Operator Overloading

CMSC 202

10/12/15

Let’s Take a Closer Look...

// In Employee.h
class Employee
{
public:
void SetManager (const Manageré& boss) ;
private:
Manager m_boss;

}i

// In Employee.cpp
void Employee: :SetManager (const Managers boss)
{

m_boss = boss;
}
// In main. Does this work?

Employee me;

27?
Manager boss; If so, how???
me . SetManager (boss) ;

Assignment Operator

* Compiler creates a default assignment
operator
— Copies data member values

Manager a(“Bob”);
Manager b;

b=a;

Other Operators?

* Does this work with other operators?

Money a(2, 50); // 2.50
Money b (3, 20); // 3.20
Money c;

c=a+ b;

* Unfortunately, no...

— But...we can define it ourselves!

10/12/15

Review: Function Overloading

void swap (int& a, int& b);
void swap (double& a, double& b);
void swap (Bob& a, Bobé& b);

* Same (or similar) functionality for different types...

* Function signatures include
— Function name
— Parameter list (both number and types)

* Sidenote
— C++ compiler has a built-in function called “swap”

Closer Look at Operators...

* We could do...
Money a(2, 50); // 2.50
Money b (3, 20); // 3.20
Money c;
c = Add(a, b); // we write..

¢ Or..we can use
— Operator Overloading and do this:
c=a+b; // we write..

Operator Overloading

* Define a function that overloads an operator
to work for a new type

* Exam P le: Function Name...essentially

const Money operator+ (const Money& a, const Money& b)
{
return Money (a.GetDollars() + b.GetDollars(),
a.GetCents () + b.GetCents());
| How could this
What’s going on I function be
here? I improved?
L

10/12/15

Operator Overloading

* Can also be overloaded as member functions

— First object in statement becomes the “calling” object
ca+b
is equivalent to
a.operator+(b)
One parameter!
e Example:
const Money Money: :operator+ (const Money& b) const
{
return Money(m dollars + b.m_dollars,
m_cents + b.m cents) ;
} / Why const?
Notice:
implicit object!

Return by const value?

const Money operator+ (const Money& a, const Moneyé& b);
const Money operator+ (const Money& b) const;

* Why return by const value?

1
const! 1 Return by const value

I prevents us from altering the
I returned value...

— Imagine this

* Money a(4, 50);
. - ———— = - -
* Money b(3, 25); | Why is this an issue? :
*Money c(2, 10); :Thinkabout: 1
| Money d; :
*(at+b) =c; 1d=(a+b) =c;
Evaluates to an unnamed "'What is this supposed to 1
object if we don’t return by \ mean? (d gets c’s value) 1
I
1
|

Why not return by const-ref?

const Money operator+ (const Money& a, const Money& b)
(e e e m e m = |

| return Money(a.GetDollars() + b.GetDollars(), |

1 a.GetCents () + b.GetCents()); |

* Look closely...
— We return a copy of a temporary Money object...
— It goes out of scope when the function returns!

10/12/15

Other Operators?

* You can overload just about anything, but you should be VERY careful...
=[]
— * multiplication, pointer dereference
— /division
— +addition, unary positive
— - substraction, unary negative
— ++increment, pre and post
— --decrement, pre and post
— =assignment

<=, >=, <, >, ==, |= comparisons

— Many, many others...

Practice

// In Money.h
class Money

{

public:
« Let's overload the Money(int dollars, int cents);
multiplication on money... int GetDollars();
— Ignore “roll-over” int GetCents();
— Member function? void SetDollars(int dollars);
— Non-member function? void SetCents(int cents);
private:

int m_dollars;
int m_cents;

Yi

// In main.
Money m(100, 00);

m=m* 10;

Challenge

* Fix the multiplication operator so that it
correctly accounts for rollover.

10/12/15

Challenge |

* Overload the + operator to add a Passenger to a Car:

class Car
{
public:
// some methods
private:

vector<Passenger> passengers;

Why is overloading the + operator this way not such a
good idea?

