
10/20/2015

1

C Language IV

CMSC 313

Sections 01, 02

C Parameter Passing Notes

• We'll say formal parameter vs actual parameter.

• Formal parameters are place holders in function definition.

• Actual parameters (aka arguments) actually have a value.

• In C, all parameters are passed by value.

• Parameter passing by reference is simulated by passing the

address of the variable.

scanf("%d", &n) ;

• Array names represent the address of the array. In effect, arrays

are passed by reference.

int UpdateArray (int A[], int n) {

A[0] += 5 ;

...

Adapted from Dennis Frey CMSC 313 Spring 2011

Characters, Strings & Pointers

Adapted from Richard Chang, CMSC 313 Spring 2013

10/20/2015

2

Strings revisited

Recall that a string is represented as an array of characters
terminated with a null (\0) character.

As we’ve seen, arrays and pointers are closely related. A
string constant may be declared as either

char[] or char *

as in

char hello[] = “Hello Bobby”;

or (almost) equivalently

char *hi = “Hello Bob”;

A typedef could also be used to simplify coding
typedef char* STRING;

STRING hi = “Hello Bob”;

Arrays of Pointers

Since a pointer is a variable type, we can create an array of pointers
just like we can create any array of any other type.

Although the pointers may point to any type, the most common use

of an array of pointers is an array of char* to create an array of

strings.

Boy’s Names

A common use of an array of pointers is to create an array of strings.
The declaration below creates an initialized array of strings (char

*) for some boys names. The diagram below illustrates the

memory configuration.

char *name[] = { "Bobby", "Jim", "Harold" };

B o b b y \0

J i m \0

H a r o l d \0

name:

0

1

2

10/20/2015

3

10/20/2015

4

Command Line Arguments

Command line arguments:

./a.out breakfast lunch dinner

These arguments are passed to your program as parameters to main.

int main(int argc, char *argv[])

argc is the number of command line arguments

argv is an array of argc strings

argv[0]is always the name of your executable program.

The rest of argv[] are the remaining strings on the command line.

10/20/2015

5

Command Line Arguments (2)

Example, with this command at the Linux prompt:

myprog hello world 42

we get

argc = 4

argv[0]

argv[1]

argv[2]

argv[3]

= "myprog"

= "hello"

= "world"

= "42"

Note: argv[3] is a string NOT an integer. Convert using atoi():

int answer = atoi(argv[3]);

structs & Pointers

Adapted from Richard Chang, CMSC 313 Spring 2013

Reminder

You can't use a pointer until it points to something

Just declaring a variable to be a pointer is not enough

int *name; /* pointer declaration */

int age = 42;

*name += 12;

printf("My age is %d\n", *name);

10/20/2015

6

Pointers to Pointers

A pointer may point to another pointer.

Consider the following declarations

int age = 42; /* an int */

int *pAge = &age; /* a pointer to an int */

int **ppAge = &pAge;/* pointer to pointer to int */

Draw a memory picture of these variable and their relationships

What type and what value do each of the following represent?

age, pAge, ppAge, *pAge, *ppAge, **ppAge

pointers2pointer.c

int main ()

{

/* a double, a pointer to double,

** and a pointer to a pointer to a double */

double gpa = 3.25, *pGpa, **ppGpa;

/* make pgpa point to the gpa */

pGpa = &gpa;

/* make ppGpa point to pGpa (which

ppGpa = &pGpa;

points to gpa) */

// what

printf(

is the output from this printf statement?

"%0.2f, %0.2f, %0.2f", gpa, *pGpa, **ppGpa);

return 0;

}

Pointers to struct

typedef

char

char

struct student {

name[50];

major [20];

double gpa;

} STUDENT;

STUDENT

STUDENT

bob = {"Bob Smith", "Math", 3.77};

sally = {"Sally", "CSEE", 4.0};

STUDENT *pStudent; /* pStudent is a "pointer to struct student" */

pStudent = &bob; /* make pStudent point to bob */

/* use

printf

printf

-> to access the members */

("Bob's name: %s\n", pStudent->name);

("Bob's gpa : %f\n", pStudent->gpa);

/* make pStudent point to sally */

pStudent = &sally;

printf ("Sally's name: %s\n", pStudent->name);

printf ("Sally's gpa: %f\n", pStudent->gpa);

10/20/2015

7

Pointer in a struct

The data member of a struct can be a pointer

FNSIZE 50

LNSIZE 40

struct name

first[

last [

FNSIZE

LNSIZE

+ 1];

+ 1];

#define

#define

typedef

{

char

char

} NAME;

struct persontypedef

{

NAME *pName; // pointer to NAME struct

int age;

double gpa;

} PERSON;

Pointer in a struct (2)

Given the declarations below, how do we access bob's name, last name,
and first name?

Draw a picture of memory represented by these declarations

NAME bobsName = {"Bob", "Smith"};

PERSON bob;

bob.age =

bob.gpa =

bob.pName

42;

3.4;

= &bobsName;

Self-referencing structs

Powerful data structures can be created when a data member of a
struct is a pointer to a struct of the same kind.

The simple example on the next slide illustrates the technique.

10/20/2015

8

teammates.c

typedef struct player

{

char name[20];

teammate;/ can' t use TEAMMATE yet */struct player

} TEAMMATE;

TEAMMATE *team,

team = &bob;

bob, harry, john;

/* first player */

strncpy(bob.name, "bob", 20);

bob.teammate = &harry; /* next teammate */

strncpy(harry.name, "harry", 20);

harry.teammate = &john;

strncpy(john.name, "bill",

/* next

20);

teammate */

john.teammate = NULL: /* last teammate */

teammates.c (cont'd)

/* typical code to print a (linked) list */

/* follow the teammate pointers until

** NULL is encountered */

// start

TEAMMATE

with first player

*t = team;

there are more players...

!= NULL)

// while

while (t

{

printf("%s\n", t->name);

// next player

t = t->teammate;

}

Const Pointers

Adapted from Richard Chang, CMSC 313 Spring 2013

10/20/2015

9

CONST POINTERS

4 ways to declare pointers in combination with const:

int *ptr ; // no restriction

const int *ptr ; // can't change *ptr

int * const ptr ; // can't change ptr

const int * const ptr ; // can't change either

Mostly used with formal parameters.

10/20/2015

10

