VQG	Assem	hlv	langi	1200
XAN				

CMSC 313 Sections 01, 02

1.5 Historical Development

- Moore's Law (1965)
 - Gordon Moore, Intel founder
 - "The density of transistors in an integrated circuit will double every year."
- · Contemporary version:
 - "The density of silicon chips doubles every 18 months."

But this "law" cannot hold forever ...

2

1.5 Historical Development

- Rock's Law
 - Arthur Rock, Intel financier
 - "The cost of capital equipment to build semiconductors will double every four years."
 - In 1968, a new chip plant cost about \$12,000.

At the time, \$12,000 would buy a nice home in the suburbs.

An executive earning \$12,000 per year was "making a very comfortable living."

3

1.5 mistorical Development	1.5	Historica	I Development
----------------------------	-----	-----------	---------------

Rock's Law

- In 2012, a chip plants under construction cost well over \$5 billion.

\$5 billion is more than the gross domestic product of some small countries, including Barbados, Mauritania, and Rwanda.

- For Moore's Law to hold, Rock's Law must fall, or vice versa. But no one can say which will give out first.

Intel Processor	Date Intro- duced	Max. Clock Frequency/ Technology at Introduction	Tran- sistors	Register Sizes ¹	Ext. Data Bus Size ²	Max. Extern. Addr. Space	Cact
9096	1979	EM4z	29 K	16GP	16	1MB	None
PAN 296	1982	12.5 MHz	194 K	1600	16	10160	Note 2
Intelligi DX Processor	1985	20184	275 K	32-GP	32	468	Note 3
insielii DX Processor	1989	25184c	1.2 M 32GP 80FPU		32	e GB	Ltsk
Persium Processor	1993	6018-b	31M 32GP 80FPU		64	468	L1169
Pentium Pro Processor	1995	20018-0	55M	32/GP 80FPU	64	61 (22	L1: 16:4 L2: 256 or 5121
Pentium II Processor	1997	266 1842	756	SOSP BOFPU GUMBK	64	64 02	L1:321 L2:256 or 5121
Persium II Processor	1999	500 MHz	82M	SUGP BOFPU 64MM 128 XMM	64	64 (28	L1: 32:6 L2: 512 KB
Persium II and Persium II Xeon Processors	1999	700 MHz	28 M	SUGP SUFPU SUMME 128 XMM	64	61 02	LY 321 L2 256 KB
Pentium 4 Processor	2000	1.50 GHz, treal Nesfaunz Microarchitecture	eu	SUGP SUFPU SUMME 128 XMM	64	64 02	Tak ya Execut Trace (LT 995 256 KG
Intel Xeon Processor	2001	170 GHz, treal Nesfausz Microarchitecture	eu	32/GP 80/FPU 64/M8X 128 XMM	64	64 02	Take of Cascus Trace C L1 995 S10938
Intel Xeon Processor	2002	2.20 GPC BISS Nessure Microschitecture, HignerThreading Technology	SS M	92/GP 90/FPU 64/MdX 129/XMM	64	64 02	Tak yaş Çwacus Trace C L1: 895 S12958
Pentium MiProcessor	2009	1 80 GHz, tred NetSurst Microarchitecture	77 M	22/GP 80/FPU 64/M8X 128/MM	ů4	+60	L1: 6600 L2:1 MS
goal Perdum 4 Processor Supporting Hyper- Threading Technology at 90 nm process	2004 S.A) GHC, IIIIII Nothurst Microsochiecture, HigherThreading Technology		SSM	32-GP BOFPU 64 MBdX 128 XMM	64	64 GB	Takes Trace C L1: 160 MB

NOTE:

1. The register size and external data bus size are given in bits. Note also that each 32-bit general-purpose (GP) registers can be addressed as an 8-or a 16-bit data registers in all of the processors.

2. Internal data paths are 2 to 4 times wider than the external data bus for each processor.

Table 2-1. Key Features of Most Recent IA-32
Processors

Intel Processor	Date Intro- duced	Micro- architecture	Top-Bin Clock Fre- quency at Intro- duction	Tran- sistors	Register Sizes ²	m Bus Band- width	Max. Extern. Addr. Space	On-Die Caches ²
Inel Persun M Processor 756 ²	2004	Intel Pendum M Processor	2.00 GHz	140 M	GP: 32 FPU: 80 MMX: 64 XMM: 128	3.2 GE/s	4 GB	15 64 100 12 2 100
tras Core Duo Processo r T3600 ^p	2006	Improved Imal Pendum MProcessor Microarchitecture; Dual Cone; Isaal Simart Cache, Advanced Thermal Manager	2160%	15284	GP: 32 FPU: 80 MMX: 64 XMMX: 128	5.3 GEN	4 GB	LT GERSE LZ Z MB (JMB Tasa)
Insel Asom Processor/Zlies series	2008	Issel Asses Microarchitecture; Issel Virtualization Technology.	1.86 GHz - 800 MHz	eu	GP: 32 FPU: 80 MMC: 64 XMR: 128	Up to 4.2 GB/s	4 GB	L1:5693 ⁴ L2:51393

