
8/27/2015

1

Introduction, Data Representation I

CMSC 313

Sections 01, 02

[Review of Syllabus, Web pages]

2

Four Components of a Computer System

Adapted fm Silberschatz, Galvin & Gagne, 2013

8/27/2015

2

4

• Computers consist of many things besides

chips.

• Before a computer can do anything worthwhile,

it must also use software.

• Writing complex programs requires a “divide

and conquer” approach, where each program

module solves a smaller problem.

• Complex computer systems employ a similar

technique through a series of virtual machine

layers.

1.6 The Computer Level Hierarchy

5

• Each virtual machine layer

is an abstraction of the level

below it.

• The machines at each level

execute their own particular

instructions, calling upon

machines at lower levels to

perform tasks as required.

• Computer circuits ultimately

carry out the work.

1.6 The Computer Level Hierarchy

6

• Level 6: The User Level

– Program execution and user interface level.

– The level with which we are most familiar.

• Level 5: High-Level Language Level

– The level with which we interact when we write

programs in languages such as C, Pascal, Lisp, and

Java.

1.6 The Computer Level Hierarchy

8/27/2015

3

7

• Level 4: Assembly Language Level

– Acts upon assembly language produced from

Level 5, as well as instructions programmed

directly at this level.

• Level 3: System Software Level

– Controls executing processes on the system.

– Protects system resources.

– Assembly language instructions often pass

through Level 3 without modification.

1.6 The Computer Level Hierarchy

8

• Level 2: Machine Level

– Also known as the Instruction Set Architecture

(ISA) Level.

– Consists of instructions that are particular to the

architecture of the machine.

– Programs written in machine language need no

compilers, interpreters, or assemblers.

1.6 The Computer Level Hierarchy

9

• Level 1: Control Level

– A control unit decodes and executes instructions

and moves data through the system.

– Control units can be microprogrammed or

hardwired.

– A microprogram is a program written in a low-

level language that is implemented by the

hardware.

– Hardwired control units consist of hardware that

directly executes machine instructions.

1.6 The Computer Level Hierarchy

8/27/2015

4

10

• Level 0: Digital Logic Level

– This level is where we find digital circuits (the

chips).

– Digital circuits consist of gates and wires.

– These components implement the mathematical

logic of all other levels.

1.6 The Computer Level Hierarchy

11

• On the ENIAC, all programming was done at

the digital logic level.

• Programming the computer involved moving

plugs and wires.

• A different hardware configuration was needed

to solve every unique problem type.

1.8 The von Neumann Model

Configuring the ENIAC to solve a “simple” problem

required many days labor by skilled technicians.

12

• Inventors of the ENIAC, John Mauchley and

J. Presper Eckert, conceived of a computer

that could store instructions in memory.

• The invention of this idea has since been

ascribed to a mathematician, John von

Neumann, who was a contemporary of

Mauchley and Eckert.

• Stored-program computers have become

known as von Neumann Architecture systems.

1.8 The von Neumann Model

8/27/2015

5

13

• Today’s stored-program computers have the
following characteristics:
– Three hardware systems:

• A central processing unit (CPU)

• A main memory system

• An I/O system

– The capacity to carry out sequential instruction
processing.

– A single data path between the CPU and main memory.

• This single path is known as the von Neumann
bottleneck.

1.8 The von Neumann Model

14

4.3 The Bus

15

• A multipoint bus is shown below.

• Because a multipoint bus is a shared resource,

access to it is controlled through protocols, which

are built into the hardware.

4.3 The Bus

8/27/2015

6

16

• This is a general
depiction of a von
Neumann system:

• These computers
employ a fetch-
decode-execute
cycle to run
programs as
follows . . .

1.8 The von Neumann Model

17

• The control unit fetches the next instruction from memory using
the program counter to determine where the instruction is
located.

1.8 The von Neumann Model

18

• The instruction is decoded into a language that the ALU
can understand.

1.8 The von Neumann Model

8/27/2015

7

19

• Any data operands required to execute the instruction
are fetched from memory and placed into registers
within the CPU.

1.8 The von Neumann Model

20

• The ALU executes the instruction and places results in
registers or memory.

1.8 The von Neumann Model

BASE CONVERSION

21

8/27/2015

8

22

2.1 Introduction

• A bit is the most basic unit of information in a

computer.

– It is a state of “on” or “off” in a digital circuit.

– Sometimes these states are “high” or “low” voltage

instead of “on” or “off..”

