CMSC 313 Fall 2011
Project 4. Manipulating Bits
Assigned: Wednesday Oct. 18
Due: Sunday, Oct. 30, 11:59PM

1 Introduction

The purpose of this assignment is to become more familidr biitlevel representations of integers. You'll
do this by solving a series of programming “puzzles.” Manyhafse puzzles are quite artificial, but you'll
find yourself thinking much more about bits in working yourywthrough them.

2 Logistics

This is an team project. You may work with one other persoolid in CMSC 313. Both students on the
team will receive the same grade for this project. All hasdire electronic. Clarifications and corrections
will be posted on the course Web page.

3 Handout Instructions

Start by copyindgProject4-handout.tar from the course’s public directory
/afs/lumbc.edu/users/c/m/cmsc313/pub to a (protected) directory on a Linux machine in which
you plan to do your work. Then give the command

unix> tar xvf Project4-handout.tar.

This will cause a number of files to be unpacked in the dirgctdhe only file you will be modifying and
turning in isbits.c

The bits.c file contains a skeleton for each of the 10 programming pgzzMour assignment is to
complete each function skeleton using odiaightline code for the integer puzzles (i.e., no loops or con-
ditionals) and a limited number of C arithmetic and logicpkmmtors. Specifically, you ammly allowed to
use the following eight operators:

7 &7 | + << >>

A few of the functions further restrict this list. Also, yoveanot allowed to use any constants longer than 8
bits. See the commentslnts.c for detailed rules and a discussion of the desired codirig.sty

4 The Puzzles

This section describes the puzzles that you will be solvirigjtis.c

4.1 Bit Manipulations

Table 1 describes a set of functions that manipulate andsetstof bits. The “Rating” field gives the
difficulty rating (the number of points) for the puzzle, aihé tMax ops” field gives the maximum number
of operators you are allowed to use to implement each fumct®ee the comments lrits.c for more
details on the desired behavior of the functions. You may ieer to the test functions tests.c . These
are used as reference functions to express the correctibebéyour functions, although they don't satisfy
the coding rules for your functions.

Name Description Rating | Max Ops
bitAnd(x,y) computex & vy using only| and™ 1 8
allOddBits(x) return 1 if all odd numbered bits afare set] 2 12
oddBits() return an int with all odd numbered bits set 2 8
replaceByte(x,n,c) replace byten in x with c. 3 10
bitParity(x) return 1 ifx has an odd number of bits set| 4 20

Table 1: Bit-Level Manipulation Functions.

4.2 Two’s Complement Arithmetic

Table 2 describes a set of functions that make use of the t@aplement representation of integers. Again,
refer to the comments ibits.c and the reference versionstests.c ~ for more information.

Name Description Rating | Max Ops
fitsShort(x) doesx fit in a short? 1 8
implication(x,y) doesx -> y in propositional logic?l 2 5
isNonNegative(x) isx >= 07? 3 6
rotateLeft(x,n) rotatex to the left byn bits 3 25
logicalNeg(x) implement ! without using ! 4 12

Table 2: Arithmetic Functions

5 Evaluation

Your score will be computed out of a maximum of 50 points basethe following distribution:

25 Correctness points.
20 Performance points.

5 Style points.

Correctness points. The 10 puzzles you must solve have been given a difficultpgdietween 1 and 4, such
that their weighted sum totals to 25. We will evaluate yourctions using thédtest program, which is
described in the next section. You will get full credit for azale if it passes all of the tests performed by
btest , and no credit otherwise.

Performance points. Our main concern at this point in the course is that you cantlgetight answer.
However, we want to instill in you a sense of keeping thingstast and simple as you can. Furthermore,
some of the puzzles can be solved by brute force, but we wartbyoe more clever. Thus, for each function
we've established a maximum number of operators that yoalknwed to use for each function. This limit
is very generous and is designed only to catch egregiousKidient solutions. You will receive two (2)
points for each correct function that satisfies the opelatot.

