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Four Components of a Computer System

Adapted fm Silberschatz, Galvin & Gagne, 2013
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• Computers consist of many things besides 

chips.

• Before a computer can do anything worthwhile, 

it must also use software.

• Writing complex programs requires a “divide 

and conquer” approach, where each program 

module solves a smaller problem.

• Complex computer systems employ a similar 

technique through a series of virtual machine 

layers.

1.6 The Computer Level Hierarchy
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• Each virtual machine layer 

is an abstraction of the level 

below it.

• The machines at each level 

execute their own particular 

instructions, calling upon 

machines at lower levels to 

perform tasks as required.

• Computer circuits ultimately 

carry out the work.

1.6 The Computer Level Hierarchy
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• Level 6: The User Level

– Program execution and user interface level.

– The level with which we are most familiar.

• Level 5: High-Level Language Level

– The level with which we interact when we write 

programs in languages such as C, Pascal, Lisp, and 

Java.

1.6 The Computer Level Hierarchy
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• Level 4: Assembly Language Level

– Acts upon assembly language produced from 

Level 5, as well as instructions programmed 

directly at this level.

• Level 3: System Software Level

– Controls executing processes on the system.

– Protects system resources.

– Assembly language instructions often pass 

through Level 3 without modification.

1.6 The Computer Level Hierarchy
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• Level 2: Machine Level

– Also known as the Instruction Set Architecture 

(ISA) Level.

– Consists of instructions that are particular to the 

architecture of the machine.

– Programs written in machine language need no 

compilers, interpreters, or assemblers.

1.6 The Computer Level Hierarchy
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• Level 1: Control Level

– A control unit decodes and executes instructions 

and moves data through the system.

– Control units can be microprogrammed or 

hardwired. 

– A microprogram is a program written in a low-

level language that is implemented by the 

hardware.

– Hardwired control units consist of hardware that 

directly executes machine instructions.

1.6 The Computer Level Hierarchy
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• Level 0: Digital Logic Level

– This level is where we find digital circuits (the 

chips).

– Digital circuits consist of gates and wires.

– These components implement the mathematical 

logic of all other levels.

1.6 The Computer Level Hierarchy
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• On the ENIAC, all programming was done at 

the digital logic level.

• Programming the computer involved moving 

plugs and wires.

• A different hardware configuration was needed 

to solve every unique problem type.

1.8 The von Neumann Model

Configuring the ENIAC to solve a “simple” problem 

required many days labor  by skilled technicians.
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• Inventors of the ENIAC, John Mauchley and   

J. Presper Eckert, conceived of a computer 

that could store instructions in memory.

• The invention of this idea has since been 

ascribed to a mathematician, John von 

Neumann, who was a contemporary of 

Mauchley and Eckert.

• Stored-program computers have become 

known as von Neumann Architecture systems.

1.8 The von Neumann Model
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• Today’s stored-program computers have the 
following characteristics:
– Three hardware systems: 

• A central processing unit (CPU)

• A main memory system

• An I/O system

– The capacity to carry out sequential instruction 
processing.

– A single data path between the CPU and main memory.

• This single path is known as the von Neumann 
bottleneck.

1.8 The von Neumann Model
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4.3 The Bus
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• A multipoint bus is shown below.

• Because a multipoint bus is a shared resource, 

access to it is controlled through protocols, which 

are built into the hardware. 

4.3 The Bus
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• This is a general 
depiction of a von 
Neumann system:

• These computers 
employ a fetch-
decode-execute 
cycle to run 
programs as 
follows . . . 

1.8 The von Neumann Model
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• The control unit fetches the next instruction from memory using 
the program counter to determine where the instruction is 
located.

1.8 The von Neumann Model
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• The instruction is decoded into a language that the ALU 
can understand.

1.8 The von Neumann Model
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• Any data operands required to execute the instruction 
are fetched from memory and placed into registers 
within the CPU.

1.8 The von Neumann Model

20

• The ALU executes the instruction and places results in 
registers or memory.

1.8 The von Neumann Model

BASE CONVERSION

21
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2.1 Introduction

• A bit is the most basic unit of information in a 

computer.

– It is a state of “on” or “off” in a digital circuit.

– Sometimes these states are “high” or “low” voltage 

instead of “on” or “off..”

• A byte is a group of eight bits.

– A byte is the smallest possible addressable unit of 

computer storage.

