
CMSC 313, Fall 2010
Project 6: Writing a Dynamic Storage Allocator

Assigned: Wednesday Dec. 1
Due: Tuesday Dec. 14, 11:59PM

1 Introduction

In this lab you will be writing a dynamic storage allocator for C programs, i.e., your own version of the
malloc andfree routines. You are encouraged to explore the design space creatively and implement an
allocator that is correct, efficient and fast.

2 Logistics

You may work in a group of up to two people. Any clarifications and revisions to the assignment will be
posted on the course Web page. Mr. Frey’s public directory for this project is
/afs/umbc.edu/users/f/r/frey/pub/313/Proj6. Note that the due date is the last of class
for the semester. Consider carefully before planning to usegrace days, since doing so will mean working
on this project during finals week.

3 Hand Out Instructions

Start by copyingmalloclab-handout.tar from Mr. Frey’s public directory to a protected directory
in which you plan to do your work. Then give the command:tar xvf malloclab-handout.tar.
This will cause a number of files to be unpacked into the directory. The only file you will be modifying
and handing in ismm.c. Themdriver.c program is a driver program that allows you to evaluate the
performance of your solution. Use the commandmake to generate the driver code and run it with the
command./mdriver -V. (The-V flag displays helpful summary information.)

Looking at the filemm.c you’ll notice a C structureteam into which you should insert the requested
identifying information about the one or two individuals comprising your programming team.Do this right
away so you don’t forget.

When you have completed the lab, you will hand in only one file (mm.c), which contains your solution.

1



4 How to Work on the Lab

Your dynamic storage allocator will consist of the following three functions, which are declared inmm.h
and defined inmm.c.

int mm_init(void);
void *mm_malloc(size_t size);
void mm_free(void *ptr);

Themm.c file we have given you implements the simplest but still functionally correct malloc package that
we could think of. Using this as a starting place, modify these functions (and possibly define other private
static functions), so that they obey the following semantics:

• mm init: Before callingmm malloc or mm free, the application program (i.e., the trace-driven
driver program that you will use to evaluate your implementation) callsmm init to perform any
necessary initializations, such as allocating the initialheap area. The return value should be -1 if there
was a problem in performing the initialization, 0 otherwise.

• mm malloc: Themm malloc routine returns a pointer to an allocated block payload of atleast
size bytes. The entire allocated block should lie within the heapregion and should not overlap with
any other allocated chunk.

We will be comparing your implementation to the version ofmalloc supplied in the standard C
library (libc). Since thelibc malloc always returns payload pointers that are aligned to 8bytes,
your malloc implementation should do likewise and always return 8-byte aligned pointers.

• mm free: Themm free routine frees the block pointed to byptr. It returns nothing. This rou-
tine is only guaranteed to work when the passed pointer (ptr) was returned by an earlier call to
mm malloc and has not yet been freed.

These semantics match the the semantics of the corresponding libc malloc andfree routines. Type
man malloc at the Linux prompt for complete documentation.

Your allocator has the required external interface described above, but you are free to implement the allocator
any way you want. We’ll discuss some common strategies in class. Designing the allocator can be fun and
you can be creative, but start early to have enough time to consider all the options, wiegh the tradeoffs, and
try things out. A few of the decisions you must consider are

• Do you store block housekeeping data in the block headers/footers or store them in a separate data
structure?

• When and how do you split blocks?

• When and how do you coalesce blocks?

• How is the free list organized (implicit, explicit, sorted,in a tree)?

2



• Which strategy do you use for finding available space (first-fit, next-fit, best-fit, something else)?

• Are blocks segregated by size? Do you use buddies?

5 Textbook Code

The sample code from section 9.9.12 of the textbook is provided in the filemalloc.cwhich is part of the
handout. This code provides a good overview but should not befollowed literally. The code uses boundary
tags and an implicit free list to implement the malloc package. Carefully read and understand this code
before beginning this project.