Syle points. Finally, we've reserved 5 points for a subjective evaluatd the style of your solutions and
your commenting. Your solutions should be as clean andy$itfairward as possible. Your comments should
be informative, but they need not be extensive.

Autograding your work

We have included some autograding tools in the handouttdinee— btest , dic , anddriver.pl —
to help you check the correctness of your work.

e bt est: This program checks the functional correctness of the fonstinbits.c . To build and
use it, type the following two commands:

unix> make
unix> ./btest

Notice that you must rebuildtest each time you modify youbpits.c file.

You'll find it helpful to work through the functions one at ant, testing each one as you go. You can
use thef flag to instructbtest to test only a single function:

unix> ./btest -f bitAnd

You can feed it specific function arguments using the optiagsfll , -2 , and-3 :

unix> ./btest -f bitAnd -1 7 -2 Oxf

Check the filEREADMHEor documentation on running theest program.

e dl ¢: This is a modified version of an ANSI C compiler from the MIT ®&lIgroup that you can use
to check for compliance with the coding rules for each puZihe typical usage is:

unix> ./dlc bits.c

The program runs silently unless it detects a problem, sg@méllegal operator, too many operators,
or non-straightline code in the integer puzzles. Runnirtty tie-e switch:

unix> ./dlc -e bits.c

causedlic to print counts of the number of operators used by each fomciiype./dic -help
for a list of command line options.

e driver.pl: This is a driver program that usé$est anddlc to compute the correctness and
performance points for your solution. It takes no arguments

unix> ./driver.pl

Your instructors will usariver.pl to evaluate your solution.

6 Handin Instructions

e Make sure you have included your identifying informatiorthie team struct itits.c
e Remove any extraneous print statements or debugging code.
¢ Create a team name of the fom

— “ID" where ID is your UMBC ID, if you are working alone, or

— “ID+1ID5” where ID; is the UMBC email ID of the first team member anfl, is the UMBC
email ID of the second team member.

This should be the same as the team name you entered in thaetiegtrinbits.c

e To handin youbits.c file, type:
make handin TEAM=teamname

whereteamname is the team name described above.

e After the handin, if you discover a mistake and want to sutanmévised copy, type

make handin TEAM=teamname VERSION=2
Keep incrementing the version number with each submission.

e You can verify your handin by looking in
/afs/lumbc.edu/users/c/m/cmsc313/pub/cmsc313_submiss ions/Proj4

You have list and insert permissions in this directory, butead or write permissions.

7 Advice

e Don'tinclude the<stdio.h> header file in youbits.c file, as it confusesllc and results in
some non-intuitive error messages. You will still be ablaiseprintf in your bits.c file for
debugging without including thestdio.h> header, althouglgcc will print a warning that you
can ignore.

e Thedlc program enforces a stricter form of C declarations thands#se for C++ or that is enforced
by gcc . In particular, any declaration must appear in a block (whbatenclose in curly braces) before
any statement that is not a declaration. For example, itoamithplain about the following code:

int foo(int x)

{
int a = x;
a *= 3; | = Statement that is not a declaration * [
int b = a / * ERROR: Declaration not allowed here * [
}

8 The “Beat the Prof” Contest

For fun, we're offering an optional “Beat the Prof” contelsat allows you to compete with other students
and the instructor to develop the most efficient puzzles. gda is to solve each puzzle using the fewest
number of operators. Students are awarded 1 point of exaéditdmax 5 points) for each puzzle in which
they use fewer operators than “The Prof”. To receive crédisure your teamname matches the one in your
bits.c file.

To submit your entry to the contest, type:
unix> ./driver.pl -u “Your TeamName”

Teamnames are limited to 35 characters and can containralpteaics, apostrophes, commas, periods,
dashes, underscores, and ampersands. You can submitras®ffeu like. Your most recent submission

will appear on a real-time scoreboard, identified only bynt@amname. You can view the scoreboard by
pointing your browser at

http://ite209-pc-01.cs.umbc.edu:2468