• A byte is a group of eight bits.

– A byte is the smallest possible addressable unit of

computer storage.

– The term, “addressable,” means that a particular

byte can be retrieved according to its location in

memory.

2.1 Introduction

• A word is a contiguous group of bytes.

– Words can be any number of bits or bytes.

– Word sizes of 16, 32, or 64 bits are most common.

– In a word-addressable system, a word is the

smallest addressable unit of storage.

• A group of four bits is called a nibble.

– Bytes, therefore, consist of two nibbles: a “high-

order nibble,” and a “low-order” nibble.

23

2.2 Positional Numbering Systems

• Bytes store numbers using the position of each

bit to represent a power of 2.

– The binary system is also called the base-2

system.

– Our decimal system is the base-10 system. It

uses powers of 10 for each position in a number.

– Any integer quantity can be represented exactly

using any base (or radix).

24

8/27/2015

9

25

• The decimal number 947 in powers of 10 is:

• The decimal number 5836.47 in powers of 10 is:

5  10 3 + 8  10 2 + 3  10 1 + 6  10

0

+ 4  10 -1 + 7  10 -2

9  10 2 + 4  10 1 + 7  10 0

2.2 Positional Numbering Systems

26

• The binary number 11001 in powers of 2 is:

• When the radix of a number is something other

than 10, the base is denoted by a subscript.

– Sometimes, the subscript 10 is added for emphasis:

110012 = 2510

1  2 4 + 1  2 3 + 0  2 2 + 0  2 1 + 1  2 0

= 16 + 8 + 0 + 0 + 1 = 25

2.2 Positional Numbering Systems

27

• Because binary numbers are the basis for all data

representation in digital computer systems, it is

important that you become proficient with this radix

system.

• Your knowledge of the binary numbering system

will enable you to understand the operation of all

computer components as well as the design of

instruction set architectures.

2.3 Converting Between Bases

8/27/2015

10

28

• In an earlier slide, we said that every integer value

can be represented exactly using any radix

system.

• There are two methods for radix conversion: the

subtraction method and the division remainder

method.

• The subtraction method is more intuitive, but

cumbersome. It does, however reinforce the ideas

behind radix mathematics.

2.3 Converting Between Bases

29

• Suppose we want to

convert the decimal

number 190 to base 3.

– We know that 3 5 = 243

so our result will be less

than six digits wide. The

largest power of 3 that

we need is therefore 3 4

= 81, and 81  2 =

162.

– Write down the 2 and

subtract 162 from 190,

giving 28.

2.3 Converting Between Bases

30

• Converting 190 to base 3...

– The next power of 3 is

3 3 = 27. We’ll need one

of these, so we subtract

27 and write down the

numeral 1 in our result.

– The next power of 3, 3 2

= 9, is too large, but we

have to assign a

placeholder of zero and

carry down the 1.

2.3 Converting Between Bases

8/27/2015

11

31

• Converting 190 to base 3...

– 3 1 = 3 is again too

large, so we assign a

zero placeholder.

– The last power of 3, 3 0

= 1, is our last choice,

and it gives us a

difference of zero.

– Our result, reading from

top to bottom is:

19010 = 210013

2.3 Converting Between Bases

32

• Another method of converting integers from

decimal to some other radix uses division.

• This method is mechanical and easy.

• It employs the idea that successive division by a

base is equivalent to successive subtraction by

powers of the base.

• Let’s use the division remainder method to again

convert 190 in decimal to base 3.

2.3 Converting Between Bases

33

• Converting 190 to base 3...

– First we take the number

that we wish to convert

and divide it by the radix

in which we want to

express our result.

– In this case, 3 divides

190 63 times, with a

remainder of 1.

– Record the quotient and

the remainder.

2.3 Converting Between Bases

8/27/2015

12

34

• Converting 190 to base 3...

– 63 is evenly divisible by

3.

– Our remainder is zero,

and the quotient is 21.

2.3 Converting Between Bases

35

• Converting 190 to base 3...

– Continue in this way until

the quotient is zero.

– In the final calculation, we

note that 3 divides 2 zero

times with a remainder of

2.

– Our result, reading from

bottom to top is:

19010 = 210013

2.3 Converting Between Bases

36

• The binary numbering system is the most

important radix system for digital computers.

• However, it is difficult to read long strings of binary

numbers -- and even a modestly-sized decimal

number becomes a very long binary number.