The code demonstrates some worthwhile techniques such as abstracting pointer arithemetic and casting.
The macrosMAX,PACK,GET SIZE, andGET ALLOC are reasonable, but using a C structure to describe
the block header along with some inline functions to convertpayload pointers into header pointers and vice-
versa is preferrable to the other macros. The code also demonstrates the good idea of using extra blocks to
avoid special cases in the code.

While functional, this code would not receive a high score. Consider it code to learn from, but be wary of
adopting it without fully understanding it.

6 Heap Consistency Checker

Dynamic memory allocators are notoriously tricky beasts toprogram correctly and efficiently. They are
difficult to program correctly because they involve a lot of untyped pointer manipulation. You will find it
very helpful to write a heap checker that scans the heap and checks it for consistency. Themalloc.c file
you receive contains a function namedmm checkheap() that you can augment and modify in any way
you choose. Be sure that this function provides all information you need to debug your code. It is doubtful
that you (or I or the TAs) will be able to find subtle errors in your memory allocation routines simply by
looking at the code. The only effective way to find errors in your code is by inspecting the output of your
heap consistency checker for the traces that produce the errors.

Some examples of what a heap checker might check are:

• Is every block in the free list marked as free?

• Are there any contiguous free blocks that somehow escaped coalescing?

• Is every free block actually in the free list?

• Do the pointers in the free list point to valid free blocks?

• Do any allocated blocks overlap?

• Do the pointers in a heap block point to valid heap addresses?

3



You are not limited to the listed suggestions nor are you required to check all of them. You are encouraged
to print out error messages whenmm checkheap fails.

This consistency checker is for your own debugging during development. When you submitmm.c, make
sure to remove any calls tomm checkheap as they will slow down your throughput. The easiest way to
disable your heap checker is through the use of #define macros:

#if 1
#define MM_CHECKHEAP() mm_checkheap()
#else
#define MM_CHECKHEAP()
#endif

UseMM CHECKHEAP() whenever you want to call your heap checker. This way, changing the ’1’ to ’0’
will remove all calls tomm check() from your code.

Style points will be given for yourmm checkheap function. Make sure to put in comments and document
what you are checking.

7 Support Routines

The memlib.c package simulates the memory system for your dynamic memory allocator. You can invoke
the following functions inmemlib.c:

• void *mem sbrk(int incr): Expands the heap byincr bytes, whereincr is a positive
non-zero integer and returns a generic pointer to the first byte of the newly allocated heap area. The
semantics are identical to the Unixsbrk function, except thatmem sbrk accepts only a positive
non-zero integer argument.

• void *mem heap lo(void): Returns a generic pointer to the first byte in the heap.

• void *mem heap hi(void): Returns a generic pointer to the last byte in the heap.

• size t mem heapsize(void): Returns the current size of the heap in bytes.

• size t mem pagesize(void): Returns the system’s page size in bytes (4K on Linux systems).

8 The Trace-driven Driver Program

The driver programmdriver.c in themalloclab-handout.tar distribution tests yourmm.c pack-
age for correctness, space utilization, and throughput. The driver program is controlled by a set oftrace
files. Two small traces files are included in themalloclab-handout.tar distribution for your initial
testing. Each trace file contains a sequence of allocate and free directions that instruct the driver to call your

4



mm malloc andmm free routines in some sequence. A more robust set of trace files arefound in the
TRACEDIR defined inconfig.h. The trace files inTRACEDIR are the same ones we will use when we
grade your handinmm.c file.

The drivermdriver.c accepts the following command line arguments:

• -t <tracedir>: Look for the default trace files in directorytracedir instead of theTRACEDIR
directory defined inconfig.h.

• -f <tracefile>: Use one particulartracefile for testing instead of the default set of trace-
files.

• -h: Print a summary of the command line arguments.

