path problem: Given as input 
an unweighted graph, G = ( V, E ), and a 
distinguished starting vertex, s, find the shortest 
unweighted path from s to every other vertex in G.  

  After running BFS algorithm with s as starting vertex, 
the length of the shortest path length from s to i is 
given by d[i].  If d[i] = ∞ , then there is no path from s 
to i. The path from s to i is given by traversing path[] 
backwards from i back to s. 
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Recursive Depth First Traversal 

void dfs() { 
 for (each v ∈ V) 

  dfs(v) 

} 

void dfs(Vertex v)  

{ 

 if (!v.visited) 

 { 

  v.visited = true; 

  for each Vertex w adjacent to v 

   if ( !w.visited ) 

    dfs(w) 

 } 

} 
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DFS with explicit stack 
void dfs() 
{ 

 Stack<Vertex> s; 

 Vertex u, w; 

 s.push(startvertex); 

 startvertex.visited = true; 

 while ( !s.isEmpty() ) { 

  u = s.pop(); 

  for each Vertex w adjacent to u { 

   if (!w.visited) { 

    w.visited = true; 

    s.push(w); 

  } 

 } 

} 
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DFS Example 
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Traversal Performance 

  What is the performance of DF and BF 
traversal? 

  Each vertex appears in the stack or queue 
exactly once in the worst case. Therefore, 
the traversals are at least O( |V| ). 
However, at each vertex, we must find the 
adjacent vertices. Therefore, df- and bf-
traversal performance depends on the 
performance of the getAdjacent 
operation. 
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GetAdjacent 

  Method 1:  Look at every vertex (except u), asking 
“are you adjacent to u?” 
List<Vertex> L; 

for each Vertex v except u 

 if (v.isAdjacentTo(u)) 

  L.add(v); 

  Assuming O(1) performance for add and  
isAdjacentTo, then getAdjacent has O( |V| ) 
performance and traversal performance is O( |V2| ). 
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GetAdjacent (2) 
  Method 2:  Look only at the edges which impinge on 

u. Therefore, at each vertex, the number of vertices 
to be looked at is D(u), the degree of the vertex 

  This approach is O( D( u ) ). The traversal 
performance is  

 since getAdjacent is done O( |V| ) times. 
  However, in a disconnected graph, we must still look 

at every vertex, so the performance is  O( |V| + |E| ). 
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Number of  Edges 
  Theorem: The number of edges in an undirected 

graph  G = (V,E ) is O(|V|2) 
  Proof: Suppose G is fully connected. Let p = |V|.  
  Then we have the following situation: 

  vertex  connected to 
      1  2,3,4,5,…, p 
      2  1,3,4,5,…, p 
     … 
      p  1,2,3,4,…,p-1 

  There are p * (p-1) / 2 = O(|V|2) edges. 
  So O(|E|) = O(|V|2).  
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Weighted Shortest Path Problem 
Single-source shortest-path problem:  
 Given as input a weighted graph, G = ( V, E ), and a 

distinguished starting vertex, s, find the shortest 
weighted path from s to every other vertex in G. 

Use Dijkstra’s algorithm 
– Keep tentative distance for each vertex giving 

shortest path length using vertices visited so far. 
– Record vertex visited before this vertex (to allow 

printing of path). 
– At each step choose the vertex with smallest 

distance among the unvisited vertices (greedy 
algorithm). 
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Dijkstra’s Algorithm 

  The pseudo code for Dijkstra’s algorithm assumes the 
following structure for a Vertex object 

class Vertex 

{ 

 public List adj;  //Adjacency list 

 public boolean known; 
 public DisType dist; //DistType is probably int 

 public Vertex path; 

 //Other fields and methods as needed 

} 
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Dijkstra’s Algorithm 
void dijksra(Vertex start) 
{ 
  for each Vertex v in V { 
  v.dist = Integer.MAX_VALUE;  
  v.known = false;  
  v.path = null; 
 } 

 start.distance = 0; 

 while there are unknown vertices { 
  v = unknown vertex with smallest distance 
  v.known = true; 
  for each Vertex w adjacent to v 
     if (!w.known) 
    if (v.dist + weight(v, w)< w.distance){ 
        decrease(w.dist to v.dist+weight(v, w)) 
     w.path = v; 
    } 
 } 
} 
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Dijkstra Example 
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Correctness of  Dijkstra’s Algorithm 
  The algorithm is correct because of a property of 

shortest paths:  
  If Pk = v1, v2, ..., vj, vk, is a shortest path from v1 to vk,   

then Pj = v1, v2, ..., vj, must be a shortest path from v1 to 
vj. Otherwise Pk would not be as short as possible since 
Pk extends Pj by just one edge (from vj to vk) 

