
CMSC 341

Disjoint Sets

Textbook Chapter 8

Equivalence Relations

  A relation R is defined on a set S if for every
pair of elements (a, b) with a,b ∈ S, a R b is
either true or false. If a R b is true, we say
that “a is related to b”.

  An equivalence relation is a relation R that
satisfies three properties
  (Reflexive) a R a for all a ∈ S
  (Symmetric) a R b if and only if b R a
  (Transitive) a R b and b R c implies that a R c

UMBC CMSC 341 DisjointSets 2

Equivalence Relation Examples

  =, but not ≤
  Students with the same eye color
  All cities in the same country
  Computers connected in a network

UMBC CMSC 341 DisjointSets 3

Equivalence Classes

  The equivalence class for an element a ∈ S
is the subset of S that contains all the
elements that are related to a.

  The subsets that represent the equivalence
classes will be “disjoint”

  Example
  All students in CMSC 341 who are juniors

UMBC CMSC 341 DisjointSets 4

UMBC CMSC 341 DisjointSets 5

Equivalence Relation Application
  Suppose we have an application involving N

distinct items. We will not be adding new
items, nor deleting any items. Our application
requires us to use an equivalence relation to
partition the items into a collection of
equivalence classes (subsets) such that:
  each item is in a set,
  no item is in more than one set.

  Examples
  Classify UMBC students according to class rank.
  Classify CMSC 341 students according to GPA.

UMBC CMSC 341 DisjointSets 6

Disjoint Set Terminology
  We identify a set by choosing a

representative element of the set. It
doesn’t matter which element we choose,
but once chosen, it can’t change.

  There are two operations of interest:
  find (x) -- determine which set x is in. The return value

is the representative element of that set
  union (x, y) -- make one set out of the sets containing

x and y.

  Disjoint set algorithms are sometimes
called union-find algorithms.

UMBC CMSC 341 DisjointSets 7

Disjoint Set Example

Given a set of cities, C, and a set of roads, R, that
connect two cities (x, y) determine if it’s possible
to travel from any given city to another given city.

 for (each city in C)
 put each city in its own set
 for (each road (x,y) in R)
 if (find(x) != find(y))
 union(x, y)

Now we can determine if it’s possible to travel by
road between two cities c1 and c2 by testing

 find(c1) == find(c2)

UMBC CMSC 341 DisjointSets 8

Up-Trees

  A simple data structure for implementing
disjoint sets is the up-tree.

A

H

W

H, A and W belong to the same
set. H is the representative.

B

X

R

F

X, B, R and F are in the same
set. X is the representative.

UMBC CMSC 341 DisjointSets 9

Operations in Up-Trees

find() is easy. Just follow pointer to representative
element. The representative has no parent.

find(x)
{

 if (parent(x)) // not the representative
 return(find(parent(x));

 else
 return (x); // representative

}

UMBC CMSC 341 DisjointSets 10

Union

  Union is more complicated.

  Make one representative element point to
the other, but which way?
 Does it matter?

  In the example, some elements are now
twice as deep as they were before.

UMBC CMSC 341 DisjointSets 11

Union(H, X)

A

H

W B

X

R

F

A

H

W B

X

R

F

X points to H.

B, R and F are
now deeper.

H points to X.

A and W are
now deeper.

UMBC CMSC 341 DisjointSets 12

A Worse Case for Union

Union can be done in O(1), but may cause find
to become O(n).

A B C D E

Consider the result of the following sequence of operations:

 Union (A, B)
 Union (C, A)
 Union (D, C)
 Union (E, D)

UMBC CMSC 341 DisjointSets 13

Array Representation of Up-tree

  Assume each element is associated with an
integer i = 0…n-1. From now on, we deal only
with i.

  Create an integer array, s[n]
  An array entry is the element’s parent
  s[i] = -1 signifies that element i is the

representative element.

UMBC CMSC 341 DisjointSets 14

Union/Find with an Array

Now the union algorithm might be:
 public void union(int root1, int root2) {
 s[root2] = root1; // attaches root2 to root1
 }

The find algorithm would be
 public int find(int x) {
 if (s[x] < 0)
 return(x);
 else
 return(find(s[x]));
 }

UMBC CMSC 341 DisjointSets 15

Improving Performance

  There are two heuristics that improve the
performance of union-find.
  Path compression on find
  Union by weight

UMBC CMSC 341 DisjointSets 16

Path Compression
Each time we find() an element E, we make all

elements on the path from E to the root be
immediate children of root by making each element’s
parent be the representative.

 public int find(int x) {

 if (s[x]<0)
 return(x);
 s[x] = find(s[x]); // new code
 return (s[x]);
 }
When path compression is used, a sequence of m

operations takes O(m lg n) time. Amortized time is
O(lg n) per operation.

UMBC CMSC 341 DisjointSets 17

“Union by Weight” Heuristic
Always attach the smaller tree to larger tree.
public void union(int root1, int root2) {
 rep_root1 = find(root1);
 rep_root2 = find(root2);
 if(weight[rep_root1] < weight[rep_root2]){
 s[rep_root1] = rep_root2;
 weight[rep_root2]+= weight[rep_root1];
 }
 else {
 s[rep_root2] = rep_root1;
 weight[rep_root1] += weight[rep_root2];
 }
}

UMBC CMSC 341 DisjointSets 18

Performance with Union by Weight
  If unions are performed by weight, the depth of

any element is never greater than lg N.
  Intuitive Proof:

  Initially, every element is at depth zero.
  An element’s depth only increases as a result of a union

operation if it’s in the smaller tree in which case it is
placed in a tree that becomes at least twice as large as
before (union of two equal size trees).

  Only lg N such unions can be performed until all
elements are in the same tree

  Therefore, find() becomes O(lg n) when union by
weight is used -- even without path compression.

UMBC CMSC 341 DisjointSets 19

Performance with Both Optimizations

  When both optimizations are performed a sequence
of m (m ≥ n) operations (unions and finds), takes no
more than O(m lg* n) time.
  lg*n is the iterated (base 2) logarithm of n -- the number of

times you take lg n before n becomes ≤ 1.

  Union-find is essentially O(m) for a sequence of m
operations (amortized O(1)).

UMBC CMSC 341 DisjointSets 20

A Union-Find Application

  A random maze generator can use union-
find. Consider a 5x5 maze:

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

UMBC CMSC 341 DisjointSets 21

Maze Generator

  Initially, 25 cells, each isolated by walls from
the others.

  This corresponds to an equivalence relation
-- two cells are equivalent if they can be
reached from each other (walls been
removed so there is a path from one to the
other).

UMBC CMSC 341 DisjointSets 22

Maze Generator (cont.)

  To start, choose an entrance and an exit.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

UMBC CMSC 341 DisjointSets 23

Maze Generator (cont.)

  Randomly remove walls until the entrance
and exit cells are in the same set.

  Removing a wall is the same as doing a
union operation.

  Do not remove a randomly chosen wall if the
cells it separates are already in the same set.

UMBC CMSC 341 DisjointSets 24

MakeMaze

MakeMaze(int size) {
 entrance = 0; exit = size-1;
 while (find(entrance) != find(exit)) {
 cell1 = a randomly chosen cell
 cell2 = a randomly chosen adjacent cell
 if (find(cell1) != find(cell2)
 union(cell1, cell2)
 }

}

Initial State

Intermediate State

  Algorithm selects wall between 18 and 13. What
happens?

A Different Intermediate State

  Algorithm selects wall between 8 and 13. What
happens?

Final State