• -l: Run and measurelibc malloc in addition to the student’s malloc package. Runningmdriver
with this command line argument will give you a sense of the throughput and peak memory usage
you are striving to attain.

• -v: Verbose output. Print a performance breakdown for each tracefile in a compact table.

• -V: More verbose output. Prints additional diagnostic information as each trace file is processed.
Useful during debugging for determining which trace file is causing your malloc package to fail.

8.1 Trace File Format

The trace files are human-readable with a simple format. You can use any editor to create your own trace
files for testing. The following lines are fromshort1.rep. My comments are on the right starting with
#. There are no comments in the trace file.

20000 # suggested heap size (unused)
6 # number of memblock ids used (0...5)
12 # number of operations (’a’, ’f’) in this file
1 # weight for grading (unused)
a 0 2040 # allocate 2040 bytes to memblock 0
a 1 2040 # allocate 2040 bytes to memblock 1
f 1 # free memblock 1
a 2 48 # allocate 48 bytes to memblock 2
a 3 4072 # allocate 4072 bytes to memblock 3
f 3 # free memblock 3
a 4 4072 # allocate 4072 bytes to memblock 4
f 0 # free memblock 0
f 2 # free memblock 2
a 5 4072 # allocate 4027 bytes to memblock 5
f 4 # free memblock 4
f 5 # free memblock 5

5



9 Programming Rules

• You should not change any of the interfaces inmm.c.

• You should not invoke any memory-management related library calls or system calls. This excludes
the use ofmalloc, calloc, free, realloc, sbrk, brk or any variants of these calls from the
C library in your code.

• You are not allowed to define any global orstatic compound data structures such as , structs, trees,
or lists in your mm.c program. However, youare allowed to declare global scalar variables such as
integers, floats, and pointers as well as small arrays inmm.c. Limit your static global memory usage
to about 100 bytes.

• For consistency with thelibc malloc package, which returns blocks aligned on 8-byte boundaries,
your allocator must always return pointers that are alignedto 8-byte boundaries. The driver will
enforce this requirement for you.

10 Evaluation - 80 points

You will receivezero points if you break any of the rules or your code is buggy and crashes the driver.
Otherwise, your grade will be calculated as follows, based on the 9 traces files provided.

• Correctness (27 points, 3 per trace file).You will receive full points if your solution passes the
correctness tests performed by the driver program. You willreceive partial credit for each correct
trace.

• Performance (36 points, 4 per trace file).Your program must execute all traces correctly to receive
any performance score.Two performance metrics will be used to evaluate your solution:

– Space utilization: The peak ratio between the aggregate amount of memory used by the driver
(i.e., allocated viamm malloc but not yet freed viamm free) and the size of the heap used
by your allocator. The optimal ratio equals to 1. You should find good policies to minimize
fragmentation in order to make this ratio as close as possible to the optimal.

– Throughput: The average number of operations completed per second.

The driver program summarizes the performance of your allocator by computing aperformance index,
P , which is a weighted sum of the space utilization and throughput

P = wU + (1 − w)min

(

1,
T

Tlibc

)

whereU is your space utilization,T is your throughput, andTlibc is the estimated throughput oflibc
malloc on your system on the default traces.1 The performance index favors space utilization over
throughput, with a default ofw = 0.6.

1The value forTlibc is a constant in the driver (3000 Kops/s) that your instructor established when they configured the program.

6



Observing that both memory and CPU cycles are expensive system resources, we adopt this formula to
encourage balanced optimization of both memory utilization and throughput. Ideally, the performance
index will reachP = w + (1 − w) = 1 or 100%. Since each metric will contribute at mostw and
1 − w to the performance index, respectively, you should not go toextremes to optimize either the
memory utilization or the throughput only. To receive a goodscore, you must achieve a balance
between utilization and throughput.

