CMSC 313, Fall 2010
Project 6: Writing a Dynamic Storage Allocator
Assigned: Wednesday Dec. 1
Due: Tuesday Dec. 14, 11:59PM

1 Introduction

In this lab you will be writing a dynamic storage allocator fo programs, i.e., your own version of the
mal | oc andf r ee routines. You are encouraged to explore the design spaaévaly and implement an
allocator that is correct, efficient and fast.

2 Logistics

You may work in a group of up to two people. Any clarificationsdarevisions to the assignment will be

posted on the course Web page. Mr. Frey’s public directorytis project is

[af s/ unbc. edu/ users/f/r/frey/ pub/ 313/ Proj 6. Note that the due date is the last of class
for the semester. Consider carefully before planning tograee days, since doing so will mean working
on this project during finals week.

3 Hand Out Instructions

Start by copyingral | ocl ab- handout . t ar from Mr. Frey’s public directory to a protected directory
in which you plan to do your work. Then give the commandr xvf mal | ocl ab- handout.tar.
This will cause a number of files to be unpacked into the dirgctThe only file you will be modifying
and handing in istTm ¢c. Thendri ver. c program is a driver program that allows you to evaluate the
performance of your solution. Use the commareke to generate the driver code and run it with the
command / mdri ver -V.(The- Vflag displays helpful summary information.)

Looking at the filenm ¢ you'll notice a C structurd eaminto which you should insert the requested
identifying information about the one or two individualsneprising your programming teano this right
away so you don’t forget.

When you have completed the lab, you will hand in only one fii@ (c), which contains your solution.

4 How to Work on the Lab

Your dynamic storage allocator will consist of the followgithree functions, which are declaredrim h
and defined immm c.

i nt mm_init(void);
void *mm nmal | oc(size_ t size);
void mmfree(void *ptr);

Themm c file we have given you implements the simplest but still fiorally correct malloc package that
we could think of. Using this as a starting place, modify th&sctions (and possibly define other private
st at i ¢ functions), so that they obey the following semantics:

e mMmi ni t: Before callingmmmal | oc or rmf r ee, the application program (i.e., the trace-driven
driver program that you will use to evaluate your impleméotg callsnmi ni t to perform any
necessary initializations, such as allocating the initedp area. The return value should be -1 if there
was a problem in performing the initialization, O otherwise

e mmmal | oc: The nmumal | oc routine returns a pointer to an allocated block payload déast
si ze bytes. The entire allocated block should lie within the hesggon and should not overlap with
any other allocated chunk.

We will be comparing your implementation to the versionnafl | oc supplied in the standard C
library (I i bc). Since thd i bc malloc always returns payload pointers that are aligned ligt8s,
your malloc implementation should do likewise and alwayame8-byte aligned pointers.

e Mmf ree: Thenmf r ee routine frees the block pointed to Ipt r . It returns nothing. This rou-
tine is only guaranteed to work when the passed poirgéer | was returned by an earlier call to
nmmnal | oc and has not yet been freed.

These semantics match the the semantics of the corresgoindimc mal | oc andf r ee routines. Type
man mal | oc at the Linux prompt for complete documentation.

Your allocator has the required external interface descdriibove, but you are free to implement the allocator
any way you want. We’'ll discuss some common strategies ssclResigning the allocator can be fun and
you can be creative, but start early to have enough time tsidenall the options, wiegh the tradeoffs, and
try things out. A few of the decisions you must consider are

e Do you store block housekeeping data in the block headetst® or store them in a separate data
structure?

¢ When and how do you split blocks?
¢ When and how do you coalesce blocks?

e How is the free list organized (implicit, explicit, sorted,a tree)?

¢ Which strategy do you use for finding available space (fitsq@xt-fit, best-fit, something else)?

e Are blocks segregated by size? Do you use buddies?

5 Textbook Code

The sample code from section 9.9.12 of the textbook is peaVid the filerral | oc. ¢ which is part of the
handout. This code provides a good overview but should néolk®ved literally. The code uses boundary
tags and an implicit free list to implement the malloc paekag&arefully read and understand this code
before beginning this project.