– For example: 110101000110112 = 1359510

• For compactness and ease of reading, binary

values are usually expressed using the

hexadecimal, or base-16, numbering system.

2.3 Converting Between Bases

8/27/2015

13

37

• The hexadecimal numbering system uses the

numerals 0 through 9 and the letters A through F.

– The decimal number 12 is C16.

– The decimal number 26 is 1A16.

• It is easy to convert between base 16 and base 2,

because 16 = 24.

• Thus, to convert from binary to hexadecimal, all

we need to do is group the binary digits into

groups of four.

A group of four binary digits is called a hextet

2.3 Converting Between Bases

38

• Using groups of hextets, the binary number

110101000110112 (= 1359510) in hexadecimal is:

• Octal (base 8) values are derived from binary by

using groups of three bits (8 = 23):

Octal was very useful when computers used six-bit words.

If the number of bits is not a

multiple of 4, pad on the left

with zeros.

2.3 Converting Between Bases

39

• Fractional values can be approximated in all

base systems.

• Unlike integer values, fractions do not

necessarily have exact representations under all

radices.

• The quantity ½ is exactly representable in the

binary and decimal systems, but is not in the

ternary (base 3) numbering system.

2.3 Converting Between Bases

8/27/2015

14

40

• Fractional decimal values have nonzero digits to

the right of the decimal point.

• Fractional values of other radix systems have

nonzero digits to the right of the radix point.

• Numerals to the right of a radix point represent

negative powers of the radix:

0.4710 = 4  10 -1 + 7  10 -2

0.112 = 1  2 -1 + 1  2 -2

= ½ + ¼
= 0.5 + 0.25 = 0.75

2.3 Converting Between Bases

41

• As with whole-number conversions, you can use

either of two methods: a subtraction method or an

easy multiplication method.

• The subtraction method for fractions is identical to

the subtraction method for whole numbers.

Instead of subtracting positive powers of the target

radix, we subtract negative powers of the radix.

• We always start with the largest value first, n -1,

where n is our radix, and work our way along

using larger negative exponents.

2.3 Converting Between Bases

42

• The calculation to the

right is an example of

using the subtraction

method to convert the

decimal 0.8125 to

binary.

– Our result, reading

from top to bottom is:

0.812510 = 0.11012

– Of course, this

method works with

any base, not just

binary.

2.3 Converting Between Bases

8/27/2015

15

43

• Using the multiplication

method to convert the

decimal 0.8125 to binary,

we multiply by the radix 2.

– The first product carries

into the units place.

2.3 Converting Between Bases

2.3 Converting Between Bases

• Converting 0.8125 to

binary . . .

– Ignoring the value in

the units place at

each step, continue

multiplying each

fractional part by the

radix.

44

45

• Converting 0.8125 to binary . . .

– You are finished when the

product is zero, or until you

have reached the desired

number of binary places.

– Our result, reading from top

to bottom is:

0.812510 = 0.11012

– This method also works with

any base. Just use the target

radix as the multiplier.

2.3 Converting Between Bases

8/27/2015

16

Convert Base 6 to Base 10

123.456 = ???.?? 10

1236 = 1*62
10 [1*3610] +

2*61
10 [2*610] +

3*60
10 [3*110] =

5110

0.456 = 4*6-1
10 [4*1/610] +

5*6-2
10 [5*1/3610] =

.80555…10

123.456 = 51.80555…10

46

Adapted fromm R. Chang

Convert Base 10 to Base 6

754.9410 = 3254.5 35012 35012 35012...6

754 / 6 = 125 remainder 4

125 / 6 = 20 remainder 5

20 / 6 = 3 remainder 2

3 / 6 = 0 remainder 3

32546 = 3 x 21610 + 2 x 3610 + 5 x 610 + 4 x 110

= 75410

47

Adapted fromm R. Chang

Convert Base 10 to Base 6

.9410 = ???.???6

0.94 x 6 = 5.64 --> 5

0.64 x 6 = 3.84 --> 3

0.84 x 6 = 5.04 --> 5

0.04 x 6 = 0.24 --> 0

0.24 x 6 = 1.44 --> 1

0.44 x 6 = 2.64 --> 2

0.64 x 6 = 3.84 --> 3

0.9410 = 0.5 35012 35012 35012...6

5/6 + 3/36 + 5/216 + 0 + 1/65 + 2/66 = 0.939986282...10

48

Adapted fromm R. Chang