Utilization is calculated by dividing the total bytes allocated (and not yet freed) by the heap segment
size. The theoretical maximum is 100%, but that is impossible to achieve. The driver gives full credit
for 95% utilization or higher. Numbers in the 70 - 80% range are quite respectable. To improve a low
score you need to decrease fragmentation, either internal or external or both.

Throughput counts the number of requests that are serviced each second using the timer functions
from chapter 9 of the text that read the processor cycle counter. The throughput is reported as per-
centage relative to a conservative estimate of the standardlibc malloc package. Again, numbers in the
70 - 80% range are quite respectabls.

Your goal is to achieve a performance index of 88%. Your peformance score will be calculated as

36 ∗

P

0.88

• Style (17 points).

– Your code should be decomposed into functions and use as few global variables as possible.

– Your code should begin with a header comment that describes the structure of your free and
allocated blocks, the organization of the free list, and howyour allocator manipulates the free
list. each function should be preceeded by a header comment that describes what the function
does.

– Each function that you write or modify should have a header comment that describes what it
does and how it does it.

– Your heap consistency checkermm check should be thorough and well-documented.

You will be awarded 10 points for a good heap consistency checker and 7 points for good program
structure and comments.

11 Handin Instructions

You will handin yourmm.c using themake handin command as you did in project 3.

• Make sure you have included your team information inmm.c

• Make sure you have removed all calls tomm checkheap() and any other debugging code you may
have inserted.Don’t remove the code, just the calls.

7



• Create a team name of the form:

– “ID” where ID is your UMBC email ID if you are working alone, or

– “ID1+ID2” where ID1 is the UMBC email ID of the first team member and ID2 is the UMBC
email ID of the second team member This should be the same as the team name you enterd in
the structure inmm.c

• Edit yourMakefile to setTEAM to your team name. E.gTEAM=frey+bob.

• To handin your mm.c file, simply type
make handin

• If you discover a mistake and want to submit a revised copy, type
make handin VERSION=2
Keep incrementing the version number with each subsequent handin.

• You can verify your handin by looking in
/afs/umbc.edu/users/c/m/cmsc313/pub/cmsc313 submissions/proj6
You have list and insert permission in this directory, but not read or write permission.

You may submit your solution for testing as many times as you wish up until the due date. Only your last
submission will be graded.

When testing your files locally, make sure to use one of the GL machines. This will insure that the grade
you get frommdriver is representative of the grade you will receive when you submit your solution.

12 Hints

• Always have a working program.Plan to move slowly from the naivemm.c that is provided into a
better working version one step at a time.

• Encapsulate your pointer arithmetic in C inline functions.Pointer arithmetic in memory managers is
confusing and error-prone because of all the casting that isnecessary. You can reduce the complexity
significantly by writing small inline functions for your pointer operations. Samples of some of these
functions can be found in the code provided.

• Use themdriver -f option. During initial development, using tiny trace files will simplify debug-
ging and testing. We have included two such trace files (short1,2-bal.rep) that you can use for
initial debugging. You may of course create your own trace files.

• Optimize last.Get your code working properly first. It doesn’t matter how fast your code runs if it
doesn’t work. Be sure to use the -O2 compiler flag when you are ready for performance testing.

• Use themdriver -v and-V options. The-v option will give you a detailed summary for each
trace file. The-V will also indicate when each trace file is read, which will help you isolate errors.

8



• Compile withgcc -g and use a debugger.A debugger will help you isolate and identify out of
bounds memory references.

• Understand every line of the malloc implementation in the textbook. The textbook has a detailed
example of a simple allocator based on an implicit free list.Use this is a point of departure. Don’t
start working on your allocator until you understand everything about the simple implicit list allocator.

• Use a profiler.You may find thegprof tool helpful for optimizing performance. Tryman gprof
at the Unix command line, or search the internet for agprof tutorial.

• Start early! It is possible to write an efficient malloc package with a few pages of code. However, we
can guarantee that it will be some of the most difficult and sophisticated code you have written so far
in your career. So start early, and good luck!

9


