- 1. Define "binomial tree".
- 2. Prove that binomial tree B_k has exactly 2^k nodes.
- 3. Define "binomial queue".
- 4. Prove that a binomial queue with N nodes contains node more than $\lceil \log N \rceil$ nodes.
- 5. Explain how to merge two binomial queues.
- 6. Explain how to insert an item into a binomial queue.
- 7. Explain how to delete the minimum item from a binomial queue.
- 8. Prove that binomial tree B_k has binomial trees $B_0, B_1, \ldots, B_{k-1}$ as children of the root.
- 9. Show that N inserts into an initially empty binomial queue take O(N) time in the worst case.