The code demonstrates some worthwhile techniques suchs#m@iing pointer arithemetic and casting.
The macrodvVAX, PACK, GET_SI ZE, andGET_ALLQOC are reasonable, but using a C structure to describe
the block header along with some inline functions to congastioad pointers into header pointers and vice-
versa is preferrable to the other macros. The code also denates the good idea of using extra blocks to
avoid special cases in the code.

While functional, this code would not receive a high scorensider it code to learn from, but be wary of
adopting it without fully understanding it.

6 Heap Consistency Checker

Dynamic memory allocators are notoriously tricky beastgriogram correctly and efficiently. They are
difficult to program correctly because they involve a lot otyped pointer manipulation. You will find it
very helpful to write a heap checker that scans the heap asxksht for consistency. Theal | oc. c file
you receive contains a function namexh.checkheap() that you can augment and modify in any way
you choose. Be sure that this function provides all infoforayou need to debug your code. It is doubtful
that you (or | or the TAs) will be able to find subtle errors inuyanemory allocation routines simply by
looking at the code. The only effective way to find errors iuyoode is by inspecting the output of your
heap consistency checker for the traces that produce tbeserr

Some examples of what a heap checker might check are:

e |s every block in the free list marked as free?

Are there any contiguous free blocks that somehow escapsddsming?

Is every free block actually in the free list?

Do the pointers in the free list point to valid free blocks?

Do any allocated blocks overlap?

Do the pointers in a heap block point to valid heap addresses?

You are not limited to the listed suggestions nor are youireguo check all of them. You are encouraged
to print out error messages whamcheckheap fails.

This consistency checker is for your own debugging duringetgment. When you subnmitm ¢, make
sure to remove any calls toimcheckheap as they will slow down your throughput. The easiest way to
disable your heap checker is through the use of #define macros

#if 1

#defi ne MM _CHECKHEAP() mm checkheap()
#el se

#defi ne MM_CHECKHEAP()

#endi f

Use MML.CHECKHEAP() whenever you want to call your heap checker. This way, cmanthie '1’ to '0’
will remove all calls toomcheck() from your code.

Style points will be given for younmcheckheap function. Make sure to put in comments and document
what you are checking.

7 Support Routines

The memlib.c package simulates the memory system for yonardyc memory allocator. You can invoke
the following functions imem i b. c:

e void »memsbrk(int incr): Expands the heap biyncr bytes, where ncr is a positive
non-zero integer and returns a generic pointer to the firs bf/the newly allocated heap area. The
semantics are identical to the Urebr k function, except thatremsbr k accepts only a positive
non-zero integer argument.

e voi d »rmemheap. o(voi d) : Returns a generic pointer to the first byte in the heap.
e voi d »memheap_hi (voi d) : Returns a generic pointer to the last byte in the heap.
e sizet memheapsi ze(voi d) : Returns the current size of the heap in bytes.

e sizet mempagesi ze(voi d) : Returns the system’s page size in bytes (4K on Linux systems

8 The Trace-driven Driver Program

The driver programmdr i ver . c inthemal | ocl ab- handout . t ar distribution tests younrm c pack-
age for correctness, space utilization, and throughput drver program is controlled by a set wace
files Two small traces files are included in thral | ocl ab- handout . t ar distribution for your initial
testing. Each trace file contains a sequence of allocateraadlirections that instruct the driver to call your

mmmal | oc andnmf r ee routines in some sequence. A more robust set of trace filefoaral in the
TRACEDI Rdefined inconf i g. h. The trace files iITRACEDI Rare the same ones we will use when we
grade your handimm c file.