– The term, “addressable,” means that a particular 

byte can be retrieved according to its location in 

memory.

2.1 Introduction

• A word is a contiguous group of bytes.

– Words can be any number of bits or bytes.

– Word sizes of 16, 32, or 64 bits are most common.

– In a word-addressable system, a word is the 

smallest addressable unit of storage.

• A group of four bits is called a nibble.

– Bytes, therefore, consist of two nibbles: a “high-

order nibble,” and a “low-order” nibble.

23

2.2 Positional Numbering Systems

• Bytes store numbers using the position of each 

bit to represent a power of 2.

– The binary system is also called the base-2 

system.

– Our decimal system is the base-10 system.  It 

uses powers of 10 for each position in a number.

– Any integer quantity can be represented exactly 

using any base (or radix).

24
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• The decimal number 947 in powers of 10 is:

• The decimal number 5836.47 in powers of 10 is:

5  10 3 + 8  10 2 + 3  10 1 + 6  10

0

+ 4  10 -1 + 7  10 -2

9  10 2 + 4  10 1 + 7  10 0

2.2 Positional Numbering Systems
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• The binary number 11001 in powers of 2 is:

• When the radix of a number is something other 

than 10, the base is denoted by a subscript.  

– Sometimes, the subscript 10 is added for emphasis:

110012 = 2510

1  2 4 + 1  2 3 + 0  2 2 + 0  2 1 + 1  2 0 

=   16 +    8   +    0    +     0   +    1    =   25

2.2 Positional Numbering Systems
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• Because binary numbers are the basis for all data 

representation in digital computer systems, it is 

important that you become proficient with this radix 

system.

• Your knowledge of the binary numbering system 

will enable you to understand the operation of all 

computer components as well as the design of 

instruction set architectures.

2.3 Converting Between Bases
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• In an earlier slide, we said that every integer value 

can be represented exactly using any radix 

system.

• There are two methods for radix conversion: the 

subtraction method and the division remainder 

method.

• The subtraction method is more intuitive, but 

cumbersome.  It does, however reinforce the ideas 

behind radix mathematics.

2.3 Converting Between Bases
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• Suppose we want to 

convert the decimal 

number 190 to base 3.

– We know that 3 5 = 243 

so our result will be less 

than six digits wide.  The 

largest power of 3 that 

we need is therefore 3 4

= 81, and          81  2 = 

162.

– Write down the 2 and 

subtract 162 from 190, 

giving 28.

2.3 Converting Between Bases
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• Converting 190 to base 3...

– The next power of 3 is           

3 3 = 27.  We’ll need one 

of these, so we subtract 

27 and write down the 

numeral 1 in our result. 

– The next power of 3, 3 2 

= 9, is too large, but we 

have to assign a 

placeholder of zero and 

carry down the 1.

2.3 Converting Between Bases
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• Converting 190 to base 3...

– 3 1 = 3  is again too 

large, so we assign a 

zero placeholder.

– The last power of 3,  3 0

= 1, is our last choice, 

and it gives us a 

difference of zero.

– Our result, reading from 

top to bottom is:

19010 = 210013

2.3 Converting Between Bases
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• Another method of converting integers from 

decimal to some other radix uses division.

• This method is mechanical and easy.

• It employs the idea that successive division by a 

base is equivalent to successive subtraction by 

powers of the base.

• Let’s use the division remainder method to again 

convert 190 in decimal to base 3.

2.3 Converting Between Bases
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• Converting 190 to base 3...

– First we take the number 

that we wish to convert 

and divide it by the radix 

in which we want to 

express our result.

– In this case, 3 divides 

190   63 times, with a 

remainder of 1.

– Record the quotient and 

the remainder.

2.3 Converting Between Bases
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• Converting 190 to base 3...

– 63 is evenly divisible by 

3.

– Our remainder is zero, 

and the quotient is 21.

2.3 Converting Between Bases
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• Converting 190 to base 3...

– Continue in this way until 

the quotient is zero.

– In the final calculation, we 

note that 3 divides 2 zero 

times with a remainder of 

2.

– Our result, reading from 

bottom to top is:

19010 = 210013

2.3 Converting Between Bases
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• The binary numbering system is the most 

important radix system for digital computers.

• However, it is difficult to read long strings of binary 

numbers -- and even a modestly-sized decimal 

number becomes a very long binary number.

