CMSC 341

Math Review

Exponents

- Identities

$$
\left(\mathbf{X}^{\mathbf{A}}\right)^{\mathbf{B}}=\mathbf{X}^{\mathbf{A B}}
$$

$$
\mathbf{X}^{\mathbf{A}} * \mathbf{X}^{\mathbf{B}}=\mathbf{X}^{\mathbf{A}+\mathbf{B}}
$$

$$
\mathbf{X}^{\mathbf{A}} / \mathbf{X}^{\mathbf{B}}=\mathbf{X}^{\mathbf{A}-\mathbf{B}}
$$

$$
\mathbf{X}^{\mathbf{A}}+\mathbf{X}^{\mathbf{B}} \neq \mathbf{X}^{\mathbf{A}+\mathbf{B}}
$$

Logarithms

- Definition: $\mathrm{N}=\log _{\mathrm{A}} \mathrm{X}$ if and only if $\mathrm{A}^{\mathrm{N}}=\mathrm{X}$
- In this course and text, all logarithms are base 2 unless otherwise noted
- Identities

$$
\begin{aligned}
& \log A^{k}=k \log A \\
& \log A B=\log A+\log B ; \log (A / B)=\log A-\log B
\end{aligned}
$$

Mathematical series

Geometric series:

$$
2^{0}+2^{1} \cdots+2^{N}=\sum_{i=0}^{N} 2^{i}=2^{N+1}-1
$$

$$
\text { An observation: } 2^{N+1}>2^{0}+2^{1} \cdots+2^{N}
$$

$$
\sum_{i=M}^{N} A^{i}= \begin{cases}\frac{A^{N+1}-A^{M}}{A-1} & \text { if } A>1 \\ \frac{A^{M}-A^{N+1}}{1-A} & \text { if } A<1)\end{cases}
$$

Mathematical series (cont.)

Infinite series. Ex. $\quad \sum_{i=0}^{\infty} A^{i}=\lim _{i \rightarrow \infty} \frac{1-A^{i+1}}{1-A}=\frac{1}{1-A}(A<1)$

$$
\begin{gathered}
S=1+A+A^{2}+A^{3}+A^{4} \cdots \\
A S=A+A^{2}+A^{3}+A^{4}+A^{5} \cdots \\
S-A S=1, \text { then } S=1 /(1-A)
\end{gathered}
$$

Other series:

$$
\sum_{i=1}^{N} i=\frac{N(N+1)}{2} \approx \frac{N^{2}}{2} ; \quad \sum_{i=1}^{N} i^{2}=\frac{N(N+1)(2 N+1)}{6} \approx \frac{N^{3}}{3}
$$

Proof by induction

Three steps: to prove a theorem $\mathrm{F}(\mathrm{N})$ for any positive integer N Step 1: Base case: prove $\mathrm{F}(1)$ is true
there may be different base cases (or more than one base)
Step 2: Hypothesis: assume $F(k)$ is true for any $k>=1$
(it is an assumption, don't try to prove it)
Step 3: Inductive proof:
prove that if $\mathrm{F}(\mathrm{k})$ is true (assumption) then $\mathrm{F}(\mathrm{k}+1)$ is true
$\mathrm{F}(1)$ from base case
$\mathrm{F}(2)$ from $\mathrm{F}(1)$ and inductive proof
$F(3)$ from $F(2)$ and inductive proof
$F(k+1)$ from $F(k)$ and inductive proof

Proof by induction

Ex., show that

$$
\sum_{i=1}^{N} i^{2}=\frac{N(N+1)(2 N+1)}{6}
$$

Base case: $\mathrm{N}=$
LHS: $\sum_{i=1}^{1} i^{2}=1$.
RHS:
$1 \cdot(1+1) \cdot(2 \cdot 1+1) / 6=1$
The theorem holds.

Hypothesis: assume
$\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
holds for any $n \geq 1$.

Inductive proof

$$
\begin{aligned}
\sum_{i=1}^{n+1} i^{2} & =\sum_{i=1}^{n} i^{2}+(n+1)^{2} \\
& =\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2}
\end{aligned}
$$

$$
=\frac{(n+1)(n(2 n+1)+6(n+1))}{6}
$$

$$
=\frac{(n+1)\left(2 n^{2}+7 n+6\right)}{6}
$$

$$
=\frac{(n+1)(n+2)(2 n+3)}{6}
$$

$$
=\frac{(n+1)((n+1)+1)(2(n+1)+1)}{6}
$$

exercise

Fibonacci numbers:

- $0,1,1,2,3,5,8,13, \ldots$
- Formal definition:

$$
F(0)=0 ; F(1)=1 ; F(\mathrm{n})=F(\mathrm{n}-1)+F(\mathrm{n}-2) \text { for } \mathrm{n}>1 .
$$

Show that $\sum_{i=1}^{N} F(i)=F(N+2)-1$
(We showed this in class.)