The drivermdr i ver . ¢ accepts the following command line arguments:

e -t <tracedir>:Lookforthe default trace files in directotyr acedi r instead of th&@ RACEDI R
directory defined irconf i g. h.

e -f <tracefil e>: Use one particularr acef i | e for testing instead of the default set of trace-
files.

e - h: Print a summary of the command line arguments.

e - | : Run and measurei bc malloc in addition to the student’s malloc package. Runmdgi ver
with this command line argument will give you a sense of threughput and peak memory usage
you are striving to attain.

e -V: Verbose output. Print a performance breakdown for eadefila in a compact table.

e - V: More verbose output. Prints additional diagnostic infation as each trace file is processed.
Useful during debugging for determining which trace file @&ising your malloc package to fail.

8.1 Trace File Format

The trace files are human-readable with a simple format. ¥wuuse any editor to create your own trace
files for testing. The following lines are froshort 1. r ep. My comments are on the right starting with
#. There are no comments in the trace file.

20000 # suggested heap size (unused)

6 # number of memblock ids used (0...5)
12 # number of operations (‘a’, 'f") in this file
1 # weight for grading (unused)

a 02040 # allocate 2040 bytes to memblock O
al2040 # allocate 2040 bytes to memblock 1
f1 # free memblock 1

az248 # allocate 48 bytes to memblock 2

a 34072 # allocate 4072 bytes to memblock 3

f3 # free memblock 3
a4 4072 # allocate 4072 bytes to memblock 4
fo # free memblock O
f2 # free memblock 2
a54072 # allocate 4027 bytes to memblock 5
fa # free memblock 4
f5 # free memblock 5

9 Programming Rules

¢ You should not change any of the interfacesnn c.

¢ You should not invoke any memory-management related lcatls or system calls. This excludes
the use ofmal | oc, cal | oc,free,real | oc,sbrk, brk or any variants of these calls from the
C library in your code.

e You are not allowed to define any globalsirat i ¢ compound data structures such as, structs, trees,
or lists in your nm c program. However, yoare allowed to declare global scalar variables such as
integers, floats, and pointers as well as small arraysnnc. Limit your static global memory usage
to about 100 bytes.

e For consistency with thei bc mal | oc package, which returns blocks aligned on 8-byte boundaries
your allocator must always return pointers that are aligtee®-byte boundaries. The driver will
enforce this requirement for you.

10 Evaluation - 80 points

You will receive zero pointsif you break any of the rules or your code is buggy and crasheddtiver.
Otherwise, your grade will be calculated as follows, basethe 9 traces files provided.

e Correctness (27 points, 3 per trace file}ou will receive full points if your solution passes the
correctness tests performed by the driver program. You neidkive partial credit for each correct
trace.

¢ Performance (36 points, 4 per trace fil&our program must execute all traces correctly to receive
any performance score.Two performance metrics will be used to evaluate your sotuti

— Space utilization The peak ratio between the aggregate amount of memory ystedriver
(i.e., allocated viarmnal | oc but not yet freed viaamf r ee) and the size of the heap used
by your allocator. The optimal ratio equals to 1. You shoutdifgood policies to minimize
fragmentation in order to make this ratio as close as passibihe optimal.

— Throughput The average number of operations completed per second.

The driver program summarizes the performance of your attirxdy computing @erformance index
P, which is a weighted sum of the space utilization and thrpugh

P =wU + (1 — w) min (1,1)
Tlibc
whereU is your space utilizatior]" is your throughput, andy;,. is the estimated throughput bf bc

malloc on your system on the default traée3he performance index favors space utilization over
throughput, with a default afy = 0.6.

1The value forT};. is a constant in the driver (3000 Kops/s) that your instruestablished when they configured the program.

Observing that both memory and CPU cycles are expensiveraystsources, we adopt this formula to
encourage balanced optimization of both memory utilizatiod throughput. Ideally, the performance
index will reachP = w + (1 — w) = 1 or 100%. Since each metric will contribute at mastand

1 — w to the performance index, respectively, you should not gexteemes to optimize either the
memory utilization or the throughput only. To receive a gambre, you must achieve a balance
between utilization and throughput.

