Operator Overloading
Part 2

CMSC 202

10/12/15

Recall Private/Public
¢ Public

— Any method or function from anywhere can
access these

* Private

— Only class-methods can access these

Is there a way to get around this?
— Yes!

Friends

* Have access to an object’s private methods
and data

In class

* Syntax: e declaration!

friend retType methodName (params) ;

retType methodName (params)
{ /* code */ }

In class
implementation!

Friend vs. Non-friend

Friend
friend const Money operator+ (const Moneys a,
const Money& b); // in class

const Money operator+ (const Moneyé a,
const Moneyé& b)

{
return Money(a.dollars + b.dollars,
a.cents + b.cents);
}
Non-friend

const Money operator+ (const Money& a,
const Money& b); // NOT in class
const Money operator+ (const Money& a,
const Money& b)
{
return Money(a.GetDollars() + b.GetDollars(),
a.GetCents() + b.GetCents());

10/12/15

Input/Output

Overload the insertion << and extraction >> operators
— Cannot be member functions (why?)
— Can be friends

Because...
Money m;
cin >> m;

cout << “My money: “ << m << endl;

Is better than...
Money m;
m. Input() ;
cout << “My money: “;
m.Output () ;
cout << endl;

Output — Insertion Operator <<

* Non-friend
ostreams operator<<(ostreams sout,
const Moneys money) ; // NOT in class
ostreams operator<<(ostreams sout,
const Moneys money)
{
sout << “$” << money.GetDollars ()
<< .7 << money.GetCents () ;
return sout;

}

« Friend (don't forget to add £riend to the prototype!)
friend ostreams operator<<(ostreams sout,
const Moneys money); // in class
ostreams operator<<(ostreams sout,
const Moneys money)
{
sout << “§” << money.dollars
<< .7 << money.cents;
return sout;

Operator<< Notes...

* You should override << for all of your classes

* Do notinclude a closing endl
— (after all data...why?)

* Operator<< is not a member function

¢ Always return ostream&
— Why?

10/12/15

Input — Extraction Operator >>

// Input money as X.XX
// friend version..
istreamé& operator>>(istreamé& sin,
Money& money)
{
char dot;

sin >> money.dollars >> dot
>> money.cents;

return sin;

r—====-== —1
| How would you do this |

1 as a non-friend |
| function? 1

Unary Operators

Can we overload unary operators?
— Negation, Increment, Decrement?
.« YES!
Let’s look at two cases
— Negation
— Increment
« Preand Post

Example

Money m1(3, 25);
— Money m2;

— m2=-ml;

++m2;
ml=m2++;

Negation (member function)

const Money operator- () const;

const Money Money: :operator- () const

{

Money result;
result.m dollars = -m dollars;
result. m_cents = —m_cents ;

return result;

10/12/15

Pre Increment

Money Money: :operator++(void)

{

// increment the cents
++m_cents;

// adjust the dollars if necessary

// return new Money object
return Money(m dollars, m_cents);

Post Increment

Money Money: :operator++(int dummy)

{

// make a copy of this Money object
// before incrementing the cents
Money result(m_dollars, m_cents);

// now increment the cents
++m_cents;

// code here to adjust the dollars
// return the Money as it was before

// the increment
return result;

Restrictions

* Can’t overload every operator

¢ Can’t make up operators

* Can’t overload for primitive types
— Like operator<< for integers...

¢ Can’t change precedence

Can’t change associativity
— Like making (-m) be (m-)

10/12/15

Good Programming Practices

Overload to mimic primitives

Binary operators should

— Return const objects by value

— Be written as non-member functions

— Be written as non-friend functions
Overload unary as member functions
Always overload <<

— As non-friend if possible
Overload operator= if using dynamic memory

Practice

Let’s overload the operator== for the Money
class

— Should it be a member function?
— Should it be a friend?

— What should it return?

— What parameters should it have?
— What do we need to do inside?

Challenge

* Overload the operator+= for a Money object
— Should it be a member function?
— Should it be a friend?
— What should it return?
— What parameters should it have?
— What do we need to do inside?

10/12/15