   Also, Pj must be shorter than Pk (assuming that all 
edges have positive weights). So the algorithm must 
have found Pj on an earlier iteration than when it found 
Pk.  

  i.e. Shortest paths can be found by extending earlier 
known shortest paths by single edges, which is what the 
algorithm does.  
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Running Time of  Dijkstra’s Algorithm 

  The running time depends on how the vertices are manipulated. 
  The main ‘while’ loop runs O( |V| ) times (once per vertex) 
  Finding the “unknown vertex with smallest distance” (inside the while 

loop) can be a simple linear scan of the vertices and so is also O( |
V| ).  With this method the total running time is O (|V|2 ).  This is 
acceptable (and perhaps optimal) if the graph is dense  
( |E| = O (|V|2 ) ) since it runs in linear time on the number of edges. 

  If the graph is sparse, ( |E| = O (|V| ) ), we can use a priority queue 
to select the unknown vertex with smallest distance, using the 
deleteMin operation (O( lg |V| )).  We must also decrease the path 
lengths of some unknown vertices, which is also O( lg|V| ). The 
deleteMin operation is performed for every vertex, and the 
“decrease path length” is performed for every edge, so the running 
time is  
O( |E| lg|V| + |V|lg|V|) = O( (|V|+|E|) lg|V|) = O(|E| lg|V|) if all vertices 
are reachable from the starting vertex 
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Dijkstra and Negative Edges 

  Note in the previous discussion, we made the 
assumption that all edges have positive weight.  If any 
edge has a negative weight, then Dijkstra’s algorithm 
fails.  Why is this so? 

  Suppose a vertex, u, is marked as “known”.  This means 
that the shortest path from the starting vertex, s, to u has 
been found. 

  However, it’s possible that there is negatively weighted 
edge from an unknown vertex, v, back to u.  In that case, 
taking the path from s to v to u is actually shorter than 
the path from s to u without going through v. 

  Other algorithms exist that handle edges with negative 
weights for weighted shortest-path problem. 
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Directed Acyclic Graphs 

  A directed acyclic graph is a directed graph 
with no cycles. 

  A strict partial order R on a set S is a binary 
relation such that  
  for all a∈S, aRa is false (irreflexive property) 
  for all a,b,c ∈S, if aRb and bRc then aRc is true 

(transitive property) 
  To represent a partial order with a DAG: 

  represent each member of S as a vertex 
  for each pair of vertices (a,b), insert an edge from 

a to b if and only if aRb 
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More Definitions 

  Vertex i is a predecessor of vertex j if and only if there is 
a path from i to j. 

  Vertex i is an immediate predecessor of vertex j if and 
only if ( i, j ) is an edge in the graph. 

  Vertex j is a successor of vertex i if and only if there is a 
path from i to j. 

  Vertex j is an immediate successor of vertex i if and 
only if ( i, j ) is an edge in the graph. 

  The indegree of a vertex, v, is the number of edges (u, 
v),  i.e. the number of edges that come “into” v. 
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Topological Ordering 
  A topological ordering of the vertices of a 

DAG G = (V,E) is a linear ordering such that, 
for vertices i, j ∈V, if i is a predecessor of j, 
then i precedes j in the linear order, 
i.e. if there is a path from vi to vj, then vi 
comes before vj in the linear order 
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Topological Sort 
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TopSort Example 
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Running Time of  TopSort 

1.  At most, each vertex is enqueued just once, so 
there are O(|V| ) constant time queue 
operations. 

2.  The body of the for loop is executed at most 
once per edges = O( |E| ) 

3.  The initialization is proportional to the size of the 
graph if adjacency lists are used and so is 
 O( |E| + |V| ) 

4.  The total running time is therefore O ( |E| + |V| ) 