Utilization is calculated by dividing the total bytes alided (and not yet freed) by the heap segment
size. The theoretical maximum is 100%, but that is imposdiblachieve. The driver gives full credit
for 95% utilization or higher. Numbers in the 70 - 80% range quite respectable. To improve a low
score you need to decrease fragmentation, either interreedternal or both.

Throughput counts the number of requests that are serviaeld second using the timer functions
from chapter 9 of the text that read the processor cycle evuiithe throughput is reported as per-
centage relative to a conservative estimate of the stariitbarchalloc package. Again, numbers in the
70 - 80% range are quite respectabls.

Your goal is to achieve a performance index of 88%. Your pe#oice score will be calculated as

36 P
* [
0.88

e Style (17 points).

— Your code should be decomposed into functions and use aslébalyariables as possible.

— Your code should begin with a header comment that descrieesttucture of your free and
allocated blocks, the organization of the free list, and lyowr allocator manipulates the free
list. each function should be preceeded by a header comima&ntiéscribes what the function
does.

— Each function that you write or modify should have a headenroent that describes what it
does and how it does it.

— Your heap consistency checkemcheck should be thorough and well-documented.

You will be awarded 10 points for a good heap consistency ldregnd 7 points for good program
structure and comments.

11 Handin Instructions
You will handin yournrm c using themake handi n command as you did in project 3.

e Make sure you have included your team informatiomin ¢

e Make sure you have removed all callstmcheckheap() and any other debugging code you may
have insertedDon’t remaove the code, just the calls.

e Create a team name of the form:

— “ID” where ID is your UMBC email ID if you are working alone, or

— “ID1+ID2” where ID1 is the UMBC email ID of the first team memtand ID2 is the UMBC
email ID of the second team member This should be the samedsdam name you enterd in
the structure immm c

e Edit yourMakefi | e to setTEAMto your team name. E.GEAM=f r ey +bob.

e To handin your mm.c file, simply type
make handin

¢ If you discover a mistake and want to submit a revised cope ty
make handi n VERSI ON=2
Keep incrementing the version number with each subsequserdi

e You can verify your handin by looking in
[af s/ unmbc. edu/ users/ c/ m cnec313/ pub/ cnec313 subm ssi ons/ proj 6
You have list and insert permission in this directory, but m@d or write permission.

You may submit your solution for testing as many times as y@hwp until the due date. Only your last
submission will be graded.

When testing your files locally, make sure to use one of the Gkchimes. This will insure that the grade
you get frommdr i ver is representative of the grade you will receive when you stigaur solution.

12 Hints

e Always have a working progranPlan to move slowly from the naivem c that is provided into a
better working version one step at a time.

e Encapsulate your pointer arithmetic in C inline functiof®inter arithmetic in memory managers is
confusing and error-prone because of all the casting theéessary. You can reduce the complexity
significantly by writing small inline functions for your patier operations. Samples of some of these
functions can be found in the code provided.

e Use themdri ver -f option. During initial development, using tiny trace files will sitifp debug-
ging and testing. We have included two such trace fiddgof t 1, 2- bal . r ep) that you can use for
initial debugging. You may of course create your own tracesfil

e Optimize last.Get your code working properly first. It doesn’'t matter howtfsiour code runs if it
doesn’t work. Be sure to use the -O2 compiler flag when youeady for performance testing.

e Use themdri ver -v and- V options. The- v option will give you a detailed summary for each
trace file. The V will also indicate when each trace file is read, which willghgbu isolate errors.

Compile withgcc - g and use a debuggerA debugger will help you isolate and identify out of
bounds memory references.

Understand every line of the malloc implementation in theb@ok. The textbook has a detailed
example of a simple allocator based on an implicit free ligée this is a point of departure. Don'’t
start working on your allocator until you understand evieiryg about the simple implicit list allocator.

Use a profiler.You may find thegpr of tool helpful for optimizing performance. Tnyan gpr of
at the Unix command line, or search the internet fgpa of tutorial.

Start early!It is possible to write an efficient malloc package with a fexges of code. However, we
can guarantee that it will be some of the most difficult anchssiftated code you have written so far
in your career. So start early, and good luck!