– For example:    110101000110112 = 1359510

• For compactness and ease of reading, binary 

values are usually expressed using the 

hexadecimal, or base-16, numbering system.

2.3 Converting Between Bases
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• The hexadecimal numbering system uses the 

numerals 0 through 9 and the letters A through F.

– The decimal number 12 is C16.

– The decimal number 26 is 1A16.

• It is easy to convert between base 16 and base 2, 

because 16 = 24.

• Thus, to convert from binary to hexadecimal, all 

we need to do is group the binary digits into 

groups of four.

A group of four binary digits is called a hextet

2.3 Converting Between Bases
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• Using groups of hextets, the binary number 

110101000110112 (= 1359510) in hexadecimal is:

• Octal (base 8) values are derived from binary by 

using groups of three bits (8 = 23):

Octal was very useful when computers used six-bit words.

If the number of bits is not a 

multiple of 4, pad on the left 

with zeros.

2.3 Converting Between Bases
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• Fractional values can be approximated in all 

base systems.

• Unlike integer values, fractions do not 

necessarily have exact representations under all 

radices.

• The quantity ½ is exactly representable in the 

binary and decimal systems, but is not in the 

ternary (base 3) numbering system.

2.3 Converting Between Bases
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• Fractional decimal values have nonzero digits to 

the right of the decimal point.

• Fractional values of other radix systems have 

nonzero digits to the right of the radix point.

• Numerals to the right of a radix point represent 

negative powers of the radix:

0.4710 =  4  10 -1 + 7  10 -2

0.112 =  1  2 -1 + 1  2 -2  

=     ½    + ¼
=    0.5 +    0.25 =  0.75

2.3 Converting Between Bases
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• As with whole-number conversions, you can use 

either of two methods: a subtraction method or an 

easy multiplication method.

• The subtraction method for fractions is identical to 

the subtraction method for whole numbers. 

Instead of subtracting positive powers of the target 

radix, we subtract negative powers of the radix.

• We always start with the largest value first, n -1, 

where n is our radix, and work our way along 

using larger negative exponents.

2.3 Converting Between Bases
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• The calculation to the 

right is an example of 

using the subtraction 

method to convert the 

decimal 0.8125 to 

binary.

– Our result, reading 

from top to bottom is:

0.812510 = 0.11012

– Of course, this 

method works with 

any base, not just 

binary.

2.3 Converting Between Bases
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• Using the multiplication 

method to convert the 

decimal 0.8125 to binary, 

we multiply by the radix 2.

– The first product carries 

into the units place.

2.3 Converting Between Bases

2.3 Converting Between Bases

• Converting 0.8125 to 

binary . . .

– Ignoring the value in 

the units place at 

each step, continue 

multiplying each 

fractional part by the 

radix.

44
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• Converting 0.8125 to binary . . .

– You are finished when the 

product is zero, or until you 

have reached the desired 

number of binary places.

– Our result, reading from top 

to bottom is:

0.812510 = 0.11012

– This method also works with 

any base. Just use the target 

radix as the multiplier.

2.3 Converting Between Bases
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Convert Base 6 to Base 10

123.456 = ???.?? 10

1236 = 1*62
10 [1*3610] + 

2*61
10 [2*610] +

3*60
10 [3*110] = 

5110

0.456 = 4*6-1
10 [4*1/610] +

5*6-2
10 [5*1/3610] = 

.80555…10

123.456 = 51.80555…10
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Adapted fromm R. Chang

Convert Base 10 to Base 6

754.9410 = 3254.5 35012 35012 35012...6

754 / 6 = 125 remainder 4

125 / 6 = 20 remainder 5

20 / 6 = 3 remainder 2

3 / 6 = 0 remainder 3

32546 = 3 x 21610 + 2 x 3610 + 5 x 610 + 4 x 110

= 75410
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Adapted fromm R. Chang

Convert Base 10 to Base 6

.9410 = ???.???6

0.94 x 6 = 5.64 --> 5

0.64 x 6 = 3.84 --> 3

0.84 x 6 = 5.04 --> 5

0.04 x 6 = 0.24 --> 0

0.24 x 6 = 1.44 --> 1

0.44 x 6 = 2.64 --> 2

0.64 x 6 = 3.84 --> 3

0.9410 = 0.5 35012 35012 35012...6

5/6 + 3/36 + 5/216 + 0 + 1/65 + 2/66 = 0.939986282...10
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Adapted fromm R. Chang


