x86 Assembly Language Il

CMSC 313
Sections 01, 02

9/10/2015

Recap i386 Basic Architecture

+ Registers are storage units inside the CPU.
* Registers are much faster than memory.
» 8 General purpose registers in i386:
— EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP
— can access subparts of EAX, EBX, ECX and EDX via
special names (e.g., EAX>AX->{AH,AL})
» The instruction pointer (EIP) points to (i.e., contains
addr of) machine code to be executed next.
» Typically, data moves from memory to registers, is
processed, moves from registers back to memory.
» Different addressing modes used.
2 UMBC, CMSC313, Richard Chang <chang@umbc.edu>
intgl. BASIC EXECUTION ENVIRONMENT
E&Bﬁ";ﬁ*' General-Purpose Registers.
A
EFLAGS Regster
EIP (Instruction Pointer Register)
Fpu Regstrs
P ———
Cortro Regster o sererted, Use
Sans Regleter ‘extension mechanism, a
[ty
[——
FPU Instruction Poirter Register
FPU Data (Operand) Pointer Register
3

Eigh 12851 s
Regsters MM Regist

General-Purpose Registers
5 87 165 3260t
A A ax eax
B[B] ex esx
o | ox eex
o[o] ox eox
eep
El Esi
o eol
Ed =3

Figure 34, Alternate General-Purpose Register Names

9/10/2015

= EAX—Accumulator for operands and results data.

EBX_Pointer to data i the DS segment
ECX-— Counter for siring and loop operations.
EDX—1/O pointer.

ESI—Painter to data in the segment pointed to by the DS register; Source pointer for sting
operations.®

* EDI—Pointer to data (or destination) in the seqment pointed 1o by the ES regiser;
destination pointer for string operations.

ESPStack pointer (in the S segment).
EBP—Pointer to data on th stack (i the S5 segmen).

toupper.asm

* Use Linux system call to output prompt.
» Use Linux system call to get user input.
» Scan each character of user input and convert all
lower case characters to upper case.
* Learn how to:
— work with 8-bit data
— specify ASCII constant
— compare values
— do loop control

* Use gdb to trace execution

B UMBC, CMSC313, Richard Chang <chang@umbe.edu>

[Show source of toupper.asm]

9/10/2015

GDB Debugger

Debugging Assembly Language
Programs

* Cannot just put print statements everywhere.

* Usegdb to:

— examine contents of registers
— examine contents of memory
— set breakpoints
— single-step through program
« READ THE GDB SUMMARY ONLINE!

UMBC, CMSC313, Richard Chang <chang@umbe. edu>

Summary of gdb commands, pl
[Command [Example Descripon

Run

quit

cont

break [addr] break *_start+5
delete [n] delete 4

Delete

info break

list _start

list 7

list 7, 20

10

start program

quit out of gdb

continue execution after a break
sets a breakpoint

removes nth breakpoint
removes all breakpoints

lists all breakpoints

list a few lines of the source code around
_start

list 10 lines of the source code starting on
line 7

list lines 7 thru 20 of the source code

9/10/2015

Summary of

gdb commands, p2

Stepi

stepi [n] stepi 4
Nexti

nexti [n] nexti 4
where

disas [addr] disas _start

execute next instruction
execute next n instructions

execute next instruction, stepping over
function calls

execute next n instructions, stepping over
function calls

show where execution halted
disassemble instructions at given address

Summary of gdb commands, p3
[Command Example Descripton

info registers

print/d [expr] print/d $ecx
print/x [expr] print/x $ecx
print/t [expr] print/t $ecx
X/NFU [addr] x/12xw &msg

display [expr] display $eax

info display
undisplay [n] undisplay 1

12

dump contents of all registers
print expression in decimal
print expression in hex

print expression in binary

Examine contents of memory in given
format

automatically print the expression each time
the program is halted

show list of automatically displays
remove an automatic display