		Ma 2.2	. Key Feature	o of Most	Donnet	Total 64 De		Control	
	Intel		Micro-				System		On-Die
	Processor	Intro-	architec-ture	Fre-	sistor	Sizes	Bus/QP	Extern	Caches
		duced		quency	s		I Link	. Addr.	
				at Intro-			Speed	Space	
				duction					
	Intel Core/7-	2010	Intel Turbo Boost	266 GHz	383 M	GP: 32, 64		er ce	L1:64 KB
	600M Processor		Technology, Issel microarchitecture			FPU: 80 MMX: 64			L2: 256KB L3: 4MB
	Plocessor		coderame			3885 128			DC 4000
			Westnerk Dualcork						
	l		HiperThreading						
			Technology, Ireal 64 Architecture:						
			Intel Virtualization						
			Technology, Integrated graphics						
	Intel Nego-	2010	Inter Turbo Boost	3.33 GHz	1.18	GP:30:64	QP1 6.4	119	L1:64KB
	Processor5690		Technology, Irani			FPU: 80	GTh: 32		L2: 256KB
			microarchitecture			M0C 64	gay.		LX:1269
						38Mt 128	UM4		Lo. Izene
			Westners; Six conv.						
			HyperThreading						
			Technology, Ireal 64 Architecture:						
			Intel Vinualization Technology						
	Intel Nego-	2010	Ineri Turbo Boost	236 GHz	2.59	GP:32.64	QP1 6.4	16 TR	L1:64KB
	Processor7560		Technology, Intel				GTIs;		L2: 250KB
			microsor Navarana			Mar or	Memory 76		10.088
			code name Nehalem;			38Mt 128	GBN		
			Eight core;						
			HigherThreading Technology Intel 64						
			Architecture;						
			Intel Vinualization Technology						
	Intel Core/2-	2011	Iren Turbo Boost	3.40 GHz	965M	GP:32.64	DM: 5 GT/s:	64.58	L1:64KB
	20000	1	Technology, Ireal			CDITAL	Memory 21	1	10-05040
	Processor	1	microarchitecture			M00: 64	GB/s		L3: SMB
		1	code name Sandy Bridger Four core:			3886 128 1886 156			
			HiperThreading			18Mt 256			
			Technology; Irsel 64 Architecture:						
			Intel Virtualization						
			Technology.						
			Processorgraphics, Quickeync Video						
	Intel Xeon-	2011	Intel Turbo Roost	3.50 GHz		GP:32,64	DM: SGT/s;	119	L1:64 KB
	ProcessorE3-		Technology, Irani			FPU: 80	Memory 21		L2: 256KB
7	1290	1	microarchitecture code name Sandy			MMC 64 38MC 128	GBN		LX: SMB
		1	Bridge: Four core:			18Mt 256			
			HyperThreading Technology; Irsel 64						

1.8 The von Neumann Model This is a general depiction of a von Neumann system: These computers employ a fetch-decode-execute cycle to run programs as follows . . . These computers employ a fetch-decode for the programs as follows . . .

General-Purpose Registers 31 1515 8 2 0 15-bit 32-bit Art AL	
BP St. BY EEX CY ECX CY ECX CY ECX CY ECX EEX CY ECX EEX CY ECX EEX EX EEX EX EX	
G ESP ESP Figure 3-4. Alternate General-Purpose Register Names	
10	
]
EAX—Accumulator for operands and results data.	
EBX.—Pointer to data in the DS segment. ECX.—Counter for uring and loop operations. EDX.—O pointer. ESS.—Pointer to data in the segment pointed to by the DS register; source pointer for rating	
operations. Y • EIX—Positor to data (or destination) in the segment pointed to by the ES register; destination pointer for strain operations. • ESS—Suck pointer (to ES Segment).	
EBP—Pointer to data on the stack (in the SS segment).	
п	
	1
"Hello World" in Linux Assembly	
 Use your favorite UNIX editor (vi, emacs, pico,) 	
Assemble using NASM on	
gl.umbc.edu nasm -f elf hello.asm • NASM documentation is on-line.	
Need to "load" the object	
file ld hello.o • Execute	
• a.out	
12 • CMSC 121 Introduction to UNIX	

	x86 Addressing N	lodes
13		

80x86 Addressing Modes

- We want to store the value 1734h.
- The value 1734h may be located in a register or in memory.
- The location in memory might be specified by the code, by a register, ...
- Assembly language syntax for MOV
 - MOV DEST, SOURCE

14

Notes on Addressing Modes

• More complicated addressing modes later:

MOV EAX, [ESI+4*ECX+12]

- Figures not drawn to scale. Constants 1734h and 08A94068h take 4 bytes (little endian).
- Some addressing modes are not supported by some operations.
- Labels represent addresses not contents of memory.

21