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Red-Black Trees 

  Definition: A red-black tree is a binary 
search tree in which: 
  Every node is colored either Red or Black. 
  Each NULL pointer is considered to be a Black “node”. 
  If a node is red, its two children must be black. 
  Every path from a node to a NULL contains the same 

number of Black nodes. 
  By convention, the root is Black 

  Definition:  The black-height of a node, X, in 
a red-black tree is the number of Black 
nodes on any path to a NULL, not counting 
X. 
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A Red-Black Tree with NULLs shown 

Black-Height of the tree (the root) = 3 
Black-Height of node “X” = 2 

X
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A Red-Black Tree with 

Black-Height = 3 
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Black Height of the tree? 

Black Height of X? 

X
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Bottom –Up Insertion 

  Insert node as usual in BST 
  Color the node Red 
  What Red-Black property may be violated? 

  Every node is Red or Black? 
  NULLs are Black? 
  If node is Red, both children must be Black? 
  Every path from node to descendant NULL must 

contain the same number of Blacks? 
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Bottom Up Insertion 
  Insert node;  

  Color it Red 
  X is pointer to it to be added to the tree 

  Cases 
0:  X is the root -- color it Black 
1:  Both parent and uncle are Red -- color parent and uncle 

Black, color grandparent Red. Point X to grandparent and 
check new situation. 

2 (zig-zag): Parent is Red, but uncle is Black. X and its parent 
are opposite type children -- color grandparent Red, color X 
Black, rotate left(right) on parent, rotate right(left) on 
grandparent 

3 (zig-zig):  Parent is Red, but uncle is Black. X and its parent 
are both left (right) children -- color parent Black, color 
grandparent Red, rotate right(left) on grandparent 
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Case 1 – U is Red 

Just Recolor and move up 

X 
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Case 2 – Zig-Zag 

Double Rotate 
   X around P; X around G 

Recolor G and X 
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Case 3 – Zig-Zig 

Single Rotate P around G 

Recolor P and G 
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Asymptotic Cost of  Insertion 

  O(lg n) to descend to insertion point 
  O(1) to do insertion 
  O(lg n) to ascend and readjust == worst case 

only for case 1 

  Total: O(log n) 
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Black node Red node 

Insert 4 into this 
R-B Tree 
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Insertion Practice 

Insert the values 2, 1, 4, 5, 9, 3, 6, 7 into an 
initially empty Red-Black Tree 
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Top-Down Insertion 

An alternative to this “bottom-up” insertion is 
“top-down” insertion. 

Top-down is iterative.  It moves down the tree, 
“fixing” things as it goes. 

What is the objective of top-down’s “fixes”? 
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Theorem 1 – Any red-black tree with root x, 
has  n ≥ 2bh(x) – 1 nodes, where bh(x) is 
the black height of node x. 

Proof: by induction on height of x. 
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Theorem 2 – In a red-black tree, at least half 
the nodes on any path from the root to a 
NULL must be Black. 

Proof – If there is a Red node on the path, 
there must be a corresponding Black 
node. 

Algebraically this theorem means 
    bh( x ) ≥ h/2 
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Theorem 3 – In a red-black tree, no path from any 
node, X, to a NULL is more than twice as long as 
any other path from X to any other NULL. 

Proof:  By definition, every path from a node to any 
NULL contains the same number of Black nodes.  
By Theorem 2, a least ½ the nodes on any such 
path are Black.  Therefore, there can no more 
than twice as many nodes on any path from X to 
a NULL as on any other path.  Therefore the 
length of every path is no more than twice as 
long as any other path. 
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Theorem 4 – 
 A red-black tree with n nodes has height   

                   h ≤ 2 lg(n + 1). 
Proof: Let h be the height of the red-black 

tree with root x. By Theorem 2, 
   bh(x) ≥ h/2 
From Theorem 1, n ≥  2bh(x) - 1 
Therefore n ≥ 2 h/2 – 1 
   n + 1 ≥ 2h/2 

   lg(n  + 1) ≥ h/2 
   2lg(n + 1) ≥ h 


