
Red-Black Trees

Definitions
and
Bottom-Up Insertion

UMBC CSMC 341 Red-Black-Trees-1 2

Red-Black Trees

  Definition: A red-black tree is a binary
search tree in which:
  Every node is colored either Red or Black.
  Each NULL pointer is considered to be a Black “node”.
  If a node is red, its two children must be black.
  Every path from a node to a NULL contains the same

number of Black nodes.
  By convention, the root is Black

  Definition: The black-height of a node, X, in
a red-black tree is the number of Black
nodes on any path to a NULL, not counting
X.

UMBC CSMC 341 Red-Black-Trees-1 3

A Red-Black Tree with NULLs shown

Black-Height of the tree (the root) = 3
Black-Height of node “X” = 2

X

UMBC CSMC 341 Red-Black-Trees-1 4

A Red-Black Tree with

Black-Height = 3

UMBC CSMC 341 Red-Black-Trees-1 5

Black Height of the tree?

Black Height of X?

X

UMBC CSMC 341 Red-Black-Trees-1 6

Bottom –Up Insertion

  Insert node as usual in BST
  Color the node Red
  What Red-Black property may be violated?

  Every node is Red or Black?
  NULLs are Black?
  If node is Red, both children must be Black?
  Every path from node to descendant NULL must

contain the same number of Blacks?

8/3/2007 UMBC CSMC 341 Red-Black-Trees-1 7

Bottom Up Insertion
  Insert node;

  Color it Red
  X is pointer to it to be added to the tree

  Cases
0: X is the root -- color it Black
1: Both parent and uncle are Red -- color parent and uncle

Black, color grandparent Red. Point X to grandparent and
check new situation.

2 (zig-zag): Parent is Red, but uncle is Black. X and its parent
are opposite type children -- color grandparent Red, color X
Black, rotate left(right) on parent, rotate right(left) on
grandparent

3 (zig-zig): Parent is Red, but uncle is Black. X and its parent
are both left (right) children -- color parent Black, color
grandparent Red, rotate right(left) on grandparent

UMBC CSMC 341 Red-Black-Trees-1 8

X

P

G

U

P

G

U

Case 1 – U is Red

Just Recolor and move up

X

UMBC CSMC 341 Red-Black-Trees-1 9

X

P

G

U

S X

P G

S
U

Case 2 – Zig-Zag

Double Rotate
 X around P; X around G

Recolor G and X

UMBC CSMC 341 Red-Black-Trees-1 10

X

P

G

U

S P

X G

S U

Case 3 – Zig-Zig

Single Rotate P around G

Recolor P and G

UMBC CSMC 341 Red-Black-Trees-1 11

Asymptotic Cost of Insertion

  O(lg n) to descend to insertion point
  O(1) to do insertion
  O(lg n) to ascend and readjust == worst case

only for case 1

  Total: O(log n)

UMBC CSMC 341 Red-Black-Trees-1 12

11

14

15
2

1 7

5 8

Black node Red node

Insert 4 into this
R-B Tree

UMBC CSMC 341 Red-Black-Trees-1 13

Insertion Practice

Insert the values 2, 1, 4, 5, 9, 3, 6, 7 into an
initially empty Red-Black Tree

UMBC CSMC 341 Red-Black-Trees-1 14

Top-Down Insertion

An alternative to this “bottom-up” insertion is
“top-down” insertion.

Top-down is iterative. It moves down the tree,
“fixing” things as it goes.

What is the objective of top-down’s “fixes”?

UMBC CSMC 341 Red-Black-Trees-1 15

Theorem 1 – Any red-black tree with root x,
has n ≥ 2bh(x) – 1 nodes, where bh(x) is
the black height of node x.

Proof: by induction on height of x.

UMBC CSMC 341 Red-Black-Trees-1 16

Theorem 2 – In a red-black tree, at least half
the nodes on any path from the root to a
NULL must be Black.

Proof – If there is a Red node on the path,
there must be a corresponding Black
node.

Algebraically this theorem means
 bh(x) ≥ h/2

UMBC CSMC 341 Red-Black-Trees-1 17

Theorem 3 – In a red-black tree, no path from any
node, X, to a NULL is more than twice as long as
any other path from X to any other NULL.

Proof: By definition, every path from a node to any
NULL contains the same number of Black nodes.
By Theorem 2, a least ½ the nodes on any such
path are Black. Therefore, there can no more
than twice as many nodes on any path from X to
a NULL as on any other path. Therefore the
length of every path is no more than twice as
long as any other path.

UMBC CSMC 341 Red-Black-Trees-1 18

Theorem 4 –
 A red-black tree with n nodes has height

 h ≤ 2 lg(n + 1).
Proof: Let h be the height of the red-black

tree with root x. By Theorem 2,
 bh(x) ≥ h/2
From Theorem 1, n ≥ 2bh(x) - 1
Therefore n ≥ 2 h/2 – 1
 n + 1 ≥ 2h/2

 lg(n + 1) ≥ h/2
 2lg(n + 1) ≥ h

