
CMSC 313, Spring 2011
Writing Y86 Assembly Code

Assigned: Wednesday April-27
Due: Wednesday May 11, 11:59PM

1 Introduction

In this lab, you will write three programs in Y86 assembly language and then assemble and simulate execu-
tion of your code using the Y86 tools provided with the project handout. A description of each program is
given below.

2 Logistics

This is an individual assignment.

Any clarifications and revisions to the assignment will be posted on the project description page. A discus-
sion board for this project is also available for your questions.

3 Handout Instructions

1. Start by copying the filearchlab-handout.tar from the course’s public directory
/afs/umbc.edu/users/c/m/cmsc313/pub/
to a (protected) directory in which you plan to do your work.

2. Then give the command:tar xvf archlab-handout.tar . This will cause the following files
to be unpacked into the directory:README,Makefile , sim.tar , archlab.ps ,archlab.pdf ,
andsimguide.pdf .

3. Next, give the commandtar xvf sim.tar . This will create the directorysim , which contains
your personal copy of the Y86 tools. You will be doing all of your work inside this directory.

4. Finally, change to thesim directory and build the Y86 tools:

unix> cd sim
unix> make clean; make

1

4 The Y86 programs you will write

You will be working in directorysim/misc in this part.

Your task is to write and simulate the following three Y86 programs. The required behavior of these pro-
grams is defined by the example C functions inexamples.c . Be sure to put your name and UMBC email
ID in a comment at the beginning of each program.

sum.ys: Iteratively sum linked list elements

Write a Y86 program namedsum.ys that iteratively sums the elements of a linked list. Your program
should consist of a main routine that invokes a Y86 function (sum list) that is functionally equivalent to
the Csum list function in Figure 1. Test your program using the following three-element list:

Sample linked list
.align 4
ele1:

.long 0x00a

.long ele2
ele2:

.long 0x0b0

.long ele3
ele3:

.long 0xc00

.long 0

rsum.ys: Recursively sum linked list elements

Write a recursive version ofsum.ys namedrsum.ys that recursively sums the elements of a linked list.

Your program should consist of a main routine that invokes a recursive Y86 function (rsum list) that is
functionally equivalent to thersum list function in Figure 1. Test your program using the same three-
element list you used for testinglist.ys .

copy.ys: Copy a source block to a destination block

Write a program namedcopy.ys that copies a block of words from one part of memory to another(non-
overlapping area) area of memory, computing the checksum (xor) of all the words copied.

Your program should consist of a main routine that calls a Y86function (copy block) that is functionally
equivalent to thecopy block function in Figure 1.

Test your program using the following three-element sourceand destination blocks:

2

1 / * linked list element * /
2 typedef struct ELE {
3 int val;
4 struct ELE * next;
5 } * list_ptr;
6

7 / * sum_list - Sum the elements of a linked list * /
8 int sum_list(list_ptr ls)
9 {

10 int val = 0;
11 while (ls) {
12 val += ls->val;
13 ls = ls->next;
14 }
15 return val;
16 }
17

18 / * rsum_list - Recursive version of sum_list * /
19 int rsum_list(list_ptr ls)
20 {
21 if (!ls)
22 return 0;
23 else {
24 int val = ls->val;
25 int rest = rsum_list(ls->next);
26 return val + rest;
27 }
28 }
29

30 / * copy_block - Copy src to dest and return xor checksum of src * /
31 int copy_block(int * src, int * dest, int len)
32 {
33 int result = 0;
34 while (len > 0) {
35 int val = * src++;
36 * dest++ = val;
37 result ˆ= val;
38 len--;
39 }
40 return result;
41 }

Figure 1:C versions of the Y86 solution functions. See sim/misc/examples.c

3

.align 4
Source block
src:

.long 0x00a

.long 0x0b0

.long 0xc00

Destination block
dest:

.long 0x111

.long 0x222

.long 0x333

Assembling and running your code

Once you have written one or more of your. ys files, assemble them using the command Y86 assembler.
For example,

unix> yas copy.ys

When your code assembles without erorrs, a. yo file will be created. Execute your program using the Y86
simulator. For example,

unix> yis copy.yo

5 Evaluation

This project is worth 45 points, 15 points for each Y86 program. Ten (10) points are awarded for correctness,
including proper handling of the%ebp stack frame register and functional equivalence with the example
C functions inexamples.c . Five (5) points are reserved for our subjective evaluationof your code and
comments.

The programssum.ys andrsum.ys will be considered correct if their respectivesum list andrsum list
functions return the sum0xcba in register%eax.

The programcopy.ys will be considered correct if itscopy block function returns the sum0xcba in
register%eax, and copies the three words0x00a , 0x0b , and0xc to the 12 contiguous memory locations
beginning at addressdest .

6 Handin Instructions

• You will be handing in three files:sum.ys , rsum.ys , andcopy.ys .

• Make sure you have included your name and UMBC email ID in a comment at the top of each of your
files.

4

• To handin your files go to yourarchlab-handout directory and modify theMakefile by re-
placing the default student ID with your UMBC email ID. Then simply type the command

Unix> make handin

• After the handin, if you discover a mistake and want to submita revised copy, type

unix make handin VERSION=2

Keep incrementing the version number with each submission.

• You can verify your handin by looking in

/afs/umbc.edu/users/c/m/cmsc313/pub/Proj6/

You have list and insert permissions in this directory, but no read or write permissions.

7 Hints

• Begin by carefully reading and understanding the C versionsof the functions provided.

• Compile/sim/misc/examples.c and view the IA32 versions of these functions.

• Use the IA32 assembly code as a starting point and modify it toY86 assembly as necessary

5

